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Abstract

This paper extends Milgrom and Robert’s treatment of supermodular games
in two ways. It points out that their main characterization result holds under
a weaker assumption. It refines the arguments to provide bounds on the set of
strategies that survive iterated deletion of weakly dominated strategies. I derive
the bounds by iterating the best-response correspondence. I give conditions under
which they are independent of the order of deletion of dominated strategies. The
results have implications for equilibrium selection and dynamic stability in games.
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1 Introduction

Milgrom and Roberts [16] and Vives [25] provide useful analyses of the class of supermod-
ular games introduced by Topkis [23]. In a supermodular game, each player’s strategy
set is partially ordered and there are strategic complementarities that cause a player’s
best response to be increasing in opponents’ strategies. Milgrom and Roberts and Vives
describe many applications of the games in the class.

Milgrom and Roberts [16] and Vives [25] demonstrate that supermodular games have
a largest and smallest equilibrium. Milgrom and Roberts demonstrate that these extreme
equilibria can be obtained by iterating the best-response correspondence and characterize
the set of strategies that survive iterated deletion of strictly dominated strategies. This
paper extends these insights in two ways. First, it broadens the class of games for which
the basic conclusions hold. Second, it provides parallel results for strategies that survive
iterated deletion of weakly dominated strategies.1 The new result forms the basis for
equilibrium selection arguments.

I enlarge the class of supermodular games by replacing an increasing-difference condi-
tion used by Milgrom and Roberts and Vives with a weaker condition, interval dominance,
introduced by Quah and Strulovici [21].

Section 3 points out a small generalization of the basic result of Milgrom and Roberts
characterizing the set of strategies that survive iterated deletion of strictly dominated
strategies. Section 4 extends the results to weak dominance. The analysis trades off
using a more restrictive solution concept (deleting weakly dominated strategies instead
of strongly dominated strategies) with analyzing a broader class of games. Section 5
discusses the implications of the characterization result for comparative statics and dy-
namics. Section 6 discusses applications. This section describes two classes of games that
fail to be supermodular and have large sets of equilibria that survive iterated deletion of
strongly dominated strategies. I demonstrate that analogs of the methods introduced to
study supermodular games partially extend to these games. Appendix B contains proofs
omitted from the main text.

2 Preliminaries

There is a finite set of players. I denotes the player set. Each player has a strategy set
Xi with typical element xi. X = Πi∈IXi is the set of strategy profiles. I denote by x−i
the strategies of Player i’s opponents. Each strategy set is partially ordered by ≥i;≥
denotes the product order derived from the ≥i (so that x ≥ x′ if and only if xi ≥i xi for
all i). Denote Player i’s utility function by ui(xi, x−i). Denote by u = (ui)i∈I the set of
utility functions. A game in ordered normal form is Γ = (I,X, u,≥).

Consider a setX with a partial order≥ that is transitive, reflexive, and antisymmetric.
To make the paper self contained, I place standard definitions (lattice, chain, order
continuity, supermodularity, strong set order) in Appendix A.

1In related work, Kultti and Salonen [10] and [11] study supermodular games in which some weakly
dominated strategies are removed. I discuss these papers in Section 4.

1



The paper uses weaker versions of basic single-crossing properties. I review the basic
ideas and then discuss them in a strategic setting.

Definition 1. Given two lattices X and Y , a function f : X × Y → R has increasing
differences in its two arguments x and y if for all x′′ ≥ x′, the difference f(x′′, y)−f(x′, y)
is nondecreasing in y.

This paper replaces increasing differences with weaker assumptions. There are several
ways to weaken the increasing-differences property. The next definition is standard.

Definition 2. Given two lattices X and Y , a function f : X × Y → R satisfies the
single-crossing property in its two arguments x and y if for all y′′ > y′, x′′ > x′,

f(x′′, y′) ≥ (>)f(x′, y′) =⇒ f(x′′, y′′) ≥ (>)f(x′, y′′). (1)

Single crossing is also more restrictive than necessary.

Definition 3. Given two lattices X and Y . A function f : X × Y → R satisfies the
interval-dominance (ID) property in its two arguments x and y if for all y′′ > y′, x′′ > x′,
(1) holds whenever f(x′′, y′) ≥ f(x, y′) for all x ∈ [x′, x′′].

Quah and Strulovici [21] introduce Condition (ID) and derives basic properties. Quah
and Strulovici [20] contains additional results, including detailed discussion of the impli-
cations of (ID) when X is multidimensional. It is apparent that increasing differences
implies single crossing which in turn implies interval dominance. It is straightforward to
confirm that the converse implication does not hold.

The paper introduces and uses variations on Condition (ID) to study an application.
I defer these discussions to when they are needed in Section 6.

Definition 4. The game Γ = (I,X, u,≥) is an interval-dominance supermodular (ID-
supermodular) game if, for each i ∈ I:

(A1) X is a complete lattice;

(A2) ui : X → R is order upper semi-continuous in xi for fixed x−i; ui order upper
continuous in x−i for fixed xi; and ui is bounded above;

(A3) ui is supermodular in xi for fixed x−i;

(A4) ui satisfies the interval-dominance property in xi and x−i on all interval sublattices
of X.

The distinction between supermodular and ID-supermodular games is that (A4) re-
places the condition that ui has increasing differences.

A useful preliminary observation is Topkis’s Monotonicity Theorem.

Fact 1. Let X be a lattice and Y a partially ordered set. Let f(x, y) : X × Y → R.
Suppose that f(·) is supermodular in x for given y. For any sublattice X ′ ⊂ X, let
M(A1) ≡ arg maxz∈X′ f(z, y). M(X ′) is a sublattice of X.
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In the context of games, the first part of the theorem states that the set of best replies
forms a sublattice when the payoff function is supermodular in a player’s strategy. This
result is part of the Topkis Monotonicity Theorem as stated in Milgrom and Roberts [16].

An important property of supermodular games is monotonicity of the best-reply cor-
respondence.

Fact 2. Let Γ be an ID-supermodular game. Let J = J1×· · ·×JI be an interval sublattice
of X. If x′′−i ≥ x′−i, then

arg max
xi∈Ji

ui(xi, x
′′
−i) ≥ arg max

xi∈Ji
ui(xi, x

′
−i).

Fact 2 generalizes a result of Milgrom and Shannon [17, Theorem 4] that assumes the
single-crossing crossing property rather than (ID) and a result of Quah and Strulovici [21,
Theorem 1] that assumes that X is a subset of R. Quah and Strulovici [20, Theorem
1] proves Fact 2. As Milgrom and Shannon note, the lemma holds if one replaces the
assumption of supermodularity with the weaker assumption of quasi-supermodularity.2

3 Iterated Deletion of Strictly Dominated Strategies

This section presents a small generalization of Milgrom and Roberts [16, Theorem 5].
In order to formulate the result, let X̂ ⊂ X. Define a mapping Z from subsets of X

to subsets of X by:

Zi(X̂) = {xi ∈ Xi : for all x′i ∈ Xi there exists x̂ ∈ X̂ such that ui(xi, x̂−i) ≥ ui(x
′
i, x̂−i)},

and Z(X̂) = {(z1, . . . , zI) : zi ∈ Zi(X̂)}. Strategies in Zi(X̂) are best replies to strategies
in X̂−i. Let Z(X̂) denote the interval [inf(Z(X̂)), sup(Z(X̂))]. The process of iteratively
deleting strictly dominated strategies starts with X0 = X and lets X t = Z(X t−1). A
strategy xi ∈ Xi is serially undominated if xi ∈ Zi(X t) for all t.

Theorem 1. Let Γ be an ID-supermodular game. For each player i, there exist largest
and smallest serially undominated strategies, xi and xi. Moreover, the strategy profiles
{xi : i ∈ I} and {xi : i ∈ I} are pure Nash equilibrium profiles.

Theorem 1 is Milgrom and Roberts’s Theorem 5 under the assumption of interval
dominance rather than increasing differences. The theorem follows from the next lemma.
I include a proof of the lemma to identify precisely where I relax Milgrom and Roberts’s
condition.

Lemma 1. Let z, z ∈ X be profiles such that z ≤ z, let Bi(x) and Bi(x) denote the
smallest and largest best responses for i to x ∈ X, and let B(x) and B(x) denote the
collections Bi(x) and Bi(x), i ∈ I. Then supZ([z, z]) = B(z) and inf Z([z, z]) = B(z),
and Z([z, z]) = [B(z), B(z)].

