Economics 205 Exercises

Prof. Watson, Fall 2006 (Includes examinations through Fall 2003)

Part 1: Basic Analysis

- 1. Using ε and δ , write in formal terms the meaning of $\lim_{x \to \infty} f(x) = c$, where $f : \mathbf{R} \to \mathbf{R}$.
- 2. Write the definition of $\sup X$ for some set $X \subset \mathbf{R}$.
- 3. Compute:
 - (a) $\lim_{n \to \infty} \frac{6n^2 + 2}{12n^3}$ (b) $\lim_{n \to \infty} \frac{(2n+3)n}{n^2 + 1}$
- 4. Indicate whether the following limits exist and compute those that do exist.
 - (a) $\lim_{x \to \infty} \frac{3x^2 2x + 1}{(x+3)^2}$, (b) $\lim_{x \to 0} \frac{x(x+1)^2}{(x-1)^3}$, and (c) $\lim_{x \to 0} \frac{(x+3)^2 - 9}{x^3}$.
- 5. Let $X \equiv [0,2]$ and $Y \equiv [0,1]$. Define function $f: X \to Y$ by $f(x) = 2x x^2$, for every $x \in X$.
 - (a) Graph the function f.
 - (b) Is f onto? Explain briefly.
 - (c) Is f one-to-one? Explain briefly.
 - (d) Is there a function $g: [0,1] \to [0,1]$ such that $g \circ f$ is one-to-one? Find such a function g or prove that one does not exist.
 - (e) Is there a function $g: [0,2] \to [0,2]$ such that $f \circ g$ is one-to-one? Find such a function g or prove that one does not exist.
- 6. Consider the sequence $\{a_n\}$ defined by $a_1 \equiv 1$ and $a_{n+1} \equiv a_n + 1/2^n$. Is this a Cauchy sequence? (Try to demonstrate it.) If so, compute its limit.
- 7. Consider the sequence $\{x_n\}$ defined inductively by $x_1 = 2$ and $x_{n+1} = \frac{1}{x_n^2}$, for all n.
 - (a) Write a few terms of this sequence.
 - (b) Does this sequence converge?
 - (c) Does $\{x_n\}$ have a convergent subsequence? If so, describe it.

- 8. Consider the sequence $\{a_n\}$ that is defined inductively by $a_1 = \frac{1}{2}$ and, for each $n \in \mathbf{P}$, $a_{n+1} = \frac{3-a_n}{2}$.
 - (a) Find an expression for a_n as a function of n only (not written as a function of a_{n-1}). Hint: Define the sequence $\{b_n\}$ by $b_n \equiv a_n 1$ for every $n \in \mathbf{P}$; then write b_{n+1} as a function of b_n .
 - (b) What is the limit of $\{a_n\}$?
 - (c) Calculate sup X and inf X, where $X \equiv \{a_n \mid n \in \mathbf{P}\}$.
- 9. Let $\{a_n\}$ be defined by $a_n = 1/n(n+1)$ for all n.
 - (a) Does $\{a_n\}$ converge? If so, what is its limit?
 - (b) Let $s_k \equiv \sum_{n=1}^k a_n$ for $k \in \mathbf{P}$. Write the first few elements of the sequence $\{s_k\}$. Does $\{s_k\}$ converge? If so, what is its limit? (Hint: 1/n(n+1) = 1/n 1/(n+1).)
 - (c) Use the conclusion of the previous part to prove that $t_k \equiv \sum_{n=1}^k 1/n^2$ converges. (Hint: compare $1/n^2$ to 2/n(n+1).)

10. Find
$$\sup\{f(x) \mid x \in \mathbf{R}\}$$
 for $f(x) = \begin{cases} x^3 & x < 2\\ 3 - x & x \ge 2 \end{cases}$.

11. Consider the function $f(x) \equiv \begin{cases} x^2 & x \ge 0\\ \frac{x}{|x|} & x < 0 \end{cases}$.

- (a) Is f continuous (on the entire real line)?
- (b) Does $\lim_{x\to 0^+} f(x)$ exist? If so, compute it.
- (c) Does $\lim_{x\to 0^-} f(x)$ exist? If so, compute it.
- (d) Does $\lim_{x\to 0} f(x)$ exist? If so, compute it.
- 12. Suppose X and Y are subsets of real numbers.
 - (a) Prove that if X and Y are closed, then $X \cap Y$ is closed.
 - (b) Prove that if X and Y are both compact, then $X \cup Y$ is compact.
- 13. For each example below, state whether the set X is closed. You do not need to prove your answer.

