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A Theory of Credibility

JOEL SOBEL
University of California, San Diego

This paper presents models in which one agent must decide whether to trust another, whose
motives are uncertain. Reliability can only be communicated through actions. In this context, it
pays for people to build a reputation based on reliable behaviour; someone becomes credible by
consistently providing accurate and valuable information or by performing useful services. The
theory provides a justification for long-term arrangements without binding contracts. It also
describes those situations where it pays an agent to cash in on his reputation.

1. INTRODUCTION

Many decisions depend on trusting someone. Consumers must decide whether to believe
advertisements, banks need to judge the reliability of loan applicants, and employers
must decide how much responsibility to delegate to their employees. This paper attempts
to model situations that arise when someone is uncertain about whether to trust the people
he deals with. In this context, reputations for reliability are valuable. An agent becomes
credible by consistently providing accurate, valuable information or by always acting
responsibly.

I analyse a series of simple, abstract models of information transmission. In the
basic model, there are two agents, the Sender (S) and the Receiver (R) who are to play
the game a known, finite number of times. At each stage both players learn the value of
a parameter measuring the importance of that period’s play of the game (that is, the value
of making a correct decision) and S obtains payoff-relevant information; S then sends
a signal to R, who makes a decision that affects the welfare of both players. After both
players learn the consequences of R’s decision, the process repeats. At each stage R
must decide what action to take. In order to do that he must assess the credibility of S.
The difficulty arises because R is uncertain about S’s preferences when play begins. I
model this by assuming that with positive probability S has identical preferences to R
(S is a friend) and with positive probability S has completely opposed preferences to R
(S is an enemy). This uncertainty creates a trade-off for enemy Senders. At each stage,
providing honest information enhances S’s reputation, but only at the expense of foregoing
an opportunity for immediate gain by duping R. The possibility that S is a friend lends
credibility to what he says, but this credibility may also be exploited by an enemy S.

The principal equilibrium has the following form. In the basic model, where S has
no control over the importance of a given play, S typically conveys accurate information
for the first several periods. R raises the probability he places on S being friendly after
receiving accurate information if he believes that an enemy would have lied to him with
positive probability. The more important the information, the more likely an enemy will
attempt to deceive R. An enemy will eventually take advantage of R by misleading him.
When this happens, the Sender loses all opportunities for deception in the future. I
describe the basic model in Section 2. In Section 3, I analyse the one-stage version of
the model. Section 4 describes equilibrium behaviour when the game lasts for more than
one period.
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558 REVIEW OF ECONOMIC STUDIES

In Sections 5 and 6, I modify the basic game. In Section 5, S may reduce the importance
of the game in any period. This leads to a significant change from the earlier results:
the specification of equilibrium now includes a range of information levels in which R
trusts no one. That is, in order to influence R, S cannot offer information in a certain
range. If S happens to receive information in this range, then he must reduce its importance
in order to maintain credibility in future periods.

R controls the importance of the game in Section 6. In the principal equilibrium of
this section, R rewards accurate information by increasing the importance of future plays.

The seventh section is a conclusion.

Recent papers by Kreps and Wilson (1982b), Kreps, Milgrom and Roberts, and
Wilson (1982), and Milgrom and Roberts (1982) were the first to present models in which
players, like the unfriendly sender in this paper, exploit uncertainty and take short-term
losses in order build a reputation and make long-term gains. Wilson (1985) reviews these
papers and other applications of the type of reputation effects that I analyse. My paper
owes much to this work.

2. THE BASIC MODEL: THE PRINCIPAL-DOUBLE-AGENT PROBLEM

There is a finite sequence of dates indexed (backwards) by t=T, T—1,...,1. Thus, at
date ¢ there are t periods remaining. There are two players, S and R. There is a sequence
of independent, identically-distributed random variables {A,}, each with differentiable
probability distribution function G(A) and density g(A) supported on [A, A], where
A<A. A measures the importance of a date’s play. Thus, a correct decision becomes
more valuable, and an incorrect decision becomes more costly, when A increases. In
addition, at the start of period ¢, S observes the value of a binary random variable M,,
which is independent, identically distributed, and equally likely to be equal to —1 or 1.
At date 1, S and R play the following game. After observing M,, S sends a message to
R by selecting an element from a set of possible signals, N. R processes the information
in S’s signal and chooses a real-valued action, y, which determines players’ payoffs for
that period. After R learns the value of M, and both players learn their payoffs, the
process repeats.

The game can be interpreted as follows. In each period, S (the “spy”) comes to R
(the “representative” of a government) with a description of a situation. Both S and R
can evaluate the importance of the situation. R is responsible for making a decision,
while S has relevant information. S sends a message to R that can be interpreted as an
estimate of M. R must then decide how to use this information, taking into account his
uncertainty about S’s motives. In particular, because he believes that it is possible that
the spy is a ““double agent”, R will be reluctant to trust S fully, particularly on important
matters.

Players maximize the undiscounted sum of their single-period payoffs. Continuously
differentiable von Neumann-Morgenstern utility functions, U®(-) and UR®(-), deter-
mine the single-period payoffs. R is uncertain about S’s preferences. He believes that
there is a prior probability p; € (0, 1) that S is a friend (F), that is, UR(-)=U"(")
describes S’s preferences, and probability 1 — py that S is an enemy (E), that is, U®( -)
describes S’s preferences. Thus, S and R have identical preferences when S is a friend,
while their preferences differ, in a sense made precise below, when S is an enemy. All
aspects of the game other than whether S is a friend or an enemy and the value of M,
in a given period are common knowledge.

I make the following assumptions on the utility function U’( - ), i=R and E.
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Assumption Al. U'(-) depends only on |y — M| and A.

Assumption Al has two consequences. First, it says that the single-period payoffs
do not depend on t. Second, it is a symmetry assumption. It says that utility depends
only on the distance between y and M. It allows a simplification of the analysis, in which
S’s two possible lies (communicating 1 when M = —1 and communicating —1 when M =1)
play analogous roles and the probability of lying therefore need not depend on M.