2A function is quasi-supermodular if f(x) ≥ f(x ∧ y) implies f(x ∨ y) ≥ f(y) and f(x) > f(x ∧ y)
implies f(x ∨ y) > f(y).
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Proof of Lemma 1. The largest and smallest best responses are well defined by Fact 1.
By definition, B(z) and B(z) are in Z([z, z]), and thus [B(z), B(z)] ⊂ Z([z, z]). Suppose
z /∈ [B(z), B(z)] and, in particular, suppose zi � z∗i ≡ Bi(z). I claim that zi /∈ Z([z, z])
because zi is strongly dominated by zi ∨ z∗i . For any xi ∈ [zi, z

∗
i ∨ zi),

ui(xi ∨ z∗i , z−i)− ui(xi, z−i) ≥ ui(z
∗
i , z−i)− ui(xi ∧ z∗i , z−i) > 0, (2)

where the first inequality follows from supermodularity and the second from the definition
of z∗i .

It follows from (2) that for any xi ∈ [zi, zi],

ui(xi ∨ z∗i , z−i) > ui(xi, z−i). (3)

Furthermore, if xi ∈ [zi, zi ∨ z∗i ), then xi ∨ z∗i = zi ∨ z∗i and Inequality (3) implies that
for xi ∈ [zi, zi ∨ z∗i ),

ui(zi ∨ z∗i , z−i) > ui(xi, z−i). (4)

It follows from (ID), (3), and (4) that if zi � z∗i then

ui(zi ∨ z∗i , z−i) > ui(zi, z−i) for all z−i ∈ [z−i, z−i]. (5)

An analogous argument applies to show that if zi � Bi(z), then zi is strictly domi-
nated. �

It is straightforward to show that (3) follows from quasi-supermodularity when xi �
z∗i , so the lemma holds if the weaker assumption of quasi-supermodularity replaces (A3)
in the definition of (ID)-supermodular games.

Milgrom and Roberts [16, Theorem 5] state and prove this result for supermodular
games. The proof above follows their proof. They derive Inequality (2) and then complete
the proof by pointing out that increasing differences implies

ui(zi ∨ ẑi, z−i)− ui(zi, z−i) ≥ ui(zi ∨ ẑi, z−i)− ui(zi, z−i) (6)

provided that z−i ≥ z−i. The lemma follows from (2) and (6). I simply point out that
the (ID) condition is sufficient for the result.

Milgrom and Roberts use the lemma to prove the theorem. Their proof goes through
without modification.

4 Iterated Deletion of Weakly Dominated Strategies

Modifications of the proofs of Lemma 1 and Theorem 1 allow us to establish descriptions
of the set of strategies that survive iterated deletion of weakly dominated strategies.

Definition 5. Given a game Γ = (I,X, u,≥) and subsets X ′i ⊂ Xi, with X ′ = Πi∈IX
′
i,

player i’s strategy xi ∈ X ′i is weakly dominated relative to X ′i if there exists zi ∈ X ′i
such that ui(xi, x−i) ≤ ui(zi, x−i) for all x−i ∈ X ′−i, with strict inequality for at least one
x−i ∈ X ′−i.
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Weak dominance will typically delete more strategies than strong dominance. Hence
it has the potential to provide more restrictive predictions. I analyze the implications
of applying iterated deletion of weakly dominated strategies instead of iterated deletion
of strongly dominated strategies. This section studies iterated interval deletion of
weakly dominated strategies. The procedure iteratively removes weakly dominated
strategies beginning with a game Γ0 = (I,X0, u,≥) in which X0 = [x0, x0] and constructs
games Γk = (I,Xk, u,≥) where Xk = [xk, xk] is the smallest set such that all strategies
in Xk−1 \ Xk are weakly dominated with respect to Xk−1. I will describe the set of
strategies that survive this process, that is, the set of strategies that are in Xk for all
k. It is possible that different ways of deleting weakly dominated strategies will lead to
different limit sets. I reference results that identify games in which the order of deletion
is essentially unimportant.

The procedure that iteratively deletes dominated strategies works by assuming that
existing strategies are in an interval and then finding a (potentially smaller) interval of
strategies that are undominated. It is possible that some strategies are weakly dominated
but not strictly dominated. If this happens, then the process of iterated deletion of weakly
dominated strategies will lead to a smaller set of surviving strategies. In this section, I
point out how to modify Milgrom and Robert’s arguments to apply to weak dominance.
In Section 6, I discuss examples in which weak dominance in fact, is more selective than
strong dominance and in which it is possible to use the arguments of supermodular games
to characterize a refined set of equilibria.

Theorem 2. Let Γ be a finite ID-supermodular game. For each Player i, there exist
largest and smallest strategies that survive iterated interval deletion of weakly dominated
strategies, xi and xi. Moreover, the strategy profiles {xi : i ∈ I} and {xi : i ∈ I} are pure
Nash equilibrium profiles.

Theorem 2 extends Theorem 1 to weak dominance. I have added the assumption that
Γ is finite. I explain the importance of this assumption after the proof.

The theorem requires two preliminary results.
Let W i(x) denote the smallest best response to x and let W i(x) denote the largest

best response to x and let W (x) and W (x) denote the collections W i(x) and W i(x),
i ∈ I. Let Ei(xi) = {zi ∈ Xi : ui(xi, z−i) = ui(zi, z−i) for all z−i ∈ X−i}.

Lemma 2. Let Γ be an ID-supermodular game. Let z, z ∈ X be profiles such that z ≤ z.
There exist largest and smallest strategies that are not weakly dominated. These strategies
are, respectively, the largest element in Ei(W i(z)) and the smallest element in Ei(W i(z)).

The way to construct the smallest strategy that is not weakly dominated for Player
i is to consider the set of strategies that are best responses to the lowest strategy in
[z, z]. If there are multiple best responses, the interval-dominance property suggests
that the largest of the best responses performs at least as well as other best responses
against higher strategies. This observation makes the largest best response to the smallest
strategy a candidate for smallest strategy that is not weakly dominated. In fact, there
may be other, smaller, strategies that are equivalent to the largest best response to z−i
in the sense that these strategies yield identical payoffs against all strategies in [z−i, z−i].
The proof of Lemma 2 shows that there exists a smallest strategy that is equivalent to
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the largest best response to z−i and that this strategy is the smallest strategy that is not
weakly dominated. The details are in Appendix B.

Let z, z ∈ X be profiles such that z ≤ z. Let Ei(x) denote the largest element of
Ei(x) and Ei(x) denote the smallest element of Ei(x). Let E(x) and E(x) denote the
collections Ei(x) and Ei(x). So, for example,

E(x) = {x̃ = (x̃1, . . . , x̃I) : x̃i ∈ Ei(x) for all i = 1, . . . , I}.

Define
si = inf{xi ∈ [zi, zi] : xi is not weakly dominated in [z, z]}

and
si = sup{xi ∈ [zi, zi] : xi is not weakly dominated in [z, z]}.

Now let Zw
i ([z, z]) = [si, si] and

Zw([z, z]) = {x = (x1, . . . , xI) : xi ∈ Zw
i ( [z, z]) for all i = 1, . . . I}.

Finally let Z
w

([z, z]) denote the interval [inf(Zw([z, z]), sup(Zw([z, z]))].
Lemma 2 implies the following result.

Lemma 3. Let Γ be an ID-supermodular game. Let z, z ∈ X be profiles such that
z ≤ z. Then supZw([z, z]) = E(W (z)) and inf Zw([z, z]) = E(W (z)), and Z([z, z]) =
[E(W (z)), E(W (z))].

Lemma 3 parallels Lemma 1. The first difference is that if zi � z∗i ≡ E(W (z)), there
is no guarantee that zi ∨ z∗i strictly dominates zi. It is possible that zi ∧ z∗i is a best
response to z−i. Hence the second inequality in (2) could be weak. The second difference
is that one can use weak dominance rather than strict dominance to delete a strategy.
So one need only establish that ui(zi ∨ z∗i , z−i) > ui(zi, z−i) for some z−i ∈ [z, z]. This
follows from the definition of z∗i .

Proof of Theorem 2. The proof of the theorem follows the proof of Theorem 1.
One applies Lemma 3 to obtain a decreasing sequence of intervals [yk, yk] such that

strategies outside of these intervals are weakly dominated. By monotonicity, limk→∞ y
k

and limk→∞ y
k exist. Denote the limits by y and y respectively. It is straightforward

to show that these limits are Nash Equilibrium profiles. In finite games (where the
process of deleting strategies terminates after a finite number of iterations), it follows
by construction that y and y are not weakly dominated by any strategy in [y, y]. From
Lemma 3, it follows that anything that survives iterated deletion of weakly dominated
strategies must be inside the interval.

The process described only removes strategies outside of the interval [yk, yk]. Con-
sequently, it is possible that there are strategies in the interval [y, y] that are weakly
dominated. When the strategy set is finite, it must be the case that y

i
and yi remain

undominated even if additional strategies are deleted. To see this notice that, by con-
struction y

i
is a best response to y−i and the only other best responses to y−i in [y

i
, yi]

are equivalent to y
i
. Consequently, y

i
can only be weakly dominated if y

j
is deleted for
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j 6= i. Hence no procedure can delete y
i
. Similarly, yi cannot be deleted. This completes

the proof of Theorem 2. �

Theorem 2 uses the assumption that strategy sets are finite. This assumption guar-
antees that the iterated deletion process terminates in a finite number of steps and,
consequently, that y and y are not weakly dominated. The next example demonstrates
that the bounds obtained through the process may be weakly dominated in games in
which Xi are infinite.