(a)
$$X = [0, 1].$$

(b) $X = [0, 1] \cup [3, 4].$
(c) $X = [0, 4] \setminus [2, 3].$
(d) $X = \{x \mid x \ge 2\}.$
(e) $X = [1, 3] \cap [0, 2).$
(f) $X = [\frac{1}{2}, 1] \cup [\frac{1}{3}, \frac{1}{2}] \cup [\frac{1}{4}, \frac{1}{3}] \cup [\frac{1}{5}, \frac{1}{4}] \cup \cdots.$

- 14. Consider the set $X = \{(-1)^n + \frac{1}{n} \mid n \in \mathbf{P}\}.$
 - (a) Do $\sup X$ and $\inf X$ exist? If so, determine these values.
 - (b) Do max X and min X exist? If so, determine these values.
- 15. Suppose you know that the sequence $\{a_n\}$ converges and that $a_{k^2} = \frac{1}{k}$ for each positive integer k. What do you know about $\{a_n\}$?
- 16. Give an example of a bounded function that is defined on a closed interval but has no maximum.
- 17. Prove that between any two distinct rational numbers there is another rational number.
- 18. Find the indicated limits. Justify your answer by mentioning a general property of limits or with a short proof (using ε s and δ s).

(a)
$$\lim_{x \to 2} \frac{x^2 - 1}{x^2}$$

(b) $\lim_{x \to 0} f(g(x))$, where $f(y) = y$ and $g(x) = \begin{cases} 1 & x \neq 0 \\ 0 & x = 0 \end{cases}$.

- 19. Let **R** be the space (universe). Prove that if $X \subset \mathbf{R}$ is closed then X' (the complement of X) is open.
- 20. Prove that a continuous function $f : [0,1] \to [0,1]$ has a fixed point (a point x such that f(x) = x.

Part 2: Calculus of One Variable

- 1. Write the definition of the derivative of a function $f: X \to \mathbf{R}$ at a point a.
- 2. Compute the derivatives of $x \ln x$, $e^x \ln x$, and $x^2 + 3x 4$.

3. Consider the function
$$f : \mathbf{R} \to \mathbf{R}$$
 given by $f(x) = \begin{cases} x^2 + 2x & x \ge 0\\ 2x & x < 0 \end{cases}$

- (a) Is f continuous at x = 0? Why?
- (b) Is f differentiable at x = 0? Prove your answer by constructing the appropriate limits.
- 4. Consider the function $f(x) = \begin{cases} x^3 + 1 & x \neq 0 \\ 0 & x = 0 \end{cases}$.
 - (a) Does $\lim_{x\to 0}$ exist? If so, compute it.
 - (b) Does f'(x) exist at x=0? If so, compute f'(0).
- 5. Let $f : \mathbf{R} \to \mathbf{R}$ be differentiable and satisfy $f(x) \neq 0$ for all x. What is the derivative of h, for:
 - (a) $h(x) = (f(x))^a$, (b) $h(x) = f(x) + 3x^2$, (c) $h(x) = f(x) \ln[f(x)]^2$, (d) h(x) = f(f(x)), and (e) $h(x) = f(e^x)$.
- 6. Consider the function $h(x) = x \ln(x^2 + 1)$. Compute h'(x).
- 7. Suppose $f : \mathbf{R} \to \mathbf{R}$ is differentiable and satisfies $f(x) \neq 0$ for all x. Which of the following is true? Why?
 - (a) f attains a maximum.
 - (b) Either f(x) > 0 for all x or f(x) < 0 for all x.
 - (c) h(x) = 1/f(x) is continuous.
 - (d) h(x) = 1/f(x) is bounded.
- 8. Evaluate the following limits if they exist; otherwise note noncovergence:
 - (a) $\lim_{x\to 0} (e^x/x)^2$ and
 - (b) $\lim_{x\to 0} \ln x^2 \ln x$.
- 9. Suppose $f : \mathbf{R} \to \mathbf{R}$ is continuously differentiable, with f(0) = 0, and suppose $g: \mathbf{R} \to \mathbf{R}$ is continuous. Suppose you know that for all $x \neq 0$, $g(x) = -f(x) \ln[f(x)]$. What is g(0)?