Assumption A2. U'(-) is strictly concave in y.

Assumption A3. The solution to the problem:
max, U'(y — M, A)
isy=Mifi=Rand y=—M ifi=E.

Assumptions A2 and A3 guarantee that R has a unique best response to S’s signals
and makes it unnecessary for R to use mixed strategies in equilibrium. Suppose that i
believes that the probability that M =1 is r. Then his best action, call it y'(r, A), is the
solution to the problem:

max, rU'(y—1, A)—(1-r)U'(y+1, A).

Assumptions A2 and A3 guarantee that y'(r, A) is well defined for all re[0, 1],
A€[A, A], and i=R and E. Assumptions Al, A2, and A3, combine to imply that
yR0,A)=y"(1,A)=-1,  y*(1/2,A)=y"(1/2,A)=0,  y*(1,A)=y"(0,A)=1,
y'(r, A)+y'(1—r, A)=0 and that the y’( - ) are strictly monotonic in r. R prefers higher
actions in [—1, 1] to lower if M =1, and lower actions in [—1, 1] to higher if M =—1.
E’s preferences are the reverse. Thus, the interests of E and R are totally opposed in
the sense that if M is known and E weakly prefers an action u to another action v, then
R weakly prefers v to u.

Assumption A4. U'(y®(0, A)—M, A)=0 for all M and A.

Assumption AS. If U®(-)#0 then |[U®(-)| is strictly increasing in A, for all M
and y.

Assumption A4 is a normalization that guarantees that a totally uninformative signal,
which induces R to take the action y®(1/2, A), yields zero utility to E and F. Assumption
A5 makes increases in A increase the importance of the game to E.

I make these restrictive assumptions mostly for convenience. A representative utility
function that satisfies Assumptions A1-A5 is UR(y— M, A)= A(1—(y — M)?).

Further, except that the principal equilibria require complicated mixed strategies,
the qualitative properties of equilibria do not change if the utility functions are linear.
For example, the stage game could have the following payoff matrix.

R\ E

y=—1| A,—-A | —A A

y=1 | —A,A | A,-A

M=-1 M=1
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That is, R has two pure strategies available (y =—1 and y =1) and always disagrees with
E on which is best. Very little is lost by replacing the general U’( - ) by linear or quadratic
utility functions.

3. THE ONE-STAGE GAME

I begin the analysis with a discussion of the one-stage game. For a fixed prior p;, an
equilibrium consists of the Sender’s signalling rules, q'(n|M, A), and the Receiver’s action
rule, y(n, A), which satisfy for i=F and F, M =—1and 1, and all ne N:

Condition E1. (a) q'(-)=0and ¥,_, q'(n|M, A)=1.
(b) If g'(ng/M,A)>0 for some mnoeN, then n, solves:
max,.y U'(y(n, A)— M, A).

Condition E2. y(n, A) = y®(r(n, A), A) where r(n, A) is the probability that M =1
given n and A so that,

pqu(n|19 A)+(1 _pl)qE(nll, A)

rnlA) = It A+ g7 (nl0, )+ (1= po)(a” (L, A) + 47 (0, A)

if
pl(qF(nlla A) +‘1F("l0, A))+ (1 —pl)(qE(nlla A)+ qE("IO, A)) >0.

Conditions E1 and E2 describe a Nash Equilibrium. The first condition says that
S’s signalling rule is a probability distribution" and that any signal S sends in equilibrium
is a best response to R’s action rule. Condition E2 uses Bayes’ Rule to compute R’s
posterior distribution on M given his information: the value of A and the signal n; r(n, A)
is the probability that M =1 given A and n. If S uses a signal that is unexpected, that
is, if S sends a signal n such that

p1(gF (n]1, A)+qF (n|0, A))+(1—-p1)(q"(n|1, A)+q"(n|0, A)) =0,

then Bayes’ Rule cannot be used to compute r(n, A). If R does not expect n, in
equilibrium, it must be the case that n, is not the unique maximizer of U'(y(n, A)—M, A).
Since r(n, A) determines y(n, A), the specification of r( - ) cannot be made arbitrarily in
equilibrium. Finally, Condition E2 guarantees that R’s action is a best response to the
signal.

Notice that the equilibrium conditions hold pointwise in A. To ease notational
clutter, I suppress reference to A for the remainder of this section.

By the assumptions on preferences and Condition E1, it follows that at most two
actions are induced (signalled for with positive probability) in equilibrium. If Y=
{y: y=y(n) forsome n € N},then Y <[—1, 1] and the maximization problem in Condition
E1 is equivalent to picking y € Y to maximize U’(y — M). This problem has a solution
if and only if Y has a least and greatest element; call these y and y respectively. y and
7 typically depend on the data of the problem, A and p,. In order to satisfy Condition
E1(b), S sends a signal that induces R to take action y if S=F and M=—-1or S=E
and M=1,and yif S=Fand M =1orif S=E and M =—1. Without loss of generality,
I restrict attention to signalling spaces that have two elements, say N ={—1, 1}, and
assume that F weakly prefers to make signal i if M =i. That is, I assume that y(—1)=y
and y(1)=j.
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These comments make a complete characterization of equilibria in the one-stage
model routine.

Theorem 1. If T =1, then there is an equilibrium in which y(—1)=y(1)=y®(1/2).
This is the only equilibrium when p, =%. If p, >3, then there is exactly one other equilibrium ;
init, y(—=1)=y"(1-p,) and y(1) = y*(p)).