Example 1. Consider a three player game in which X1 = [0, 1] and Xi = [0, 2] for
i = 2, 3; u1(x) = x1(x2 − 1), ui(x) = x1x2x3 − x3i /3 for i = 2, 3. In this case yk =
(1, 22−k

, 22−k
) and yk = (0, 0, 0). It follows that y = (1, 1, 1) and y = (0, 0, 0). Both y and

y are Nash equilibria, but y is weakly dominated with respect to strategies in [y, y].

Theorem 2 applies to a particular procedure for removal of weakly dominated strate-
gies. Unlike iterated deletion of strictly dominated strategies, the outcome of iterated
deletion of weakly dominated strategies may depend on the procedure.3 On the other
hand, for some interesting classes of games, deletion of weakly dominated strategies is
essentially independent of the procedure.

Marx and Swinkels [15] show that if a game satisfies the transfer of decision maker
indifference (TDI) property, then two “full”4 procedures for deleting weakly dominated
strategies are the same up to the additional or removal of redundant strategies and
a renaming of strategies. The TDI property states that if (given the behavior of the
other players) Player i is indifferent between two strategies, then all other players are
also indifferent between Player i’s choice of strategies. TDI is restrictive, but can be
shown to hold in interesting applications including (generically) the examples described
in Section 6.

Two papers of Kultti and Salonen take a different approach to the concern that iter-
ated deletion of weakly dominated strategies may be order dependent. Kultti and Salonen
study undominated equilibria in supermodular games.5 An undominated equilibrium is
a Nash equilibrium in which no player’s equilibrium strategy is weakly dominated an-
other pure strategy. Börgers [2] and Dekel and Fudenberg [4] identify properties that
make undominated equilibria an attractive refinement of Nash Equilibrium. Kultti and
Salonen [10] show that in supermodular games there exist a least and greatest undomi-
nated equilibria in pure strategies. Example 1 demonstrates that the bounds that I have
constructed may fail to be undominated. Hence my result does not include theirs. On
the other hand iterated deletion of weakly dominated strategies yields stronger predic-
tions in interesting applications. Kultti and Salonen [11] study a process in which players
eliminate all weakly dominated strategies in the first step and subsequently iteratively re-

3Dufwenberg and Stegeman [6] show that iterated deletion of strictly dominated strategies may
be order dependent in infinite games if payoff functions and strategy spaces do not satisfy regularity
conditions.

4A “full” procedure stops only if it reaches a stage where there are no weakly dominated strategies.
5In fact, Kultti and Salonen study quasi-supermodular games in which the (weaker) assumption that

ui is quasi-supermodular in replaces (A3) in Definition 4
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move all strictly dominated strategies. They present conditions under which this process
identifies the lower and upper bounds of the set of equilibrium payoffs.

5 Additional Properties

5.1 Dynamics

Milgrom and Roberts [16] show that there is relationship between adaptive dynamics and
supermodular games. To do this, they consider a time-dependent strategy profile x(t).
They let P (T, t) denote the strategies played between times T and t: P (T, t) = {x(s) :
s ∈ [T, t)} and say that {x(t)} is a process consistent with adaptive dynamics if for
all T there exists T ′ such that for all t > T ′, x(t) ∈ Z([inf P (T, t), supP (T, t)]). They

define x = inf S, x = supS, Bk(x) = B(Bk−1(x)), and Bk(x) = B(B
k−1

(x)) and show
(in Theorem 8) that whenever {x(t)} is a process consistent with adaptive dynamics in a
supermodular game, for all k there exists Tk such that for all t > Tk, x(t) ∈ [Bk(x), Bk(x)].

The condition that a process is consistent with adaptive dynamics guarantees that
strategies played at time t are best replies to strategies played in the not-too distant past.
The conclusion of the theorem is that any process consistent with adaptive dynamics
must eventually stop playing strictly dominated strategies and therefore converge to the
interval of strategies with lower bound equal to the smallest Nash equilibrium and upper
bound equal to the largest Nash equilibrium. This result is a direct consequence of
Lemma 1 and holds true for ID-supermodular games. It is straightforward to modify the
result to conclude that a more restrictive class of adaptive dynamics converges to the
smaller set of strategies identified in Theorem 2.

The process {x(t)} is consistent with cautious adaptive dynamics if for all
T there exists T ′ such that for all t > T ′, x(t) ∈ Z

w
([inf P (T, t), supP (T, t)]).6 Let

Hk(x) = E(W (Hk−1(x))), and Hk(x) = H(W (H
k−1

(x))).

Theorem 3. If {x(t)} is a process consistent with cautious adaptive dynamics in a super-
modular game, then for all k there exists Tk such that for all t > Tk, x(t) ∈ [Bk(x), Bk(x)].

Theorem 3 is a direct consequence of Lemma 3.
Echenique [7] presents a modification of the procedure used to find upper and lower

bounds in the proofs of Theorems 1 and 2 to provide an algorithm that finds all pure-
strategy Nash equilibria in games in supermodular games. One can interpret the al-
gorithm as a dynamic process. Consequently, there exist adaptive processes that reach
Nash equilibria that do not survive iterated deletion of weakly dominated strategies. This
result does not contradict Theorem 3. Instead it indicates that procedures that reach
Nash equilibria that do not survive iterated deletion of weakly dominated strategies are
not cautious. A critical issue is whether it is plausible to restrict attention to cautious
dynamics. I believe that the correct answer is “it depends.” On one hand, Cabrales and

6I use “cautious” in the sense of cautious rationalizability of Pearce [19]. The notion is that the
adaptive process is a best response to beliefs that place positive probability on all “recently” used
strategies.
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Ponti [3] and Gale, Binmore, and Samuelson [8] present examples of plausible evolution-
ary dynamics that converge to outcomes that that use weakly dominated strategies. On
the other hand, Dubey, Haimanko, and Zapechelnyuk [5] introduce pseudo-potential
games. A pseudo-potential game is a game for which there exists function φ : X → R
such that arg maxxi∈Xi

φ(xi, x−i) ⊂ arg maxxi∈Xi
ui(xi, x−i). Dubey, Haimanko, and Za-

pechelnyuk [5] give conditions under which games with complementarities are pseudo-
potential games. Their results imply that finite, two-player (ID) supermodular games
are pseudo-potential games. Dubey, Haimanko, and Zapechelnyuk identify several prop-
erties of pseudo-potential games, including the property that there are no best-response
cycles in generic, finite pseudo-potential games. This property guarantees convergence
of best reply dynamics. Weak dominance has interesting implications only for games
with non-generic payoffs.7 Cautiously adaptive dynamics provide a way to extend these
results to non-generic games.

5.2 Comparative Statics

In order to ask comparative statics questions, assume that there is a partially ordered set
of parameters P and there is a family of games {Γ(p)}p∈P where Γ(p) = {I,X, u(·; p),≥}
where u : X × P → RI .

Theorem 4. If {Γ(p)}p∈P is a family of ID-supermodular games and ui has increasing
differences in xi and p for fixed x−i then the largest and smallest strategies that survive
iterated interval deletion of weakly dominated strategies, xi(p) and xi(p) are nondecreasing
functions of p.

The proof of this result is a straightforward modification of Theorem 6 in Milgrom
and Roberts [16]. The proof, which is in Appendix B, requires verification that H are H
are monotonic.

Milgrom and Roberts [16, Theorem 7] given conditions under which it is possible to
compare payoffs of different equilibria.

Theorem 5. Let Γ = (I,X, u,≥) be an ID-supermodular game. Let xi and xi denote the
smallest and largest elements of Xi, and suppose y and z are two equilibria with y ≥ z.
(1) If ui(xi, x−i) is increasing in x−i, then ui(y) ≥ ui(z). (2) If ui(xi, x−i) is decreasing
in x−i, then ui(y) ≤ ui(z). If the condition in (1) holds for some subset of players I1
and the condition in (2) holds for the remainder I \ I1, then the largest equilibrium is the
most preferred equilibrium for the players in I1, and the least preferred for the remaining
players.