10. Let $f(x) = \begin{cases} 1 & x = 1 \\ 0 & x = 0 \\ Q(x) & x \in (0, 1] \end{cases}$, where Q(x) = 1/n for that $n \in \mathbf{P}$ for which $1/(n + 1) \le x < 1/n$.

- (a) For what x is f'(x) defined?
- (b) What is $\int_0^1 f(x) dx$? (Difficult just simplify the summation.)
- 11. Consider the function $f(x) = xe^x$ defined on **R**.
 - (a) Write the second-degree Taylor polynomial for f at c = 0.
 - (b) Provide an expression for the error term of the *n*th degree Taylor approximation of f at c = 0, using t and x variables.
- 12. Consider the function f(x) = 1/x, for x > 0. Write the expression for the error term of the *n*th-degree Taylor polynomial that is anchored at the point c = 1. Your answer should include variables x and t.
- 13. Write the second degree Taylor polynomial of f at c = 1, for the following functions. Also write the expression for the error term.
 - (a) $f(x) = xe^x$, (b) $f(x) = x^5 - 3x^2 + 1$, (c) $f(x) = x^2 - \ln x$, and (d) f(x) = 1/x.
- 14. Consider f(x) = 1/x, where f is defined over the interval (0, 2).
 - (a) Write the third degree Taylor polynomial for f around the point c = 1.
 - (b) Using the expression of the error term $E_n(h)$ for the *n*-term Taylor polynomial (also around point c = 1) from Taylor's Theorem, find an upper bound on $|E_n(h)|$.
- 15. Consider the function $f(x) = x \ln x$.
 - (a) Write the third degree Taylor polynomial of f at point c = 1.
 - (b) Write an expression for the absolute value of the error term for the nth degree Taylor polynomial of f, as a function of x and t.
- 16. For each function f below, for what $n \in \mathbf{P}$ is the error of the *n*-term Taylor approximation around c = 0, for $x \in (0, 1)$, within 0.0001?
 - (a) $f(x) = e^{2x}$, (b) $f(x) = e^x$, and
 - (c) $f(x) = x^2 \ln(x+1)$.

- 17. Consider the function $f(x) = 2e^x + x^3$.
 - (a) What is the equation of the tangent line of f at the point x = 0? (Write your answer in the form y = mx + b, where m and b are constants.)
 - (b) Write the third-degree Taylor polynomial of f anchored at c = 0.
- 18. Consider the function $f(x) = e^x$.
 - (a) Write the error term of the *n*th-degree Taylor approximation of f at the point a = 0. (The last term has the *n*th derivative.)
 - (b) For what value of n will the nth-order Taylor approximation be accurate within e/24 for $x \in (-1, 1)$?
- 19. Find the local maxima and minima of: (a) $x^4 18x^2 + 80$, (b) $-x^3 + 4x^2 x 6$, (c) $2e^{x+1} e^{2x}$, and (d) $x/\ln x$.
- 20. Consider the function $f(x) = 3x^4 4x^3 12x^2 + 42$.
 - (a) Find the local maxima and minima of f and graph the function (noting the critical points).
 - (b) Find the equation of the tangent line to f at x = 1.
 - (c) Compute g'(0), where $g(x) \equiv \ln[f(x)]^2$.
- 21. Consider the function $f(x) = e^{2x-x^2}$.
 - (a) Compute the first and second derivatives of f.
 - (b) Identify the critical points of f, determine whether these are maximizers or minimizers (or neither), and graph the function.
- 22. Consider the function $f : \mathbf{R} \to \mathbf{R}$ defined by $f(x) = 9 12x + 9x^2 2x^3$.
 - (a) Calculate f'(x) and f''(x).
 - (b) Determine the critical points of f.
 - (c) Determine the nature (local maximizer, minimizer, or neither) of each critical point.
 - (d) Draw the graph of f (the set of points (x, y) such that y = f(x)). Label the x and y intercepts and the critical points. (Note that f(3) = 0.)
 - (e) Does f(x) attain a global maximum or minimum?
- 23. Find and determine the nature of the critical points of $f(x) = \frac{2+x}{x^2}$. Graph the function. Is the function defined on **R**?
- 24. Consider the function $f:(0,\infty)\to \mathbf{R}$ defined by $f(x)\equiv 27-x^2-\frac{54}{x}$, for every x>0.
 - (a) Calculate the first and second derivatives of f as a function of x.
 - (b) Determine the critical point x^* of f.
 - (c) Determine the nature (maximizer, minimizer, neither) and scope (local or global) of the critical point x^* . Also calculate $f(x^*)$.
 - (d) Graph f.