The proof of Theorem 1 is in the Appendix. The no-transmission equilibrium, in
which R takes the same action regardless of S’s signal, always exists. If R chooses to
ignore S’s signal, then it is a best response for S to make non-informative signals.
However, if S is sufficiently reliable, then there is an equilibrium in which R uses the
signal in order to determine his action. This equilibrium appears to be more sensible
than the first for two reasons. First, the no-transmission equilibrium leads to an expected
payoff of zero for both types of S and for R, which is lower for all players (both types
of S and R) than the payoffs available in the other equilibrium. Second, one expects
F’s signals to be informative in equilibrium. In what follows, I restrict attention to
equilibria in which F sends different signals for different values of M. These equilibria
involve non-trivial communication wherever it is possible. Assuming that signals are
labeled so that y(1) = y(—1), this means that " (n|M) =1 if and only if n = M. This type
of signal allows F to communicate the maximum amount of information to R. I call F
honest if he uses this type of signalling rule; I intend to concentrate on honest equilibria:
those equilibria in which F is honest.

Corollary 1. If T =1, then there is a unique honest equilibrium in which y(—1) = y(1) =
y*@) if pr=3 and y(=1) = y*(1-p,) and y(1)=y*(p,) if p;>3.

The proof of Corollary 1 is in the Appendix.

When p,>3, E always lies to R; for either value of M, E and F always make
different signals. Although R knows that this is E’s strategy, he is sufficiently confident
that S is a friend to take different actions for different signals. When p, =3, there is no
equilibrium in which F is honest and E always lies. Given signalling rules of this form,
R would choose to take a higher action when he receives a lower signal, but then S’s
signalling strategy would not be optimal. Instead, when F is honest and p; <3, E must
randomize to cover up the information in F’s signal. The strategy presented in the proof
of Corollary 1 makes r(—1)=r(1)=3.

The one-stage game is similar to the information transmission models of Green and
Stokey (1981a) and Crawford and Sobel (1982). These models have more general
uncertainty about the state of nature (M), but no uncertainty about preferences. Green
and Stokey (1981b) and Holmstrom (1980) analyze similar one-stage models, but allow
the uninformed player to commit himself to an action rule.

4. THE MULTI-STAGE GAME

When there is more than one stage, E sometimes wants to supply useful information to
R at first in order to take advantage of his reputation later. Now I build on the analysis
of the one-stage game to describe equilibria of the finitely-repeated game. As in Section
3, I restrict attention to signalling spaces that have two elements, N ={—1,1}, and I
identify the signal n =—1 with the lower action induced. I characterize only the honest
equilibria. Corollary 1 provides a justification for this in the one-period game; a similar
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result, Corollary 2, holds for the finitely-repeated game. Also, I assume that the state
M =-1 and M =1 lead to symmetric behaviour so that, in particular, the probability
that E and F send the same signal does not depend on M. This assumption actually is
a straightforward consequence of the symmetry assumptions on utility functions (for a
proof, see Sobel, 1983).

With these simplifications, an honest equilibrium consists of signalling rules for S,
denoted by qi(A, p) for i = E and F, which represent the probability that i tells the truth
(reports n = M) given A with ¢ periods remaining and p is the probability that R believes
S = F, and action rules for R, denoted by y,(n, A, p). Given the symmetry assumptions,
an honest signal induces an action that differs in absolute value from M by z,(h, A, p)=
1-y,(1, A, p)=1+y,(0, A, p), while a dishonest signal induces an action that differs in
absolute value from M by z,(d, A, p)=1+y,(1, A, p)=1—-y,0, A, p). In an honest equili-
brium, gi( - ), y.(-), and z,( - ) must satisfy:

Condition EO'.

0 iflI=d orp=0
p/lp+(1-p)g’(A,p)] ifl=hand p=0.

Condition E1". (a) 0=gqi(-)=1
(b) qi(-)=1 . 4
(c) If q(A,p)>0, then Wi(h, A, p)= W,(d, A, p), and if 1>
qi(A, p)>0,then Wi(d, A, p) = Wi(h, A, p) where Vi(p, A)=0,
Vi(p) is the expected value of Vi(p, A), Wil A, p)=
U'(z(L A, p), A)+ Vi_i(p.—i(L, A, p)).

Condition E2'. y,(n, A, p)=y®(r(n, A, p), A) where r(n, A, p) is the probability
that a signal is honest given A so that r,(n A, p)=p+(1—p)qE(A, p).

pt—l(la A’ P) ={

Given pr, Condition E0’ defines a sequence of probabilities, pp, pr—1, - - -, p;, where
if A, is the realized value of A in period ¢, and [, =d or h depending on whether S is
dishonest or honest in period ¢, then p,_,=p,_,(1, A, p.).

The function p,_,( - ) defined in Condition E0’ is an expression for the probability
that S = F given S’s signalling rule. When I/, =d, p,_,( - ) = 0 since in an honest equilibrium
R believes that F always is honest. Further, once R discovers a lie he remains certain
that S is an enemy regardless of what happens in the remaining periods. The second
line in Condition E0' follows from Bayes’ Rule since p+ (1 —p)qF (A, p) is the probability
of an honest signal. The probability p, summarizes all of the information that R needs
to know about S when ¢ periods remain. In general, strategies may depend on more
detailed descriptions of the history than the sequence pr, pr—,...,p;. However, this
information is not relevant to R in an honest equilibrium. To see why, I argue inductively.
By Corollary 1, there is a unique honest equilibrium when T =1; p, completely determines
equilibrium strategies. Therefore, all equilibrium strategies for the final period do not
depend on past information other than p,. Similarly, Theorem 2 shows that an honest
equilibrium for any #-period game is determined uniquely by p,. Conditioning on histories
may be used to select from a number of equilibrium outcomes for the remainder of the
game?, but since honesty is enough to predict definite outcomes, information not included
in p, plays no role in the t-period equilibrium. Following Corollary 2, I discuss an
example of an equilibrium in which strategies depend on more general descriptions of
history than the posterior probability that S is F.
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Condition E1’ describes S’s signalling rule. Condition E1’ (a) says that S’s signalling
rule is a probability distribution over signals, Condition E1'(b) says that F is honest, and
Condition E1'(c) guarantees that .S best responds to R’s action rule. Condition E2’ uses
Bayes’ Rule to compute R’s posterior distribution on M given his information: the value
of A; the signal n; and the probability that S = F, p. Bayes’ Rule determines the probability
that S is telling the truth, r,(-). Notice that Condition E2' implies that R’s period-t
payoff determines his action in period t. This is because his payoff with ¢ periods remaining
depends on y,( - ) only in period t. Thus, in order to best respond to S’s signal, R must
behave myopically.