This result holds in my setting, but one variation is worth noting. If Condition 1
in the theorem holds, then the largest Nash Equilibrium is Pareto dominant (in the
set of Nash Equilibria). It is possible that strategies used in this equilibrium do not
survive iterated deletion of weakly dominated strategies. The upper bound in Theorem 2
may therefore not be the Pareto dominant Nash Equilibrium. Instead it will be (in

7The applications I study have non-generic normal-form payoffs because they are derived from games
with a fixed dynamic structure.
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finite games), the Pareto-dominant Nash Equilibrium in strategies that survive iterated
deletion of weakly dominated strategies. Milgrom and Roberts discuss an interesting
classes of games (games with positive spillovers) in which equilibria are Pareto ranked.
The literature treats the largest Nash Equilibrium as salient in these games. For typical
specifications of these games, the largest equilibrium is also an equilibrium that survives
iterated deletion of weakly dominated strategies.8

5.3 Quasisupermodularity

This paper concentrates on weakening the monotonicity condition (increasing differences)
used by Milgrom and Roberts. Theorem 1 merely replaces increasing differences with
interval dominance. Theorem 2 extends the result – again with the weaker condition
– to iterated weak dominance. In the same way, one can replace the supermodularity
assumption with quasi-supermodularity. They compare values of two quantities, which
are in turn the difference between a function evaluated at a higher and a lower point.
Supermodularity and increasing differences require that the first quantity is greater than
the second. Quasi-supermodularity and single crossing (interval dominance) require the
weaker condition that the first quantity is non-negative (positive) whenever the first one
is non-negative (positive). It is the second implication that is needed for the main results.
That is, Theorems 1 and 2 hold if payoff functions are quasi-supermodular. I chose not
to state the more general results because I know of no application in which payoffs are
quasi-supermodular but not supermodular.9

5.4 Identification

There is a literature that estimates supermodular games. For example, Uetake and
Watanabe [24] use the bounds constructed in Milgrom and Roberts [Theorem 5][16] to
generate moment inequalities. I believe that the same techniques would apply to estimate
strategies that satisfy the refinement (surviving iterated deletion of weakly dominated
strategies). The bounds constructed in Theorem 2 would replace those in Theorem 1.10

This kind of study would be consistent with research by Aradillas-Lopez and Tamer [1],
which compares the identification power of rationalizability to Nash Equilibria and Moli-
nari and Rosen [18] who estimate level-k rationality in a supermodular game.

There is an econometric literature that tries to identify and test monotone compara-
tive statics in supermodular games. There are two basic approaches. The first approach
(for example, Lazzati [12], and Uetake and Watantabe [24]) is to impose monotonicity
and study the restrictions imposed by a solution concept (Nash equilibrium or ratio-
nalizability) on data. One could ask this question instead requiring the solution only

8Nevertheless, Theorem 5 suggests that in more general settings the Pareto-efficient Nash equilibrium
may fail to survive iterated deletion of weakly dominated strategies.

9Quah and Strulovici [20, Theorem 1] recognize that it is possible to obtain comparative-statics
results with a weaker version of supermodularity demonstrate that an interval-dominance version of the
condition is sufficient for basic results.

10One limitation of the approach is that Uetake and Watanabe focus on one-dimensional strategies
spaces. The (ID)-supermodular games that I identify in Section 6 in which weak dominance has selection
power involve multidimensional strategy spaces.
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use strategies that survive iterated deletion of weakly dominated strategies. Theorem 2
suggests new bounds on strategies that would replace the restrictions the literature has
provided for rationalizability.

Another approach imposes no a priori restrictions and asks when a data set is consis-
tent with equilibrium behavior in a supermodular game. Lazzati, Quah, and Shirai [13]
provides a necessary and sufficient condition for a data set to be consistent with Nash
equilibrium behavior in a supermodular game with a one-dimensional strategy space. A
natural modification of the question is to ask whether the data set is consistent with
equilibrium behavior in weakly undominated strategies in a ID-supermodular game.

6 Applications

Extending the results about supermodular games from strong to weak dominance is more
than a curiosity only if there exist interesting games under which the assumptions of the
previous section hold and the arguments reduce the set of predictions. An ideal ap-
plication would be a ID-supermodular game that is not supermodular, in which weak
dominance arguments have more power to refine the set of equilibria than strong domi-
nance arguments, and in which insights about the structure of equilibria available from
the results in this paper have substantive interest.

This section describes two applications. One characteristic that the examples share
is a sequential structure. They add a round of strategic behavior to an underlying game.
This kind of game is a natural place to expect weak dominance to play a role as weak
dominance can place restrictions on off-the-path behavior.

The examples demonstrate that there are games that are not supermodular, but have
some of the structure of supermodular games. It will be clear that strong dominance
arguments do not restrict the predictions. Detailed analysis of the implications of weak
dominance requires specialized arguments and appears in separate papers.

Each of the applications is imperfect because the games are not ID-supermodular. In
each case, I must extend the theory somewhat so that it applies.

6.1 Cheap Talk

Kartik and Sobel [9] apply techniques like those in this paper to provide a selection
argument in simple cheap-talk games. In the cheap-talk game, nature selects t ∈ T ;
one player, the Sender (S), learns t and sends a message m ∈ M ; the other player, the
Receiver (R), takes an action a ∈ A in response to m. A strategy for S is a mapping
σ : T → M . A strategy for R is a mapping α : M → A. Assume that M is a finite,
ordered, set and that A and T are equal to the unit interval. Assume that there is a prior
distribution on types; for convenience assume that the prior is finitely supported and p(t)
is the probability that the type is t. Payoffs depend only on a and t. The payoff to Player
i when t is the Sender’s type and a is the action of the Receiver is U i(a, t). Assume that
U i(·) is twice continuously differentiable, with negative second derivative with respect to
a and positive cross partial. With this structure, order R strategies in the natural way:
α′′ � α′ if α′′(m) ≥ α′(m) for all m. Order S strategies “backwards” so that σ′′ � σ′
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if and only if σ′′(t) ≤ σ′(t) for all t.11 The payoff functions for the cheap-talk game are
uS(σ, α) = EUS(α(σ(t)), t) and uR(α, σ) = EUR(α(σ(t), t)), where the expectation is
taken using the prior on types. It is straightforward to check that this game satisfies the
TDI condition of Marx and Swinkels [15].

In this subsection, I describe several properties of this class of games and show how
the general results provide some insight into the structure of their equilibria.

Lemma 4. For i = S,R, ui(·) is supermodular in xi for fixed x−i in cheap-talk games.

Lemma 4 follows from a straightforward argument, which appears in Appendix B.
Without further assumptions best responses will not have any monotonicity properties

in the basic cheap-talk game. For example, suppose that UR(a, t) = −(a − t)2, and the
prior is uniform on {0, 1/N, . . . , k/N, . . . , 1} for some even number N . Assume that M
contains messages m0 and m1 with m0 < m1. If the Sender always sends m0, then it is
a best response for the Receiver to respond to m0 with .5 and all other messages with 0.
Denote this strategy by α∗∗. Let

σ(t) =

{
m1 if t ∈ [0, .5]

m0 if t ∈ (.5, 1]
and α(m) =

{
1 if m0

0 otherwise
.

The Receiver prefers α ∧ α∗∗ to α when S always sends m0, but R’s preferences reverse
when S plays σ. Consequently interval dominance does not hold. One can confirm that
S’s preferences violate interval dominance and that the violations do not depend on the
choice of order over S’s strategies.

Best response correspondences do have some monotonicity properties for a restricted
version of the cheap-talk game. Henceforth consider a monotonic restriction of the
cheap-talk game. In the monotonic restriction, the Sender and Receiver are restricted to
monotonic strategies (σ is monotonic if t′′ > t′ implies σ(t′′) ≥ σ(t′); α is monotonic if
m′′ > m′ implies that α(m′′) ≥ α(m′)). See Kartik and Sobel [9] for a justification of the
monotonic restriction. I call the monotonic restriction of a cheap-talk game a monotone
cheap-talk game.

Even with the restriction to monotonic strategies, the cheap-talk game does not satisfy
increasing differences.

To see that the Sender’s payoff does not satisfy increasing differences, let σ(t) ≡ 0
and σ′(t) ≡ 1 so that uS(σ, α)−uS(σ′, α) = E[US(α(0), t)−US(α(1), t)]. The right-hand
side is not monotonic in α(0) (or in α(1)), so the increasing difference condition does not
hold.

To see that the Receiver’s payoff does not satisfy increasing differences, let α′(t) ≡ 1.
Hence uR(α, σ) does not depend on σ. Fix a message m̃ and let

α(m) =

{
0 if m ≤ m̃

1 if m > m̃

so that uR(α, σ)− uR(α′, σ) = Eσ(t)>m̃[UR(t, 0)− UR(t, 1)]. Increasing σ can increase or
reduce this quantity.

11This ordering guarantees that R’s best response increases when S’s strategy increases.
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In general, the Receiver’s preferences do not satisfy (ID). To see this, let m0 denote
the lowest message and suppose that σ′(t) > m0 for all t, whereas σ′′(t) ≡ m0. It follows
that σ′′ � σ′. It is straightforward to construct σ′, α and α∗ such that uR(α ∨ α∗, σ′) >
uR(α, σ′) but uR(α ∨ α∗, σ′′) < uR(α, σ′′). For example, let σ′ be a separating strategy;
let α∗ be a best response to σ′; and let α(m) = arg max

∑
t UR(a, t)p(t) for all m.