- 25. Suppose $f : [0,\infty) \to \mathbf{R}$ and $g : [0,\infty) \to \mathbf{R}$ satisfy f''(x) < 0, g''(x) > 0, $\lim_{x\to\infty} f'(x) = 0,$ and $\lim_{x\to\infty} g'(x) = \infty.$ Does $\max\{f(x) - g(x)\}$ exist?
- 26. Evaluate/simplify:
 - (a) $\int_{0}^{1} xe^{x} dx$ (by parts), (b) $\int \{f'(x)g(x) + [f(x) + 2g(x)]g'(x)]\}dx$, (c) $\int \frac{6-x}{(x-3)(2x+5)}dx$ (partial fractions method), (d) $\int_{0}^{1} x \ln(x+3)dx$, (e) $\int x^{n} \ln x dx$, (f) $\int_{0}^{3} \frac{2x}{x^{2}+2}dx$, (g) $\int_{0}^{1} e^{\sqrt{x}}dx$, (h) $\int_{e}^{e^{2}} 4x \ln x dx$, (i) $\int \ln x dx$, (j) $\int_{0}^{5} [x^{3} - (x-1)^{2}]dx$, (k) $\int_{e}^{e^{2}} (4x \ln x)dx$, (l) $\int_{0}^{2} (8x^{3} - 2x)dx$, (m) $\int_{0}^{1} (3x^{2} - 6x + 1)dx$, (n) $\int_{1}^{e} \frac{\ln x}{x} \ln x dx$, and
- 27. Compute: (a) $\int_e^{e^2} (\ln x) dx$, (b) $\int_0^2 (3x^2 14x 2x^{-2}) dx$.
- 28. Compute the following definite integrals.

(a)
$$\int_{2}^{4} \frac{x^{2}}{x^{3}-4} dx$$

(b) $\int_{e}^{e^{3}} \ln x \, dx$
(c) $\int_{0}^{9} \frac{e^{x^{1/2}}}{x^{1/2}} dx.$

- 29. In precise terms, what does it mean for the problem $\max_{x \in X} f(x)$ to have no solution? Give an example of a maximization problem that has no solution because the feasible set is unbounded.
- 30. Take some function f(x), where x is a scalar, and suppose that f is K + 1 times continuously differentiable throughout some neighborhood of the point x^* . Let f_k denote the kth derivative of f.
 - (a) Suppose K is even and $f_1(x^*) = f_2(x^*) = \ldots = f_{K-1}(x^*) = 0$. Derive necessary and sufficient conditions on $f_K(x^*)$ for x^* to be a local maximum of f. (First think about whether our usual first- and second-order necessary and sufficient conditions are met.)
 - (b) What are the necessary and sufficient conditions when K is odd?
 - (c) Determine whether the functions $f(x) = x^3$ and $f(x) = -x^4$ have and local maxima, and identify them if they exist.

- 31. Recall the definition of concavity: f is concave over the interval [a, b] if, for every pair of points $x, y \in [a, b]$ and every number $\delta \in (0, 1)$, we have $f(\delta x + (1 \delta)y) \ge \delta f(x) + (1 \delta)f(y)$. Consider the following claim:
 - If f is concave over [a, b] then f is continuous at each point in the interval (a, b).