I must define equilibrium strategies for all p, not simply for the equilibrium realizations
Pr; Pr-1, - - - » P1- This is because only by defining these strategies can the players compute
payofis associated with non-equilibrium behaviour. The definition of equilibrium guaran-
tees that continuations of honest equilibria are also honest equilibria. Moreover, once S
lies the relationship between R and S stops in that S’s signals are not informative and
R’s actions do not depend on S’s signal.

Let VX(p, A) be the expected value function for R when t periods remain and R
believes that S = F with probability p. The corresponding value functions, Vi(p, A) for
i=E and F, have been defined in Condition E2'.

Theorem 2 characterizes the equilibrium.

Theorem 2. There is a unique honest equilibrium. In it, for i=E, F, and R, Vi(p) =0
for p=27" and is strictly positive and increasing in p and t for p>2'. There is a function
H,(p), increasing in p and t, such that E never lies in period t if A< H,(p). The probability
that S’s signal is honest and the degree to which R believes S increases in p and t.

Before discussing Theorem 2, I present a justification for concentrating on honest
equilibria.

Corollary 2. If the honest equilibrium is played when s <t, then R and both types of
S prefer F to be honest in period t than any other equilibrium behaviour.

I prove Theorem 2 and Collorary 2 in the Appendix.

Corollary 2 justifies the honest equilibrium inductively. If all of the players believe
that the honest equilibrium will be played for s-stage games, then they cannot do better
than play honestly in an (s+1)-stage game. As Corollary 1 establishes the prominence
of the honest equilibrium for the one-stage game, players expect it to be played. Thus,
they have no reason not to play it in longer games. On the other hand, Corollary 2 does
not prove that the honest equilibrium Pareto dominates all other equilibria of the game.
This is not true when T > 1. For example, let T =2 and suppose that F uses a signalling
rule when ¢ =1 that depends on R’s action when ¢ =2. In particular, suppose that F uses
an honest signalling rule when ¢=1 if and only if y,(n, A, p)=n for n=0 and 1, and
otherwise F conveys no information so that qi (n|M)=3% for n=0 and 1 and M =—1
and 1. If F chooses to convey no information, then the only equilibrium strategy for R
when t=1is y,(n) =y®(3) for n=0 and 1. Therefore, unless R takes F’s most preferred
action when ¢ =2, the no-transmission equilibrium is selected when ¢=1. If p, is close
to_1, then R prefers to set y,(n, A, p) =n rather than sacrifice a positive payoff when
t=1. With appropriate signalling rules for E, these strategies then comprise a sequential
equilibrium (see Kreps and Wilson (1982a)). F prefers this equilibrium to the honest
equilibrium because he induces his most preferred outcome in both periods. Provided
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that E lies with positive probability in the honest equilibrium, he too does better since
a lie causes R to take E’s most preferred action. Notice that in this equilibrium R does
not make his myopic best response to the signal when ¢ =2, because E will lie to him
with positive probability. This is possible because F conditions his ¢ =1 signal on R’s
action. I could restrict attention to histories summarized by the probabilities p, when 1
characterized honest equilibria because p, uniquely determines equilibrium strategies. In
general, however, conditioning on earlier strategies can be used to make selections from
multiple equilibria. This is what happens in the example. I have chosen to restrict
attention to honest equilibria because Corollaries 1 and 2 suggest that F’s threat to revert
to the no-transmission equilibrium is not plausible.

In the honest equilibrium, E does one of three things, depending on the value of A.
If A is small relative to the number of periods remaining and E’s current reputation
(A< H,/(p)), E always tells the truth because he expects to have a more attractive
opportunity for deception in the future. Therefore, when A is sufficiently low, R is willing
to believe anything that S says, but for this reason honesty does not improve S’s reputation.
E always lies with positive probability if his current reputation has no future value.

For larger values of A, E lies with positive probability. If p and A are sufficiently
large, then E lies with probability one. This type of behaviour only occurs if p =3 since
otherwise R would not trust the signal. For some values of A, E uses a mixed strategy.
If S does tell the truth in these situations, then the fact that R thought that E might lie
leads R to feel more confident about S in the future. Without further assumptions about
preferences, I cannot guarantee that increases in A increase the equilibrium probability
of lying. This is because an increase in A may change y®(p, A) so as to make lying less
costly to E. However, if y®(-) does not depend on A, increases in A always make lying
more attractive to E, and the equilibrium probability of lying increases as a result.

Theorem 2 sheds some light on how the relationship between S and R depends on
the reputation of S, p, and the number of periods remaining, #. Increasing p is beneficial
to R because it increases his chance of dealing with a friend. Increasing p is beneficial
to S because R receives more informative signals (honesty is more likely) so the payoffs
associated with honesty (for F) and dishonesty (for E) increase. When more periods
remain or when p is higher, the value of pretending to be a friend is high to an Enemy
Sender.

The variable importance level A provides an incentive for Enemy Senders to supply
honest information. If A= A, so that the importance of each stage game does not vary
over time, then E signals honestly with positive probability in some periods. However,
E is never honest with probability one. Here is why. E tells the truth if he expects to
have an opportunity to gain more by lying in the future. This can happen for two reasons.
Either there is a chance that future opportunities are more valuable (higher A), or that
R will be more trusting in the future (higher reputation). The first cannot happen if
A= A and the second cannot happen unless R has some reason to believe that S is more
likely to be a friend, which in turn only happens if R expects E to lie with positive
probability and then receives an honest signal. Thus, the role of a variable A in the
model is to provide situations in which E always tells the truth.

R prefers to deal with a single Sender for T periods rather than T Senders separately.
This is because repeated plays allow him to better evaluate the usefulness of S’s informa-
tion. Long-term arrangements help to moderate the inefficiencies caused by incomplete
information.