Consequently, the general results about ID-supermodular games do not apply to this
example. In order to use the characterization results, I must weaken the (ID) property.

Definition 6. Let X and Y be lattices. A function f : X × Y → R satisfies the weak
generalized interval-dominance property (WID) in its two arguments on the set X ×Y if
for all y′′ > y′,

f(x′ ∨ t, y′) ≥ f(x′, y′) =⇒

∃t̃ ≤ t, f(t̃, y′) ≥ f(x′, y′), such that f(x′ ∨ t̃, y′′) ≥ f(x′, y′′) (7)

and
f(x′ ∧ t, y′′) ≥ f(x′, y′′) =⇒

∃t̃ ≥ t, f(t̃, y′′) ≤ f(x′, y′′), such that f(x′ ∧ t̃, y′) ≥ f(x′, y′). (8)

The (WID) condition is weaker than (ID). Appendix C proves this result and intro-
duces related concepts. One way to get an intuition for (WID) is to compare it to single
crossing, which requires Condition (7) and (8) to hold when t̃ = x′.12

(ID) and (WID) are both conditions that relate to how solutions to maxx ui(x, y)
change with the parameter y. Fact 2 states that in an ID-supermodular game, Player i’s
set of best responses are increases in x−i, where “increasing” is interpreted in the sense
of the strong set order. If ui(·) satisfies (WID), then best responses are increasing in a
weaker sense.

The next result describes a property of (WID). The proposition uses the following
notation: x∗∗ ∈ arg max f(x, y′′), x∗ ∈ arg max f(x, y′), x∗∗ = max arg max f(x, y′′),
x∗ = min arg max f(x, y′).

Proposition 1. Let X and Y be lattices. If the function f : X×Y → R satisfies (WID),
then

x∗∗ ∨ x∗ ∈ arg max f(x, y′′) and x∗ ∧ x∗∗ ∈ arg max f(x, y′). (9)

Appendix C contains a proof of Proposition 1. The conclusion of Proposition 1
certainly holds when arg maxui(·, x−i) is increasing in the strong set order (provided that
there exist solutions to the maximization problems). It is straightforward to confirm that
monotonicity property in the proposition is actually weaker.

I say that a game Γ = (I,X, u,≥) is WID-supermodular if it satisfies Conditions
(A1)-(A3) in Definition 4 and Condition (A4) is replaced by the requirement that ui
satisfies (WID) in xi and x−i on all interval sublattices of X.

The class of WID-supermodular games is interesting because monotone cheap-talk
games are WID-supermodular and because the equilibria of these games have some of
the important properties of ID-supermodular games. The remainder of this subsection

12The analog to (8) in the definition of single crossing is implied by Condition 1.
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reports results that confirm these claims. I show first that monotone cheap-talk games
and WID-supermodular. I conclude the subsection (Theorem 6) with the observation
that equilibria that survive iterated deletion of weakly dominated strategies have nice
bounds in WID-supermodular games.

Lemma 5. Receiver’s preferences in a monotone cheap-talk game satisfy (WID).

Similarly, the Sender’s preferences also satisfy (WID) but not (ID).

Lemma 6. Sender’s preferences in a monotone cheap-talk game satisfy (WID).

The three preliminary results of this subsection combine to establish the following
proposition.

Proposition 2. Monotone cheap-talk games are (WID)-supermodular.

Proposition 2 is useful because it is possible to generalize Theorem 2. Although I
am unable to prove an analog to Lemma 2 for WID-supermodular games, the following
result holds for WID-supermodular games.

Theorem 6. Let Γ be a WID-supermodular game with strategy space [z, z]. For each
player i, there exist pure Nash equilibrium profiles xi and xi such that all strategies
that survive iterated interval deletion of weakly dominated strategies are contained in
[xi, xi]. Moreover, there exist an increasing sequences {yn}∞n=1 and a decreasing sequence

{yn}∞n=1 where y1 = z and y1 = z; for n > 1, yn
i

= W i(y
n−1) and yni = W i(y

n−1); and
x = limn→∞ y

n, and x = limn→∞ y
n.

I omit the proof for Theorem 6, which parallels the proof of Theorem 2. The result
states that one can bound the set of strategies that survive iterated interval deletion
of weakly dominated strategies by taking best responses to the largest and smallest
strategies surviving. Proposition 2 demonstrates that Theorem 6 applies to monotone
cheap talk games. These games typically have multiple Nash equilibria. Kartik and
Sobel [9] establish that in a widely studied class of monotone cheap-talk games there
is a unique equilibrium outcome that survives iterated deletion of weakly dominated
strategies (in any order). Consequently the bounds in Theorem 6 are (strictly) more
restrictive than the bounds in Theorem 2.

6.2 Investment Games

This subsection presents an example in which the (WID) fails, but the logic of the weak
dominance argument still applies. To accommodate this example, I extend the concept
of an ID-supermodular game.

Definition 7. Let Γ = (I,X, u,≥) be a game and suppose that there exists a j such that
Xj = X ′j ×X ′′j , where X ′j and X ′′j are complete lattices. The game Γ = (I,X, u,≥) is a
interval-dominance supermodular (ID-supermodular) game conditional on X ′j if, for each
i 6= j ∈ I:

(A1) X is a complete lattice;
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(A2) for each i ∈ I, ui : X → R is order upper-semicontinuous in xi for fixed x−i; ui is
order upper continuous in x−i for fixed xi; and ui is bounded above;

(A3) for each i ∈ I, ui is supermodular in xi for fixed x−i;

(A4′) for each i 6= j ∈ I, ui satisfies the interval-dominance property in xi and x−i on all
interval sublattices of X. and

(A5) uj satisfies the interval-dominance property in x′′j and (x−j, x
′
j) on all interval sub-

lattices of X.

I refer to (A5) as conditional interval dominance of uj (given x′j).
If Γ is an ID-supermodular game conditional on X ′j, then one can apply dominance

arguments component by component. That is, one can fix x′j ∈ X ′j and construct a
decreasing sequence [yk, yk] such that the X ′j component of yk and yk is equal to x′j for
all k such that strategies outside of these intervals (X ′j fixed) are weakly dominated.
Even when a game fails to be ID-supermodular, the dominance arguments apply in part.
In this subsection, I identify a class of games that are ID-supermodular conditional on a
set, but not ID-supermodular. These arguments are the basis of a uniqueness result on
games with pre-play communication (Sobel [22]).

Consider a two-player game in which Player 1 first makes an observable investment
(k ∈ K) and then both players simultaneously make decisions ((x1, x2) ∈ X̃1 × X2). I
assume that K, X̃1, X2 ⊂ [0, 1] and that X1 = K × X̃1. The strategy set for Player 1
consists of pairs (k, x1) ∈ X1. Strategies for Player 2 are mappings from K into X2. As in
the previous subsection, limit attention to monotonic strategies for Player 2 (if k′′ > k′,
then x2(k

′′) ≥ x2(k
′)). Preferences in the game are derived from utility functions for

the subgame in which players simultaneously make decisions: Ui : X̃1 ×X2 → R. Payoff
functions for the extended game take the form ui((k, x1), x2) = Ui(x1, x2(k))+λik. Order
Player 1’s strategies by the order on X1 induced by the standard order on [0, 1]× [0, 1].
Order Player 2’s strategies x′′2 ≥ x′2 if and only if x′′2(k) ≥ x′2(k) for all K. Provided that
the underlying game has generic payoffs (for example, Ui(x) = Ui(x

′) implies x = x′),
then the investment games satisfies the TDI condition of Marx and Swinkels [15].

It is possible to interpret this setting as a model of communication about intentions.
Under this interpretation, Player 1 first sends a signal to Player 2 and then they play
a two-player simultaneous move game. An alternative interpretation is that k is an
investment that Player 1 makes prior to the players participating in a two-player game.
For the first interpretation, λi = 0 for both i. For the second interpretation, λ1 < 0 = λ2.

Definition 8. An investment game is a regular investment game if the underlying
game determined by (U1, U2) is a supermodular game (so that ui satisfies increasing differ-
ences and is supermodular for i = 1, 2); x2(·) is monotonic; and U2(x1, ·) is single-peaked
in its second argument for all x1.

13

Appendix B contains routine verifications of the following three properties.

13The function U2(x1, ·) is single peaked in its second argument if there exists x∗2(x1) such that
U2(x1, x2) is increasing in x2 for x2 < x∗2(x1) and decreasing in x2 for x2 > x∗2(x1).
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Lemma 7. For i = 1, 2, ui(·) is supermodular in xi for fixed x−i in regular investment
games.

Lemma 8. In a regular investment game, preferences for Player 2 satisfy interval dom-
inance.