Explain whether you think this claim is true or false. If you can, provide a counterexample or a proof.

- 32. Suppose $f : \mathbf{R} \to \mathbf{R}$ is a concave function and g(x) = ax + b, with a > 0. Prove that $g \circ f$ is concave.
- 33. Consider functions $f : \mathbf{R} \to \mathbf{R}$ and $g : \mathbf{R} \to \mathbf{R}$.
 - (a) Prove that if g is concave and f is both increasing and concave then $f \circ g$ is concave.
 - (b) Is the assumption that f is increasing necessary to reach the conclusion of part (a)? In not, explain why. If so, find a counterexample to the claim that f, g concave implies $f \circ g$ concave.
- 34. Consider a function $f : \mathbf{R} \to \mathbf{R}$. Decide whether the following claims are true or false. For those that are true, provide a proof. For those that are false, provide counterexamples to the claims.
 - (a) If f is concave then f attains a maximum.
 - (b) If f is continuous and X is closed then f(X) is closed.
 - (c) If f is continuous and, for some $X \subset \mathbf{R}$, f(X) is open then X is open.
- 35. Suppose $f : \mathbf{R} \to \mathbf{R}$ is a strictly increasing function and $g : \mathbf{R} \to \mathbf{R}$ is any arbitrary function. Define $h : \mathbf{R} \to \mathbf{R}$ by $h \equiv f \circ g$. Is it possible for h to have a maximum whereas g does not have a maximum? Is it possible for g to have a maximum whereas h does not have a maximum? Explain.
- 36. Is it true that $\ln(1+x) \leq x$ for all $x \geq 0$? Prove your answer.
- 37. Prove, using the definition of continuity, that if $f : [a, b] \to \mathbf{R}$ is continuous and f(a) < 0 < f(b), then there exists a point $c \in (a, b)$ such that f(c) = 0.

38. Consider the function $f : \mathbf{R} \to \mathbf{R}$ defined by $f(x) = \begin{cases} x^2 \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$.

- (a) Prove that f is differentiable at x = 0 and calculate f'(0).
- (b) Find the formula for f'(x) for $x \neq 0$..
- (c) Show that f' is not continuous at x = 0.

Part 3: Multiple Variables

1. For each of the following matrices, say whether or not it is invertible (that is, whether A^{-1} exists) and, if so, find A^{-1} .

(a)
$$A = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} 6 & 4 \\ 3 & 2 \end{pmatrix}$ (c) $A = \begin{pmatrix} 1 & 0 \\ \frac{-3}{2} & \frac{1}{2} \end{pmatrix}$.
2. Compute $Df(x)$ for $f : \mathbf{R}^3 \to \mathbf{R}^2$ given by $f(x) = \begin{pmatrix} x_1^2 + 2x_1x_2 - x_3 \\ x_2x_3 + x_3^2 \end{pmatrix}$.

3. Evaluate

$$\lim_{(x,y)\to(0,0)} |x|^{|y|}.$$

- 4. Consider the function $f : \mathbf{R}^2 \to \mathbf{R}$ defined by $f(x, y) \equiv x^3 y y^2$.
 - (a) Graph the zero-value level set that is, the set of points in \mathbb{R}^2 given by $\{(x, y) \mid f(x, y) = 0\}$.
 - (b) Determine the equation of the line tangent to this level set at the point (1, 1).
 - (c) Find the equation of the tangent plane to the graph of z = f(x, y) at the point $(x^*, y^*, z^*) = (2, 1, 7)$.
- 5. Consider the function $f(x, y) = 3x^2 2y + xy$.
 - (a) Compute $\nabla f(x, y)$.
 - (b) Find the equation of the plane tangent to the graph of f at the point (3, -10, 17).

6. Find the equation of the plane tangent to $z = e^{xy} + e^y$ at (x, y, z) = (0, 0, 2).

7. Evaluate the following derivatives.

(a)
$$h'(x)$$
, for $h(x) = [f(x^2)]^2$,
(b) $h'(x)$, for $h(x) = f(x, x^2)$ and $f(y, z) = z/(z+y)$,
(c) $Dh(2, 1)$, for $h = f \circ g$ where $f : \mathbf{R}^2 \to \mathbf{R}^2$ and $g : \mathbf{R}^2 \to \mathbf{R}^2$ are defined
by $f(y) = \begin{pmatrix} y_1^2 + 3 \\ y_1 y_2 \end{pmatrix}$ and $g(x) = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \end{pmatrix}$.