Theorem 3. In the honest equilibrium, V¥(p)= tV{(p) for all t and p.
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Proof. The proof requires two observations. The first step is to observe that if 0<p
and p <1, then

PV (B, A) = Vi(ph, A). (1)
When pp =3, (1) follows since V{(pp, A)=0. Otherwise,
pVT(B, A)=ppUR(y*(h, A)—1, A)+p(1-p) U (=y"(p, A), A)
> ppUR(y®(ph, A)—1, A)+p(1 = ) U™ (=y"(ph, A), A)
>ppUR (y® (0P, A)—1, A)+(1—pp) U* (—y"(ph, A), A)
= Vi(pP, A).

The first inequality follows from the definition of y®( - ), the second inequality follows
because UR(—y®(pp), A) <0 whenever pp >3, and the equations follow from the defini-
tion of VX( ) and because in the honest, one-period equilibrium if the probability of S
being E is less than one half, E is always dishonest.

The second step is to note that for some re[p, 1],

Vi(p, A)= Vi(p, A)+rV(p/r). ()
To obtain (2), note that
VE(p, A) = rUR(y®(r, A)=1, A)+ (1 =) UR(=y"(r, A), A)+rV,(p/ 1),

where r is the probability that R receives an honest signal in period ¢. Thus, since R
receives an honest signal more often in the first of ¢ periods than in a single period (when
E is always dishonest or no information is transmitted), (2) is established.

The proof now follows from induction. The theorem is true when ¢=1, and if it
holds for s —1 periods, then

z VR(p, A)+(s—DrV{(p/r) = Vi(p, A)+(s—1) Vi(p), (3)

where the first inequality follows from (2), the second from the induction hypothesis,
and the third from (1). Taking expected values of (3) establishes the theorem. ||

While Theorem 3 indicates the advantages of dealing with a single S, it is a relatively
weak result. It would be of interest to show that

VR(p) = VE(p)+ Vi (p). (4)

However, (4) will not hold without further assumptions. First, thus far I have assumed
that E and R have totally opposed preferences in any single period, but that they may
differ in their assessments of a situation’s importance. If E and R do differ in their
ordering of A, then there may be situations in which (4) does not hold. To see this,
suppose that increasing A increases |[U”( - )|, but that increasing A first decreases, then
increases, |[UR( - )|, so that R loses very little when he is duped for intermediate values
of A. As the length of the horizon increases, it is more likely that E will wait for a high
value of A and cause more damage to R when he is dishonest. In this case, ex ante, R
would prefer to shorten the maximum feasible length of the partnership and use two
informants for short periods rather than one for a long period. This problem can be
ruled out by assuming that E and R have opposing interests in an extended sense, for
example, if U%(y— M, A)=—-U®(y— M, A) so that E and R always agree on the import-
ance of a decision and disagree on the appropriate action.
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Assuming that U®(y— M, A)= — UR(y — M, A) does not appear to be enough to
prove (4), however. Since R is risk averse, he is willing to pay a premium to discover if
S is an enemy. However, because commitment is not possible, he cannot do this by being
more credulous in early periods and thereby inducing an unfriendly Sender to be dishonest
early. On the other hand, a shorter horizon allows fewer opportunities for deception and
R may prefer to limit the length of attachments so that the first periods will provide
stronger tests of S’s motives. When U’( -) is linear, (4) is satisfied, indicating that risk
aversion may play a role in discouraging long-term associations if commitment is not
possible. When A=A, (4) is also satisfied. This suggests that part of the problem with
long-term arrangements is the increased possibility that E could deceive R on a very
important matter.

Many of the assumptions made in this section are not really necessary. I made the
symmetry assumption A3 for exposition convenience. Aside from the fact that the
probability of being honest will depend on M, no results will be altered by relaxing the
assumption. The distribution of A and the utility functions can depend on ¢; in particular,
introducing discounting presents no problem. More general types of preferences for E
may be allowed. If there are only two states of the world, preferences will either be
totally opposed or in agreement. If it is common knowledge that E’s preferences are
identical to R’s periodically, then the results do not change; there is complete trust in
those periods. On the other hand, if the nature of the uncertainty about M is more
complicated, then there are more possibilities for diversity of preferences. In such a
variation it might be possible to analyse the effect that increasing the degree by which
preferences differ has on the characteristics of equilibrium.

The results remain basically unchanged if R observes A only after he makes a
decision. There typically is an interval of values of A such that E always tells the truth,
followed by an interval in which mixed strategies are used, and then by an interval in
which E always lies. Changing the payoff structure could make more or less randomization
necessary. If UR(-) were not strictly concave, then R would need to randomize. If, for
example, R observed the value of A with noise (or, for some reason, was uncertain about
the value of A that entered S’s utility function), randomization by S would probably not
be necessary. What is needed is a way by which R places non-degenerate probability on
E telling the truth. This can be done in a variety of ways.

Another modification is worth noting. If R can commit himself to an action rule in
a given period, but is unable to commit himself to ignoring information in the future,
the equilibrium changes somewhat. R would like to take more drastic (be more credulous)
actions in the early periods. This increases the probability that E is dishonest, and thus
allows R to be more confident that information provided in future periods is reliable.
Formally R’s payoff can be divided into two parts, the future expected utility and the
utility he expects from the current period’s decision. Since he is unable to make commit-
ments, R must use the current period’s information optimally. This maximizes the
contribution of the current period to expected utility. However, the future consideration
argues for R to increase the amount of dishonest behaviour in the present period in order
to be more confident, after he receives reliable information, that he is dealing with a
friend. If R could make commitments, this effect would cause him to be more credulous
in the current period in order to be more confident in the future. However, it will typically
not be optimal for E to lie with probability one in period T, and the analysis of this
section captures the qualitative properties of the equilibria with commitment.