Lemma 9. In a regular investment game, Player 1’s preferences satisfy conditional ID*
given k for all k.

The lemmas of this subsection combine to establish the following proposition.

Proposition 3. Regular investment games games are (ID*)-supermodular games condi-
tional on K.

Proposition 3 does not guarantee that one can use weak dominance arguments to
refine predictions in monotone cheap-talk games. Sobel [22] establishes that a unique
equilibrium outcome survives iterated deletion of weakly dominated strategies (in any
order) in a class of games with pre-play communication.

A regular investment game need not satisfy (WID*) for Player one. In order to satisfy
(WID*) it must be the case that there exists (k̃∗, x̃∗1) ≤ (k∗, x∗1) such that u1((k̃

∗, x̃∗1), x
′
2) ≥

u1((k, x1), x
′
2) for all (k, x1) and

u1((k, x1) ∨ (k̃∗, x̃∗1), x
′
2) ≥ u1((k, x1), x

′
2) =⇒ u1((k, x1) ∨ (k̃∗, x̃∗1), x

′′
2) ≥ u1((k, x1), x

′′
2).

(10)
Suppose that U1(x

∗
1, x
′
2(k
∗)) > U1(x1, x2) unless (x1, x2) = (x∗1, x

′
2(k
∗)). When x1 = x∗1,

k ≥ k∗, k < k∗, and x′′2(k∗) > x′′2(k) = x′2(k
∗) > x′2(k). Under these assumptions (10)

reduces to

U1(x
∗
1, x
′
2(k
∗)) ≥ U1(x

∗
1, x
′
2(k)) =⇒ U1(x

∗
1, x
′′
2(k∗)) ≥ U1(x

∗
1, x
′
2(k
∗)). (11)

The implication in (11) fails when x′′2(k∗) > x′2(k
∗).
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Appendix A: Definitions

Following Milgrom and Roberts, I define several basic concepts.

Definition 9. Given T ⊂ X, b ∈ X is called an upper bound for T if b ≥ x for all
x ∈ T ; it is the supremum of T (denoted sup(T )) if it is an upper bound and for all upper
bounds b of T , b ≥ b. Lower bounds and infimums are defined analogously. A point x is
a maximal element of X if there is no y ∈ X such that y > x (that is, no y such that
y ≥ x but not x ≥ y); it is the largest element of X if x ≥ y for all y ∈ X. Minimal and
smallest elements are defined similarly.

Definition 10. The set X is a lattice if for each two point set {x, y} ⊂ X, there is
a supremum for {x, y} (denoted x ∨ y and called the join of x and y) and an infimum
(denoted x ∧ y and called the meet of x and y) in X. The lattice is complete if for all
nonempty subsets T ⊂ X, inf(T ) ∈ X and sup(T ) ∈ X. An interval is a set of the form
[x, y] ≡ {z : y ≥ z ≥ x}.

Definition 11. A sublattice T of a lattice X is a subset of X that is closed under ∧
and ∨. An interval sublattice T of a lattice X is a sublattice of X of the form [x, x] for
some x, x ∈ X, x ≤ x. A complete sublattice T is a sublattice such that the infimum and
supremum of every subset of T is in T .

Definition 12. A chain C ⊂ X is a totally ordered subset of X, that is, for any x ∈ C
and y ∈ C, x ≥ y or y ≥ x.

Definition 13. Given a complete lattice X, a function f : X → R is order continuous
if it converges along every chain C (in both the increasing and decreasing directions),
that is, if limx∈C,x↓inf C f(x) = f(inf(C)) and limx∈C,x↑supC f(x) = f(sup(C)). It is order
upper-semicontinuous if lim supx∈C,x↓inf C f(x) ≤ f(inf(C)) and lim infx∈C,x↑supC f(x) ≤
f(sup(C)).

Definition 14. A function f : X → R is supermodular if for all x, y ∈ X,

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y). (12)

Definition 15. The set S ′′ dominates S ′ in the strong set order (written S ′′ ≥ S ′) if
x∗ ∈ S ′ and x∗∗ ∈ S ′′ imply that x∗ ∧ x∗∗ ∈ S ′ and x∗ ∨ x∗∗ ∈ S ′′.

Appendix B: Proofs

The Appendix contains proofs that did not appear in the main text.

Proof of Lemma 2. Let wi = W i(z) be the largest best response to the smallest
strategy profile for Player i. It follows from (ID) that any xi ≤ wi is either weakly
dominated by wi or equivalent to wi in the sense that ui(xi, x−i) = ui(wi, x−i) for all
x−i ∈ [z−i, z−i].
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I claim that Ei(wi) is a lattice. If x, x′ ∈ Ei(wi), then xi ∨ x′i and xi ∧ x′i are best
responses to z−i. Hence xi ∨ x′i ≤ wi by the definition of wi. Consequently, by (ID),
xi ∨ x′i ∈ Ei(wi). Furthermore, ui(xi ∧ x′i, z−i) ≤ ui(xi ∨ x′i, z−i) for all z−i ∈ [z−i, z−i] by
(ID). It follows that

2ui(xi∨x′i, z−i) ≥ ui(xi∨x′i, z−i)+ui(xi∧x′i, z−i) ≥ ui(xi, z−i)+ui(x
′
i, z−i) = 2ui(xi∨x′i, z−i),

(13)
where the second inequality follows from supermodularity and the equation follows be-
cause xi, x

′
i, xi∨x′i ∈ Ei(wi). Consequently the first inequality in (13) must be an equation

and xi ∧ x′i ∈ Ei(wi) by supermodularity.
Because Ei(wi) is a lattice, it has a smallest element, w∗i . I claim that w∗i is the

smallest strategy that is not weakly dominated. First observe that if xi < w∗i , then xi is
weakly dominated. This claim follows because, by definition, xi is less than wi but not
equivalent to wi. So it must be weakly dominated by wi. Second take any zi � w∗i . I
claim that zi ∨ w∗i weakly dominates zi. The claim follows because

ui(zi ∨ w∗i , z−i)− ui(zi, z−i) ≥ ui(w
∗
i , z−i)− ui(zi ∧ w∗i , z−i)

by supermodularity and w∗i weakly dominates zi ∨ w∗i by the first observation (because
w∗i > zi ∧ w∗i ). Finally, to show that w∗i is not weakly dominated, assume that w∗i is
weakly dominated by some wi and argue to a contraction. If wi weakly dominates w∗i ,
then it must also weakly dominate wi, because w∗i and wi are equivalent. But because
wi is the largest best response to z, wi ≤ wi. Consequently wi is equivalent to wi or
weakly dominated by wi. If wi is equivalent to wi it cannot weakly dominates w∗i . If wi
is weakly dominated by wi, then it must also be weakly dominated by w∗i , so it cannot
weakly dominate w∗i . It follows that w∗i is the smallest of [zi, zi] that is not weakly
dominated. A similar argument demonstrates that there is a largest element of [zi, zi]
that is not weakly dominated.

Proof of Theorem 4. Let H(x, p) be the largest strategy that is equivalent to the
smallest best response to x. I claim that H(x, p) is nondecreasing in p. Suppose that
p′ > p. Let ẑ′i = H i(x, p

′) and ẑi = H i(x, p). Because the set of best responses is a lattice
and the best response set is monotonic by Fact 2, ẑi ∧ ẑ′i is a best response to x given p.
Because ẑi ∧ ẑ′i ≤ ẑi, it must be equal to ẑi. It follows that

ui(ẑi
′ ∨ ẑi, z−i, p′)− ui(ẑi′, z−i, p′) ≥

ui(ẑi, z−i, p
′)− ui(ẑi′ ∧ ẑi, z−i, p′) ≥ (14)

ui(ẑi, z−i, p)− ui(ẑi′ ∧ ẑi, z−i, p) = 0,

where the first inequality follows from supermodularity, the second inequality follows from
the interval dominance property (in p). It follows from (14) that ẑi

′ ∨ ẑi = H(x, p′). It
must be that ẑi

′ ≥ ẑi. This establishes that H i(x, p) (and hence H(x, p)) is nondecreasing.
Every Nash equilibrium satisfies H(x, τ) ≥ x. By Tarksi’s Fixed Point Theorem, x(p) =
sup{x : H(x, p) ≥ x} is a fixed point of H(·, p), so it is the largest Nash equilibrium. A
similar argument applies to the smallest equilibrium. �
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Proof of Lemma 4.

uS(σ ∨ σ′, α) + uS(σ ∧ σ′, α) = E[US(α(min{σ(t), σ′(t)}), t) + US(α(max{σ(t), σ′(t)}), t)]
= E[US(α(σ(t)), t) + US(α(σ′(t)), t)]

= uS(σ, α) + uS(σ′, α)

uR(α ∨ α′, σ) + uR(α ∧ α′, σ) = E[UR(max{α(σ(t)), α′(σ(t))}, t) + UR(min{α(σ(t)), α′(σ(t))}, t)]
= E[UR(α(σ(t)), t) + UR(α′(σ(t)), t)]