8. Consider the function $f(x, y, z) = 3x^2 + 2xy - z^2$.

- (a) Compute $\nabla f(x, y, z)$.
- (b) Find the equation of the plane tangent to the level set f(x, y, z) = 7 at the point (2, 1, 3).
- (c) Find the equation of the hyperplane tangent to the graph of f at the point (2, 1, 3).

- 9. Suppose $f : \mathbf{R}^2 \to \mathbf{R}$ and $g : \mathbf{R} \to \mathbf{R}^2$ are defined by $f(x) = x_1^2 (3x_1 + x_2^2)$ and $g(t) = \begin{pmatrix} t^2 \\ e^t \end{pmatrix}$.
 - (a) Compute Df(x) and Dg(t).
 - (b) Is $f \circ g$ differentiable over R? (Briefly explain why you know.)
 - (c) Compute the first derivative of $f \circ g$ using the chain rule.
- 10. Consider the functions $f : \mathbf{R}^2 \to \mathbf{R}^2$ and $g : \mathbf{R}^2 \to \mathbf{R}^2$ defined by $f(w, z) = \begin{pmatrix} 2wz^2 \\ 2z w \end{pmatrix}$ and $g(x, y) = \begin{pmatrix} xy \\ x + y \end{pmatrix}$. Define the function $h : \mathbf{R}^2 \to \mathbf{R}^2$ by $h(x, y) \equiv [f \circ g](x, y)$. Using the chain rule, calculate Dh(1, 1).
- 11. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x) = x_1 7x_1^2 + 9x_1x_2 3x_2^2$.
 - (a) Calculate $\nabla f(x)$ and $D^2 f(x)$.
 - (b) Write the two-equation system that defines a critical point x^* using the matrix-algebraic form Ax + b = (0, 0)', where A is a 2 × 2 matrix of constants, $x = (x_1, x_2)'$, and b is a column vector of constants. Identify the matrix A and the vector b.
 - (c) For the matrix A in part (b), calculate A^{-1} and, using matrix algebra, find the critical point x^* .
 - (d) Identify whether x^* is a maximizer, a minimizer, or neither.
- 12. Find and determine the nature of the critical points of $f(x, y) = 4x^3 + y^2 6xy + 6x$.
- 13. Solve max $xy + 2x + 5y x^2 y^2$. Verify the first- and second-order conditions.
- 14. Consider the function $f(x, y) = x^3 3xe^{-y^2}$.
 - (a) Compute $\nabla f(x, y)$.
 - (b) Compute $D^2 f(x, y)$.
 - (c) What is the function g(x, y) that defines the tangent plane to the graph of f at the point (x, y) = (2, 1)? (Hint: g is the first-order Taylor polynomial of f at (2, 1).)
 - (d) Find the local minima and maxima of f. (Use necessary and sufficient conditions.)
- 15. Determine the nature of the critical points of $f(x, y) = 3xy x^3 y^3 + 1/8$.
- 16. Determine whether the function $f(x) = e^x$ is concave, convex, quasiconcave, and/or quasiconvex.
- 17. Consider the function $f(x, y) = e^{ax^{1/2}-y}$, where $x \ge 0$, and $y \in \mathbf{R}$. Determine, for each value of the parameter a whether f is quasiconcave, quasiconvex, or both.