In the model an enemy has only one opportunity to mislead R. Afterwards, his
reputation falls and R believes nothing that he says. While he is providing useful
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information, S’s reputation increases through time. Several simple modifications of the
model would alter these results. If S did not receive perfect information, then R could
not be certain that a misleading signal was deliberate or accidental. In this case, mistakes
would cause F’s reputation to fall, and E may be able to deceive R at regular intervals.
It is worth adding that if R had the option of replacing S with another player whose
reputation was the same as S’s original reputation, he would do so in the present model
only if S is an enemy who has just lied. If S can make mistakes, then there is a positive
probability that a friend will be replaced.

5. REDUCING AGENTS

Theorem 2 showed that if A, is sufficiently low E will send the same signal as F with
probability one. This is costly to E; he makes short-term losses because R is able to
make a well-informed decision, but does not improve his reputation. It is only the
expectation that future values will be greater than the current one that makes his strategy
optimal. However, if E was able to manipulate A, he might choose to provide less
valuable information in these situations. Continuing the analogy with spying, a double
agent might convey accurate, but less than comprehensive, information in order to lower
his losses when deception is not justified. To allow for this possibility, in this section it
is assumed that S observes the value of A, again drawn from the distribution described
by G( ), and then selects a reduced value a,€[A, A,] to report to R, thereby lowering
the potential importance of his services to R. Next he sends a message to R about M
as before, and R chooses an action. R learns the reduced value a, when S reports it;
this is the value that enters his utility function. R never learns the true value of A, 1
continue to make all of the other assumptions of Section 2.

This section presents an informal description of the equilibrium for this model. The
details are in Sobel (1983). For the reducing model, the strategies of the players include
signalling rules for S and decision rules for R, as in Section 2. In addition, S must have
a rule that tells them what level of importance a to report given ¢, p, and A,. R evaluates
S’s reputation on the basis of S’s report, a, so that an Enemy Sender cannot systematically
reduce the importance of the information that he provides without lowering R’s trust in
him.

There always exists an honest equilibrium with reducing. It involves both types of
S reducing A to A in every period. This equilibrium can be supported if R refuses to
trust anyone who’offers information A> A; consequently, no one offers it. The reduced
equilibrium with importance A in each period can be analysed as in Section 4. The
equilibrium is extreme because R never is able to gain access to any important information.
It might be hoped that there are other equilibria that both types of S and R prefer to
this one. In particular, just as it was reasonable to expect F to put as much information
as possible about M into his signal (that is, to be honest), it seems reasonable to expect
F never to reduce the importance of this information. It turns out that this is not possible
in general.

Theorem 4. If US(y—M,A)=UF(y—M+1,A), US(y—M, A)=0, and T>1,
then in every honest equilibrium there exists a nondegenerate interval of importance levels
A that neither type of S provides in some period. Moreover, the reputation of S cannot be
monotonically increasing in the level of A provided.

For a proof of Theorem 4 see Sobel (1983).
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The message of Theorem 4 is that the ability to manipulate the importance of a
situation adds a new inefficiency to the problem of contracting with an agent who has
uncertain motives. In order to avoid placing confidence in an agent who provides accurate,
but unimportant, information, R must be wary of an S who reports low values of A.
Theorem 4 states that this is not consistent with accepting certain values of A. A typical
equilibrium involves S reducing to A those values of A that would cause E to be honest
with probability one. F must also reduce these values, for otherwise an enemy S could
obtain a good reputation at low cost by imitating F. In order to persuade F not to reduce
A, R must conjecture that only unreliable agents provide certain levels of A. This means
that reputation cannot generally increase with the level of information provided.

The assumption that Uf(y— M, A)= U (y— M +1, A) guarantees that increasing
A increases importance for both R and S. The assumption that U®(y—M, A)=0
guarantees that there are some levels of importance so low that E would prefer to always
tell the truth in the hope of making a big gain tomorrow, than lying with positive
probability.

This type of model applies to economic situations. For example, let the informed
player, S, be in charge of market research for R. S learns two things about R’s product.
He learns the appeal of the item, measured by A. S also learns whether the product
works (or can'be produced profitably), measured by M. R wants to market the product
if M =1, but does not want to market it if M = —1. In this context, assume that a friendly
Sender’s preferences agree with R’s, but an Enemy Sender, never wants R to market the
product.® The results of this section apply if I assume that R learns the value of M after
he makes his marketing decision and that S is able to reduce that size of A by claiming
that only a < A people might use the product. In this case, R observes a but not A. For
this model, the results indicate that E provides reliable information for a period while
waiting for an opportunity to convince R not to produce when A is large and M =1.
Moreover, the larger is A, the more costly it is for E to recommend production. Con-
sequently, the ability to reduce the size of projects is attractive to E. Theorem 4 states
that in some situations even F must reduce A in order to maintain credibility. A particular
form of equilibrium behaviour involves R marketing only those products that attract a
large enough group of people. R does this not because of any economic of scale in
production, but because if R believes reports of low values of A then he allows Enemy
Senders to deceive him at low cost.

The model of this section has the property that the level of information (magnitude
of A) and not just its precision (relationship to M) convey information to R about S’s
motives. When S has control over the level of information, R must be wary of Senders
who do not provide important information; otherwise, E will take advantage of him by
supplying important information only when he intends to lie.

6. A LOAN MODEL

The model of this section does not involve direct information transmission, but shares
with earlier models the idea of uncertainty about motives. I will call two players the
Borrower (B) and the Lender (L). The game repeats a fixed, finite number of times. At
any stage, L decides on an amount A€[0, 1] to lend to B. B, taking M as given, decides
whether to invest (I) or to default (D). There are two type of B, E and F, and L assigns
the initial probability pr that B= F. The payofis for a single play of the game are given
by the utility functions U’(A, j). In this section, I assume that

U"(A,D)=U"A,D)=U®(A, I)=-A
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and
UF(A,I)=UYA,I)=U*%(A, D)= A.