= uR(α, σ) + uR(α′, σ)

�

Proof of Lemma 5. Assume uR(α∨α∗, σ′) ≥ uR(a, s′). Let α̃∗ = min arg maxα uR(α, σ′)
be the smallest best response to σ′. From Proposition 5 (Appendix C), it sufficient to
show that if σ′′ � σ′, then uR(α ∨ α̃∗, σ′′) ≥ uR(α, σ′′). Let µσ(· | m) be the posterior
distribution over t given σ(t) = m. The posterior is well defined if there exists t such
that σ(t) = m. It suffices to prove that, for all m in the image of σ′′(·),∑

t

UR(α ∨ α̃(m), t)µσ′′(t | m) ≥
∑
t

UR(α(m), t)µσ′′(t | m). (15)

If σ′(t) < m for all t, then σ′′(t) < m for all t (recall that σ′′ � σ′ implies σ′′(t) ≤ σ′(t) for
all t). If there exists t such that σ′(t) = m, then σ′′ � σ′ implies that µσ′′ stochastically
dominates µσ′ . Because α̃∗(m) solves max

∑
t U

R(a, t)µσ′(t | m), it follows from the
supermodularity of uR that the solution to max

∑
t U

R(α̃(m), t)µσ′′(t | m) is greater than
α̃∗(m) and by concavity of UR(·, t) that α(m) ≤ α̃(m) implies that inequality (15) holds.
If σ′(t) > m for all t, then α̃(m) = 0 by definition and Inequality (15) holds.

It remains to consider the case in which there does not exist t such that σ′(t) = m,
but σ′(t) < m for some t. In this case, define m to be

max{m′ < m : there exists t such that σ′(t) = m′}.

It follows that α̃∗(m) solves max
∑

t U
R(a, t)µσ′(t | m). Let t = max{t : σ′(t) ≤ m}.

Because σ′(t) = m for some t, t is well defined. Furthermore, α̃(m) ≤ arg maxUR(a, t).
Because σ′′ � σ′, µσ′′(t | m) = 0 if t < t. Hence α̃∗(m) ≤ arg max

∑
t uR(α(m), t)µσ′′(t |

m) and so (15) holds.
A symmetric argument establishes that if σ′′ � σ′, uR(α ∧ α∗∗, σ′′) ≥ uR(α, σ′′), then

uR(α ∧ α̃∗∗, σ′) ≥ uR(α, σ′) (when α̃∗∗ is the largest best response to σ′′). �

Proof of Lemma 6. Assume that uS(α′, σ∗∨σ) ≥ uS(α′, σ). Let σ̃∗ = min arg maxuS(α′, σ)
be the smallest best response to α′. From Proposition 5, it suffices to show that if
α′′ � α′, then uS(α′′, σ ∨ σ̃∗) ≥ uS(α′′, σ). It suffices to show that, for all t, σ(t) > σ̃∗(t)
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implies that US(α′′(σ̃∗(t)), t) ≥ US(α′′(σ(t)), t). If σ(t) > σ̃∗(t), then by definition of σ̃∗,
US(α′(σ̃∗(t), t) > US(α′(σ(t)), t). The inequality must be strict because σ̃ is the smallest
best response (so type t sends the highest message that leads to the maximum available
payoff) and σ̃∗(t) < σ(t). It follows from concavity of US(·, t) that US(α′′(σ̃∗(t)), t) ≥
US(α′′(σ(t)), t)). This inequality may be weak (if α′′(σ̃∗(t)) = α′′(σ(t))) so that (WID)
does not hold.

A symmetric argument establishes that if α′′ � α′, uS(α′′, σ∗∗∧σ) ≥ uS(α′′, σ) implies
that uS(α′′, σ̃∗∗ ∧ σ) ≥ uS(α′′, σ), where σ̃∗∗ = max arg maxuS(α′′, σ). �

Proof of Lemma 7. Assume without loss of generality that k ≥ k′,

u1((k, x̃1) ∨ (k′, x̃′1), x2) + u1((k, x̃1) ∧ (k′, x̃′1), x2) =

U1(x̃1 ∨ x̃′1, x2(k)) + U1(x̃1 ∧ x̃′1, x2(k′)) + λ1(k + k′).

Note that
U1(x̃1 ∨ x̃′1, x2(k)) + U1(x̃1 ∧ x̃′1, x2(k′)) + λ1(k + k′) =

U1(x̃1∨x̃′1, x2(k))+U1(x̃1∧x̃′1, x2(k))+(U1(x̃1 ∧ x̃′1, x2(k′))− U1(x̃1 ∧ x̃′1, x2(k)))+λ1(k+k′) ≥

U1(x̃1, x2(k)) + U1(x̃
′
1, x2(k)) + U1(x̃1 ∧ x̃′1, x2(k′))− U1(x̃1 ∧ x̃′1, x2(k)) + λ1(k + k′) =

u1((k, x̃1), x2)+u1((k
′, x̃′1), x2)+U1(x̃

′
1, x2(k))−U1(x̃

′
1, x2(k

′))+U1(x̃1∧x̃′1, x2(k′))−U1(x̃1∧x̃′1, x2(k)) ≥

u1((k, x̃1), x2) + u1((k
′, x̃′1), x2)

where the first inequality follows from the supermodularity of U1(·, y) and the second
inequality follows from

U1(x̃
′
1, x2(k))− U1(x̃

′
1, x2(k

′)) + U1(x̃1 ∧ x̃′1, x2(k′))− U1(x̃1 ∧ x̃′1, x2(k)) ≥ 0

(because U1(·) satisfies increasing differences, x2(·) is monotonic, and k ≥ k′). This
establishes supermodularity of u1(·).

Supermodularity of u2 is straightforward:

u2((k, x̃1), x2 ∨ x′2) + u2((k, x̃1), x2 ∧ x′2) = U2(x̃1,max{x2(k), x′2(k)}) + U2(x̃1,min{x2(k), x′2(k)})
= u2((k, x̃1), x2) + u2((k, x̃1), x

′
2).

�

Proof of Lemma 8. Fix a strategy (k′, x̃′1) for Player 1. Let x∗2 be a best response to this
strategy. I will show that if u2((k

′, x̃′1), x2 ∨ x∗2) ≥ u2((k
′, x̃′1), x2) and (k′′, x̃′′1) ≥ (k′, x̃′1),

then there exists x̃∗2 such that x̃∗2 ≤ x∗2 and x̃∗2 is a best response to (k′, x̃′1) such that
u2((k

′′, x̃′′1), x2∨ x̃∗2) ≥ u2((k
′′, x̃′′1), x2). The result then follows from Proposition 4. To do

this, it suffices to show that

U2(x̃
′
1, x2 ∨ x̃∗2(k′)) ≥ U2(x̃

′
1, x2(k

′)) =⇒ U2(x̃
′′
1, x2 ∨ x̃∗2(k′′)) ≥ U2(x̃

′′
1, x2(k

′′)). (16)
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If x2(k
′) ≥ x∗2(k

′), (16) clearly holds (with x̃∗2 = x∗2). If x2(k
′) < x∗2(k

′), then set

x̃∗2(k) =

{
min{x∗2(k),max{x2(k), x∗2(k

′)}} if k ≥ k′

x∗2(k) if k < k′
.

To establish (16) it suffices to show

U2(x̃
′′
1, x̃

∗
2(k
′′)) ≥ U2(x̃

′′
1, x2(k

′′)) (17)

whenever x̃∗2(k
′′) > x2(k

′′). It follows from the definition of x̃∗2(·) that if x̃∗2(k
′′) > x2(k

′′),
then x̃∗2(k

′′) = x∗2(k
′). By definition, x∗2(k

′) is a best response to x̃′1. Increasing differences
(of U2(·)), implies that the best response(s) to x̃′′1 is (are) greater than x∗2(k

′). Conse-
quently, Inequality (17) follows because U2(x̃

′′
1, ·) is single peaked and x∗2(k

′) = x̃∗2(k
′′) >

x2(k
′′).

A symmetric argument establishes the other part of the definition of (ID). �

Proof of Lemma 9. To show that the game satisfies conditional ID for Player 1,
fix a strategy x′2 for Player 2 and let x′′2 > x′2. Let (k∗, x̃∗1) satisfy u1((k

∗, x̃∗1), x
′
2) ≥

u1((k
∗, x̃1), x

′
2) for all x̃1. I want to show that

u1((k̃
∗, x̃1)∨(k̃∗, x̃∗1), x

′
2) ≥ u1((k

∗, x̃1), x
′
2) =⇒ u1((k

∗, x̃1)∨(k̃∗, x̃∗1), x
′′
2) ≥ u1((k

∗, x̃1), x
′′
2).