18. Determine the sign definiteness of the following matrices: (a) $\begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$, (b)

$$\left(\begin{array}{rrr} -3 & 4\\ 4 & 5 \end{array}\right), (c) \left(\begin{array}{rrr} -3 & 4\\ 4 & -6 \end{array}\right).$$

- 19. Which of the following functions are concave or convex (on \mathbb{R}^n)?
 - (a) $f(x) = 3e^x + 5x^4 \ln x$, (b) $f(x,y) = -3x^2 + 2xy - y^2 + 3x - 4y + 1$, (c) $f(x,y,z) = 3e^x + 5y^4 - \ln z$, and (d) $f(x,y,z) = Ax^a y^b z^c$, for a, b, c > 0.
- 20. For each of the following functions defined on \mathbb{R}^2 , find the critical points and classify them as local maxima, local minima, saddle points, or "can't tell." Also determine which of the local maxima/minima are global maxima/minima.
 - (a) $xy^2 + x^3y xy$, (b) $x^2 - 6xy + 2y^2 + 10x + 2y - 5$, (c) $x^4 + x^2 - 6xy + 3y^2$, and (d) $3x^4 + 3x^2y - y^3$.
- 21. In class, we developed a sufficient condition for x^* to be a local minimizer or maximizer of a twice continuously differentiable function f from \mathbb{R}^n to \mathbb{R} . The secondorder condition was that the Hessian be definite (positive or negative depending on whether x^* is a max or min). Is it true in these cases that x^* is a strict local maximizer/minimizer? (x^* is a strict maximizer if $f(x^*) > f(x)$ for all x near, but not equal to, x^* .) Prove your answer.
- 22. Consider the function $H(z; x, y) = xyz^3 x^2z^2 + xz 9z + 6$, where $x, y \in \mathbf{R}$ are parameters.
 - (a) Suppose we want to find a local minimum of H by choice of z, for given values of x and y. What is the first-order condition? Do not try to solve this equation, but check that it holds for x = 1, y = 1, and z = 2.
 - (b) Note that the first-order condition implicitly defines z as a function of x and y, z = g(x, y), for x near 1, y near 1, and z near 2. Compute the gradient of g at the point (1, 1).
- 23. Suppose $f : \mathbf{R}^n \to \mathbf{R}$ is maximized (globally) at $x \in \mathbf{R}^n$ and that $g : \mathbf{R} \to \mathbf{R}$ is an increasing function (that is, $g(a) \ge g(b)$ whenever $a \ge b$). Formally prove that x is the global maximizer of the function $h : \mathbf{R}^n \to \mathbf{R}$ where $h = g \circ f$ (that is, h(x) = g(f(x)) for all x).
- 24. Prove that any metric space which consists of only a finite number of points is compact. Demonstrate that the space $X \equiv \{x \in \mathbf{R} | x = 1/n \text{ for some } n \in \mathbf{P}\}$ is not compact.

- 25. Prove that any monotone (increasing) transformation of a real-valued quasiconcave function is also quasiconcave.
- 26. Solve $\max x_1 x_2^2$ subject to $x_1^3 + x_2^2 = 0$.
- 27. Solve $\max y + xy$ subject to $x^2 + y^2 1 = 0$.
- 28. Consider the function $F(x, y, z) = zx^3 3y^2 + xyz^2 7$. Check that F(2, 1, 1) = 0. Note that the equation F(x, y, z) = 0 implicitly defines z as a function of x and y; that is, z = g(x, y) in a neighborhood of (2, 1, 1). Calculate $\nabla g(2, 1)$.
- 29. Take a function $f : X \to \mathbf{R}$, where X is an open subset of \mathbf{R}^n . We say that f is homogeneous of degree p over X if $f(\lambda x) = \lambda^p f(x)$ for every $\lambda \in \mathbf{R}$ and every $x \in X$ such that $\lambda x \in X$.
 - (a) Prove that if such a function is differentiable at x then $\nabla f(x) \cdot x = pf(x)$. This is known as Euler's Theorem. (Hint: write the derivative of the composite function $g: \mathbf{R} \to \mathbf{R}$ where $g(\lambda) \equiv f(\lambda x)$.)
 - (b) Check Euler's Theorem and find p for the function $f(x, y) = x^{\alpha} y^{\beta}$.
 - (c) For what values of α and β is the function $f(x, y) = x^{\alpha}y^{\beta} x$ homogeneous?
- 30. A function $g : \mathbf{R}^n \to \mathbf{R}$ is called homogeneous of degree k if, for every $x \in \mathbf{R}^n$ and $t \in \mathbf{R}$, it is the case that $g(tx) = t^k g(x)$. Prove that if g is differentiable and homogeneous of degree k then each of the partial derivatives of g is homogeneous of degree k - 1.
- 31. Consider the function $F : \mathbb{R}^3 \to \mathbb{R}$ defined by $F(x_1, x_2, z) = x_1^3 x_2 z^2$. Suppose we are interested in how the identity $F(x_1, x_2, z) \equiv 0$ implicitly defines z as a function of (x_1, x_2) ; that is, $z = g(x_1, x_2)$.
 - (a) Is g well-defined (is it a function?) in a neighborhood of the point $(x_1^0, x_2^0, z^0) = (1, 4, 2)$? How do you know this?
 - (b) If so, calculate $\frac{\partial g}{\partial x_1}(1,4)$ and $\frac{\partial g}{\partial x_2}(1,4)$.