The payoffs suggest that E cannot produce anything with the loan, but is able to take
the money. F cannot costlessly default, but he is able to invest the money and make a
profit, which is shared with L. The two types of borrowers differ only in their ability to
produce income from a loan. For example, if a friendly borrower can always triple the
value of the loan, while an enemy borrower cannot increase the loan’s value, then
preferences similar to the ones used arise provided that the lender requires that a
non-defaulting borrower returns $2 for each $1 borrowed.*

Informally an equilibrium consists of loans, A,(p), probabilities that B = F, p,, and
probabilities of defaulting, di(p, A) for i = E and F, such that reputations are updated
by Bayes’ Rule when possible, L best responds and B puts positive probability only on
strategies that maximize utility. In this definition, L is able to commit himself to a value
A, in each period, but cannot make commitments about future loans. It turns out that
when U'( -) is linear, this restriction does not influence L’s payoffs.

Theorem 5. The equilibrium to the loan model is

27k 2kFzp=27F k=0,...,t—1,
A,(p)={0 2_,>5§0

d{(p, A)=0,
1 if A>A,(p), orif A=A,(p) and p=}
di={p/(1-p) ifA=A(p) andp<;
0 ifA<A,(p).

The associated value functions are

27k 2Tk=p=pkt

=k H—i -k k—1
t=Y,, 270 27kzp=z=2"!, k=0,...,t-1,
F _
V,(p)—{0 >tz p=0
and VE(p)=pVF(p)—(1-p) VE(p).

, k=0,...,t—1,

The proof is a routine verification, I omit it.

In equilibrium, L is unwilling to loan the full amount to B unless he is confident
that B is a friend. The level of confidence does not depend on the number of periods
remaining; until full confidence is reached (p=3), the amount of loan increases with
each successful loan. Also, the value of the game is increasing in ¢ and p for all players
and if p>0, then lim7,, V(p)>0, so that if there is some chance that B is a friend,
there are T’s large enough so that it is worthwhile for L to make loans. Notice that F
never defaults, and E is indifferent between defaulting or investing in the first period.
When L can commit himself to A, in period t, df(p, A,) is not uniquely determined
although it cannot be equal to one (the largest feasible amount) unless L can commit
himself to the entire future sequence of loans. On the other hand, if df(p, A,(p))=
p/(1—p) when p=3%, the L’s prior on the probability of default is 3 and he is indifferent
about amounts that he lends at ¢; in particular, he is willing to lend A,(p) and he does
not need to be able to commit himself to do so. As a final remark about the equilibrium,
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note that L would prefer to have T opportunities to lend to a given B, rather than to
make T individual loans to different Borrowers (each with probability p; of being
friendly). This is consistent with Theorem 3 and underlines a basic idea of the analysis:
Long-term arrangements are of value when there is uncertainty about preferences because
past transactions provide relevant information to agents.

The model of this section is much too simple to give useful insights into credit
markets. More general preferences can be allowed without destroying the flavour of the
results. Yet it seems more important to extend the analysis to a market setting, and allow
the Lender to select a repayment schedule (that is, an interest rate).

7. CONCLUSION

If an agent is uncertain about the motives of someone upon whom he must depend, either
to provide information or make decisions, then the extent to which he trusts the other
will be based on the partner’s earlier actions. Thus there is an incentive for an enemy to
behave like a friend in order to increase his future opportunities, and for partnerships
to last until someone cashes in. I have tried to make this point with two simple models.
Technical extensions, such as more general uncertainty, could add further insights.
Finally, it should be emphasized that in my models credibility can only be established
through actions that influence past payoffs. The ability to make commitments or to take
actions that influence future payoffs would also help to determine an agent’s reliability.

APPENDIX
Proof of Corollary 1. If F is honest and

(1-2p)2(A—p)) " if p,=}
qE(MIM)={ D1 P ‘ P ?
0 if py>3

and q(1- M|M)=1-q®(M|M) for M =—1 and 1, then S best responds to the action
rules given in the statement of the corollary and r(n)=max (p,,3), so that R’s action
rules best respond to these signals. Further, if F is honest, then y(—1) <y(1) provided
p1>1, so that the no-transmission equilibrium cannot be an honest equilibrium if p,> 3.
The corollary now follows from Theorem 1. ||

Proof of Theorem 1. If S uses the strategies q'(n|M) =3 for i=E and F, n=—1
and 1, and M = —1 and 1, then r(n) =% for n = —1, so that Condition E2 is satisfied when
y(=1)=y(1) =yR@). In addition, if y(—1)=y(1)=y%(}), then these signalling rules
satisfy E1. If y(—1)<y(1) in equilibrium, then by E1 the equilibrium signalling rules
must be

1 ifn=M

F —
1 ("'M)_{o ifneM

and q®(n|M)=1-4q"(n|M). Therefore, r(1)=p, and r(—1)=1-p,, so that y(—1)=
yR(1-p,), and y(1) = y®(p,). Thus, an equilibrium with y(—1) < y(1) exists if and only
if y®(1—p,) <y®(p,), which occurs exactly when p,>3. The theorem follows because if
y(=1)=y(1), then y(-1)=y(1) =y*(). |
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Proof of Theorem 2. Fix p and A and suppose that the theorem holds for all
s=t—1,...,0. Setting Vi(p, A)=0for i = E, F, and R, it suffices to prove that the theorem
holds for t. If q is the probability that E is honest, then yj, the action induced when
n=j, r, the probability that M = n, v, the probability that S= F given M = n, and z(l),
the absolute value of the difference between M and the action induced by an honest (if
I = h) or dishonest (if I = d) signal are simple functions of g. Specifically, it must be that

r=p+(1-p)g, (A1)
v=p/[p+(1-p)ql, (A2)
yo=yR(1-r,A) and y,=y"(r, A), (A3)
and
z(d)=1+y, and z(h)=1-y,. (A4)

Finally, let W'(, q) denote the value to i of an honest (if I=h) or dishonest (if I=d)
signal when ¢ is the probability that E tells the truth. That is, for i=E and F let

Wi(h, q)= U'(z(h), A)+ V,_,(v)
and
Wi(d, q) = U'(z(d), A)+ V,_,(0) = U'(z(d), A).