(18)
The implication follows directly from the interval dominance property of U1(·) because
in that case

u1((k
∗, x̃1) ∨ (k∗, x̃∗1), x2) = U1(x̃1 ∨ x̃∗1, x2(k∗)) and u1((k

∗, x̃1), x2) = U1(x̃1, x2(k
∗))

for all x2. Consequently (18) is equivalent to

U1(x̃1 ∨ x̃∗1, x′2(k∗)) ≥ U1(x̃1, x
′
2(k
∗)) =⇒ U1(x̃1 ∨ x̃∗1, x′′2(k∗)) ≥ U1(x̃1, x

′′
2(k∗)).

�

Appendix C

This appendix clarifies the connection between the WID and ID conditions. I begin by
introducing a new concept and then I show its relationship to (ID). I then introduce
another concept and show that it is equivalent to (WID). The new definitions are trans-
parently nested, making it clear that (ID) implies (WID). Finally, I prove that (WID)
implies that best responses are monotonic in a way that is implied by (ID). Through-
out I will assume that X and Y are lattices, f(·) is a function f : X × Y → R, and
arg maxx∈J f(x, y) is nonempty for all intervals J ⊂ X and y ∈ Y .

Definition 16. Assume x∗ ∈ arg maxx∈X f(x, y′), and x∗∗ ∈ arg maxx∈X f(x, y′′). A
function f : X × Y → R satisfies the revised interval-dominance property (RID) in its
two arguments on the set X × Y if for all y′′ ≥ y′,

f(x′ ∨ x∗, y′) ≥ f(x′, y′) =⇒ f(x′ ∨ x∗, y′′) ≥ f(x′, y′′)

23



and
f(x′ ∧ x∗∗, y′′) ≥ f(x′, y′′) =⇒ f(x′ ∧ x∗∗, y′) ≥ f(x′, y′).

(RID) is an awkward condition because it relies on conditions defined in terms of x∗.
It is a useful formulation for some of the arguments in Appendix B. Letting x′′ = x′∨x∗,
x′′ ≥ x′ and the conditions in Definition 16 are implied by single crossing. Definition 16
imposes the condition less often than single crossing. The next result demonstrates that
(RID) is a reformulation of (ID).14

Proposition 4. Let X and Y be lattices. A function f : X × Y → R satisfies (ID) if
and only if it satisfies (RID) on all intervals [x′, x′′] ⊂ X.

Proof of Proposition 4. First I show that (RID) implies (ID). If f(x′′, y′) ≥ f(x, y′)
for all x ∈ [x′, x′′], then x′′ ∈ arg maxx∈[x′,x′′] f(x, y′). It follows that f(x′′∨x, y′) ≥ f(x, y′)
and so (RID) implies that f(x′′, y′′) ≥ f(x, y′′) for x ∈ [x′, x′′]. If, furthermore, f(x′, y′′) ≥
f(x′′, y′′), then x′ ∈ arg maxx∈[x′,x′′] f(x, y′′) so (RID) implies that f(x′, y′) ≥ f(x′′, y′).
Consequently, if f(x′′, y′) > f(x′, y′) then f(x′′, y′′) > f(x′, y′′). It follows that if (RID)
holds on all intervals, then (ID) holds.

Next I show that (ID) implies (RID). Fix an interval [x′, x′′] ⊂ X. Let x∗ ∈
arg maxx∈[x′,x′′] f(x, y′) and x∗∗ ∈ arg maxx∈[x′,x′′] f(x, y′′).

Let f(x̂ ∨ x∗, y′) ≥ f(x̂, y′) for some x̂ ∈ [x′, x′′].
It follows from supermodularity of f(·) that for any x ∈ X,

f(x ∨ x∗, y′) + f(x ∧ x∗, y′) ≥ f(x, y′) + f(x∗, y′) (19)

for all x ∈ X. Because x, x∗ ∈ [x′, x′′] implies that x ∧ x∗ ∈ [x′, x′′], it follows from the
definition of x∗ that f(x∗, y′) ≥ f(x ∧ x∗, y′) for all x ∈ [x′, x′′]. Inequality (19) implies
that

f(x ∨ x∗, y′) ≥ f(x, y′) (20)

for all x ∈ [x′, x′′]. Because x̂ ∈ [x′, x′′], (20) implies

f(x ∨ x∗, y′) ≥ f(x, y′) (21)

for all x ∈ [x̂, x̂∨ x∗]. Because x ∈ [x̂, x̂∨ x∗] implies that x∨ x∗ = x̂∨ x∗, it follows that
f(x ∨ x∗, y′) = f(x̂ ∨ x∗, y′). Consequently (21) implies that f(x̂ ∨ x∗, y′) ≥ f(x̂, y′) for
all x ∈ [x̂, x̂ ∨ x∗] and therefore, by (ID), f(x̂ ∨ x∗, y′′) ≥ f(x, y′′).

A similar argument establishes the symmetric implication. �

The next definition parallels (RID).

Definition 17. Assume y′′ > y′, x∗ ∈ arg maxx∈X f(x, y′), and x∗∗ ∈ arg maxx∈X f(x, y′′).
A function f : X×Y → R satisfies the revised weak interval-dominance property (RWID)
in its two arguments on the set X × Y if

f(x′ ∨ x∗, y′) ≥ f(x′, y′) =⇒
14I owe this argument to an anonymous referee.
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∃x̃∗ ∈ arg max
x∈X

f(x, y′), x̃∗ ≤ x∗, such that f(x′ ∨ x̃∗, y′′) ≥ f(x′, y′′) (22)

and
f(x′ ∧ x∗∗, y′′) ≥ f(x′, y′′) =⇒

∃x̃∗∗ ∈ arg max
x∈X

f(x, y′′), x̃∗∗ ≥ x∗∗, such that f(x′ ∧ x̃∗∗, y′) ≥ f(x′, y′). (23)

It is clear that (RID) implies (RWID). Condition (WID) is plainly stronger than
Condition (RWID). The next result shows that they are equivalent. Propositions 4 and
5 implies that (ID) implies (WID).

Proposition 5. Let X and Y be lattices. Assume y′′ > y′. A function f : X × Y → R
satisfies the revised weak interval-dominance property (WRID) in its two arguments on
the set X × Y if and only if it satisfies (WID) in its two arguments on the set X × Y .

Proof of Proposition 5. If (WID) holds, then (RWID) clearly holds. I want to
show that if f(x ∨ z, y′) ≥ f(x, y′), then f(x ∨ z̃, y′′) ≥ f(x, y′′) for z̃ ≤ z. Let z∗ =
min arg maxw∈[x∧z,z] f(w, y′). It follows that x∧ z∗ ∈ [x∧ z, z] so f(z∗, y′) ≥ f(x∧ z∗, y′).
It follows from supermodularity that f(x∨ z∗, y′) ≥ f(x, y′). Hence (RWID) implies that
f(x ∨ z∗, y′′) ≥ f(x, y′′). Because z∗ ≤ z and f(z∗, y′) ≥ f(z, y′), it follows that (WID)
holds. �

Proposition 1 (stated in the text) shows that (WID) implies that solutions to param-
eterized optimizations are increasing in a sense that is weaker than the strong set order.
The proposition uses the following notation: x∗∗ ∈ arg max f(x, y′′), x∗ ∈ arg max f(x, y′),
x∗∗ = max arg max f(x, y′′), x∗ = min arg max f(x, y′).

Proof of Proposition 1.
By definition, f(x∗, y′) ≥ f(x∗ ∧ x∗∗, y′) and hence, by supermodularity, f(x∗ ∨

x∗∗, y′) ≥ f(x∗∗, y′). It follows from (WRID) that f(x∗ ∨ x∗∗, y′′) ≥ f(x∗∗, y′′). A similar
argument shows that when (WRID) holds, x∗∗ ∧ x∗ ∈ arg max f(x, y′). �

Proposition 1 is a variation on Fact 2. Both results demonstrate how assumptions
of f(·) make it possible to evaluate how the set of solutions to the parameterized op-
timization problem maxx∈J f(x, y) change with the parameter y. Fact 2 demonstrates
that supermodularity and (ID) combine to guarantee that maximizers are increasing with
respect to the strong set order. Proposition 1 demonstrates that supermodularity and
(WID) combine to guarantee that maximizers are increasing in the weaker sense captured
by (9).15

15The relationship induced by the conditions in (9) need not be transitive. That is, it is possible for
arg max f(x, y1) to be distinct from arg max f(x, y2) and for (9) to hold both when (y1, y2) = (y′, y′′)
and when (y1, y2) = (y′′, y′).
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LiCalzi and Veinott [14] present several variations on single-crossing conditions. Corol-
lary 11 contains results that demonstrate different ways in which these conditions can
lead to monotone comparative statics with respect to different ways to order sets. These
results are in the spirit of Proposition 1 but are distinct.
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