32. Consider the problem of a firm, whose objective is to maximize its profit. The firm produces two goods, whose units of production are denoted x and y. The firm sells these goods on a competitive market, where the price of good x is 1 and the price of good y is p. The firm's cost of producing x and y is given by the twice continuously differentiable function c(x, y). Thus, the firm's profit is $\pi = x + py - c(x, y)$, which it maximizes by choice of x and y.

Assume that for every x, every y, and every vector $h \in \mathbf{R}^2$, $h'D^2c(x,y)h > 0$. (That is, c is strictly convex.) Also assume that, for each value p, π has a maximum. Denote

the optimal values of x and y as $x^*(p)$ and $y^*(p)$, and define $g(p) = \begin{pmatrix} x^*(p) \\ y^*(p) \end{pmatrix}$.

- (a) Treating π as a function of x and y, write expressions for $D\pi(x, y)$ and $D^2\pi(x, y)$. What is the relationship between $D^2\pi(x, y)$ and $D^2c(x, y)$? What can you say about the definiteness of the quadratic form defined by the matrix $D^2\pi(x, y)$?
- (b) Show that the first order condition for the firm's maximization problem can be written in the form F(x, y, p) = 0. (What is F?)
- (c) Suppose that $x^*(5) = 2$ and $y^*(5) = 3$. Write an expression for Dg(5), in terms of c.
- (d) Do you have enough information to evaluate the sign of $\frac{dy^*}{dp}(5)$? If so, what is the sign of this derivative?
- (e) What assumption on the function c guarantees that $\frac{dx^*}{dp}(5) < 0$?
- (f) Define $v(p) = \max_{x,y} x + py c(x, y)$. What is v'(5)?
- 33. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = 6ay + xy x^2 y^2$, where a is a constant number.
 - (a) Calculate the gradient of f (the partial derivatives with respect to x and y) and determine the critical point x^* (written in terms of a).
 - (b) Calculate the 2×2 matrix of second-order partial derivatives and determine whether x^* is a maximizer or minimizer (or neither).
 - (c) Now consider a as a parameter so, formally, f is a function from \mathbb{R}^3 to \mathbb{R} . Define $v(a) = \max_{(x,y)} f(x, y, a)$. Calculate v'(a), written in terms of the parameter a.
- 34. For given data (y_1, y_2, \ldots, y_n) and (x_1, x_2, \ldots, x_n) , find the values of a and b that minimize $\sum_{i=1}^{n} [y_i (a + bx_i)]^2$, and prove your answer.

- 35. Consider the problem max $10x x^2 y^2$ subject to $y \ge x 1$.
 - (a) Write the appropriate first-order conditions for this problem.
 - (b) Solve the problem, being careful to show that all sufficient conditions are satisfied.
 - (c) Suppose the problem had two constraints: $x^2 \ge 1$ and $y \ge x 1$. Does the nonlinear programming method characterize the solution? (Will the solution be found using the first-order conditions of the Lagrangean?) Why?
- 36. Suppose $f : \mathbf{R}^n \to \mathbf{R}$ is continuous and quasiconcave, and $g : \mathbf{R}^n \to \mathbf{R}$ is continuous and quasiconvex. Are these conditions sufficient to guarantee the existence of a solution to $\max_x f(x)$ subject to $g(x) \leq 0$? Explain by providing a sketch of a proof or counterexample. In the latter case, can you find stronger conditions that are sufficient?