The expression for W(d, q) follows because the probability S = F is zero after a lie and
because V,_,(0) =0 by the induction hypothesis. W'( - ) depends on g since q determines
z( - ) and v through (A1)-(A4).

The probability g is an equilibrium value if and only if

W¥(z(h), ) =2 W (2(d), 9), (A5)
if g <1, then

WE(z(h), )= W (2(d), 9), (A6)
and if ¢> 0, then

WE(z(h), )= W*(2(d), q). (A7)

(A5) guarantees that honesty is a best response for F, and (A6) and (A7) guarantee that
q is a best response for E.

I now prove that there exists a unique g €[0, 1] that satisfies (A5), (A6), and (A7).
First, note that if (A6) and (A7) are satisfied then z(h) = z(d) and therefore, since U ( - )
is decreasing in z for z >0, (A5) holds whenever both (A6) and (A7) hold. To see this,
assume z(h)> z(d). Then W (z(h), q)> WE(z(d), q). This follows from the definition
of WE(-) because U®( ) is increasing in z for z=0. Thus, (A6) implies that g =1.
However, if ¢ =1, then (A1)-(A4) imply that

0=z(h)<z(d)=2, (A8)

which contradicts z(h) = z(d). Therefore, it suffices to show that there exists a unique g
that satisfies (A6) and (A7). However, this follows easily since WZ%(z(d), q)—
WE(z(h), q) is strictly decreasing in q.

Next, I verify that Vi(-) has the desired properties. If p=27', then when g=
(1-2p)/[2(1—p)], (A1)-(A4) imply that r=3%, v=2"""", and z(d) = z(h) = 1. Thus, since
Vi_(v)=0 for v=2"""' by the induction hypothesis and U'(1, A)=0 by (A3),
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WE(z(d), q) = WF(z(h), q) =0. Therefore, if p=2~', then Vi(p)=0. Since Vi_,(p)>0
for p>2=""", W=(z(d), q)— W*(z(h), ) >0 when q = (1—2p)/[2(1—p)]. It follows that
if p>2"", ¢>(1-2p)/[2(1—p)] and therefore r>1 so that Vi(p)>0 for i=E, F, and
R. To show that Vi(p) is strictly increasing when p>27" I first show that equilibrium
values of r and v increase in p. To see this, observe that if E is indifferent between being
honest and being dishonest for a given value of p, an increase in p, keeping z(d) and
z(h) constant, causes E to tell the truth with probability one, because V_,( - ) is increasing
by the induction hypothesis; to prevent this, z(d) must increase (and z(h) must decrease),
which makes lying more attractive. Hence, to satisfy (A6) and (A7) v increases. That
Vi(p) is strictly increasing in p for i=E and F and p>2~"' now follows directly from
the definition of Vi(-). Finally,

Vip, A) = rViii(0)+rU"(z,(h), A)+(1—r)U"(z(h), A)

so that V() is increasing in r and v. A similar argument shows that if ¢ increases, then
so do r and v, and therefore Vi(p) increases in t for i = E, F, and R.

It remains to establish the properties of the function H,(p). Let H,(p) be defined to
satisfy

UEQ2, A)+ VE (p)—UE(0,A)=0 (A8)

or H,(p) = A if the right-hand side of (A8) is not equal to zero for all A. By assumption,
UE(2, A)— UF(0, A) is strictly decreasing in A, so H,(p) is well defined. Also, the
monotonicity of UF (2, A)— U®(0, A) in A, (A8), and the induction hypothesis guarantee
that H,(p) is increasing in ¢ and p. It follows from (A6) that g =1 whenever A< H,(p). ||

Proof of Corollary 2. The proof is by induction. If the hypotheses of the corollary
are true for s=¢—1,...,0, then the unique equilibrium is characterized in Theorem 2.
Assume that the corollary is true for s <t and in order to reach a contradiction, assume
that for some A, F induces two actions, w' and w?, when M =1 in period ¢ It follows
that, if w' leads to reputation v’,

UR(w'—1,A)+ VI, (v") = UR(w?*—1, A)+ VI ,(v?).

If w'>w?, then UR(w'—1, A)> UR(w —1, A), and so VI (v') < VE (v?). The induc-
tion hypothes1s then implies that v' <v” and V£ ,(v')< VE  (v?), but then

UB(w?—1, A)+ VE (v) > UE(w' -1, A)+ VE (v),

and so E induces w' with probability zero. It follows that R can interpret the signal that
induces w' as being from F whenever M =1, so v' = 1. This contradicts »' < v>. Hence,
F induces only one action (sends essentially one signal) when M =1. Similarly, it can
be shown that F sends essentially one signal when M = 0. If these signals induce different
actions in equilibrium, then F is honest; if not, then no information is being transmitted.
That all players prefer the honest equilibrium to no transmission follows because the
no-transmission equilibrium yields

Viaa(p, A)=U'(p* (@)~ 1, A)+ Vi_i(p)

since U'(yR(%)—1, A)=0, while the honest equilibrium yields Vi(p, A) and Vi(-) is
increasing in s by Theorem 2. ||

First version received August 1983 ; final version accepted February 1985 (Eds.).
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NOTES

1. Condition E1 assumes that N, the set of available signals, is countable. In fact, all of the analyses
that follows holds for more general signal spaces; however, only a finite number of distinct signals is needed
in order to characterize equilibrium.

2. This type of conditioning is necessary (essentially to make payoffs continuous in actions) when utility
functions are linear. There is an example of this in Kreps and Wilson (1982b).

3. Thus, E’s preferences are not completely opposed to R’s preferences. However, the conflict when
M =1 is enough to derive the results.

4. This specification would require that UF (M, D)= M instead of UF(M, D)=—M. However, in this
case, it will still be of value for F not to default in order to be able to borrow in the future.
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