Paternalism:

• You’ve heard me (and others) say that doing problems is really important. There, I said it again.
• Try to make your answers as complete as possible. (Hand waving is for lectures!)
• Clear intuitive statements are better than nothing, but don’t forget the previous point.
• If the question is too hard, make stronger assumptions.
• By all means work together. Please write down answers independently (because I think that you’ll learn something writing the arguments down).
• You may be able to find answers to these questions if you look for them. Please try to solve them yourself first.

1. Give an example of a set X an a negatively transitive and irreflexive binary relation \succ on X such that there exists no $u(\cdot)$ such that $x \succ y$ if and only if $u(x) > u(y)$ for all $x, y \in X$. (This is easy.)

2. Let $X = \Pi_{i=1}^{N} Y$ (that is, X is the cartesian product of N copies of the set Y). Assume that there exists a preference relation \succ and a function $u : Y \to \mathbb{R}$ such that $x = (y_1, \ldots, y_N) \succ x' = (y'_1, \ldots, y'_N)$ if and only if $\sum_{i=1}^{N} u(y_i) > \sum_{i=1}^{N} u(y'_i)$. State as many properties as you can that \succ must satisfy. (There are representation theorems that identify necessary and sufficient conditions for the existence of an additively separable representation. The hard direction is showing that if \succ satisfies certain properties, then an additively separable representation exists. I am asking the easy question.)

3. Let X be a convex set. Prove that if a preference relation \succ on X can be represented by a concave function, then $\{y : y \succ x\}$ is a convex subset of X.
 Is $\{(x, y) : y \succ x\}$ a convex subset of $X \times X$?

4. Can you give conditions on a preference relationship that guarantee that the utility function that represents it is a concave function? Explain.