
Linear Programming Notes VIII:

The Transportation Problem

1 Introduction

Several examples during the quarter came with stories in which the variables
described quantities that came in discrete units. It makes sense that you can
produce coÆns in only whole number units. It is hard to imagine selling 2

3
of a

chair or 1

2
of a table. So far we have ignored these constraints. In applications,

one must take integer constraints seriously. An intelligent, but naive, way to deal
with the constraints is to solve the problem assuming that the constraints are
not present and then round your solution to the nearest integer value. In many
situations this technique is not only sensible, but gives good answers. If you
round down the number of items you produce in a production problem, then you
are likely to maintain feasibility and you may arrive at the true solution to the
problem. In general, the method won't work. Rounding (even rounding down)
may destroy feasibility or the true solution may not be close to the solution
of the problem solved without imposing integer constraints. The general topic
of Integer Programming deals confronts the problem directly. The theory of
Integer Programming (or Linear Integer Programming) is not as complete as
the theory of Linear Programming. Integer Programming problems are more
diÆcult to solve than LPs. Econ 172B describes some general approaches.

In this section I introduce problems that have a special property. In these
problems, it is especially natural to impose the constraint that the variables
take on integer values. Hence the problems are, strictly speaking, not linear
programming problems. Nevertheless, aside from the integer constraint, the
problems are linear. Moreover, the problems are so special that when you solve
them as LPs, the solutions you get automatically satisfy the integer constraint.
(More precisely, if the data of the problem is integral, then the solution to the
associated LP will be integral as well.)

2 The Transportation Problem

2.1 Formulation

The Transportation Problem was one of the original applications of linear pro-
gramming models. The story goes like this. A �rm produces goods atm di�erent
supply centers. Label these i = 1; : : : ;m. The supply produced at supply center
i is Si. The demand for the good is spread out at n di�erent demand centers.
Label these j = 1; : : : ; n. The demand at the jth demand center is Dj . The
problem of the �rm is to get goods from supply centers to demand centers at
minimum cost. Assume that the cost of shipping one unit from supply center
i to demand center j is cij and that shipping cost is linear. That means that
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if you shipped xij units from supply center i to demand center j, then the cost
would be cijxij .

I have already done one of the steps of formulating the problem: I have
introduced variables. Let me be explicit. De�ne xij to be the number of units
shipped from supply center i to demand center j. The problem is to identify the
minimum cost shipping schedule. The constraints are that you must (at least)
meet demand at each demand center and cannot exceed supply at each supply
center.

The cost of the schedule, by the linearity assumption, is given by

min

mX

i=1

nX

j=1

xijcij :

Now let's �gure out the constraints. Consider supply center i. The total
amount shipped out of supply center i is

Pn

j=1 xij . Think about this expression.
xij is what you ship from i to j. From i you can ship to any demand center
(j = 1; : : : ; n). The sum above just adds up the total shipment from supply
center i. This quantity cannot exceed the supply available. Hence we have the
constraint

nX

j=1

xij � Si for all i = 1; : : : ;m:

Similarly, the constraints that guarantee that you meet the demand at each of
the demand centers look like:

mX

i=1

xij � Dj for all j = 1; : : : ; n:

Consider the feasibility of the problem. The only way that the problem can
be feasible is if total supply exceeds total demand (

Pn

j=1Dj �
Pm

i=1 Si. If this
equation did not hold, then there would be excess demand. There would be no
way to meet all of the demand with available supply. If there is enough supply,
then you should be able to convince yourself that you can satisfy the constraints
of the problem. That is, the problem is feasible unless there is excess demand.
It is conventional to assume that the total supply is equal to the total demand.
If so, that is, if

nX

j=1

Dj =

mX

i=1

Si;

then all of the constraints in the problem must hold as equations (that is, when
total supply equals total demand, then a feasible transportation plan exactly
meets demand at each demand center and uses up all of the supply at each
supply center). (In cases where there is excess supply, you can transform the
problem into one in which supply is equal to demand by assuming that you can
freely dispose of the extra supply.)

After making the simpli�cation that total supply equals total demand, we
arrive at the standard formulation of the transportation problem. The problem
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provides m supplies Si for i = 1; : : : ;m, n demands Dj for j = 1; : : : ; n that sat-
isfy
Pn

j=1Dj =
Pm

i=1 Si, and costs cij . The objective is to �nd a transportation
plan denoted by xij to solve:

min

mX

i=1

nX

j=1

xijcij

subject to
nX

j=1

xij = Si for all i = 1; : : : ;m:

and
mX

i=1

xij = Dj for all j = 1; : : : ; n:

In this problem it is natural to assume that the variables xij take on integer
values (and non-negative ones). That is, you can only ship items in whole
number batches.

2.2 Discussion

The transportation problem is an optimization problem with a linear objective
function and linear constraints. If we ignore the restriction that the variables
take on integer values, then it would fall into our standard framework. We can
solve the transportation problem using Excel.

The transportation problem has a lot of special structure. For example,
each variable appears in exactly two constraints (with a non-zero coeÆcient).
When a variable has a non-zero coeÆcient, the coeÆcient is either plus or minus
1. Because of this special structure, two things turn out to be true. First,
there are alternative methods of solving transportation problems that are more
eÆcient than the standard simplex algorithm. This turns out to be important
in practice, because real-world transportation problems have enormous numbers
of variables. Second, because of the special structure, it is possible to solve the
transportation problem in whole numbers. That is, if the data of the problem
(supplies, demands, and costs) are all whole numbers, then there is a whole
number solution. The signi�cance of this property is that you do not need to
impose the diÆcult to handle integer constraints in order to get a solution that
satis�es the constraints.

I will not explain completely why you can always �nd integer solutions to
transportation problems. Several things are worth noting. It is not true in
general. For example, the recurring example of the course (the problem that we
used to illustrate the simplex algorithm) started with whole number data, but
its solution involved fractions.

There are two intuitions about why transportation problems have integer
solutions. One intuition is that corners of the feasible sets of transportation
problems must have whole number coordinates. That is, if you solve a subset
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of k constraints using only k variables, the solution will involve whole numbers.
This intuition is geometric. You know that solutions to LPs arise at corners. If
you can see that corners of the feasible set have whole number coordinates, you
are in business. (Note: I have just claimed that this property holds. I have not
proved it. The proof is complicated, so you have a right to be skeptical about
the claim.)

The other intuition in algebraic. In the simplex algorithm, you get fractions
because you must divide by the element you pivot on. In the transportation
problem pivot elements will always be 1, so there is no need to divide.

2.3 Short History

People thought the transportation problem up early in the Second World War.
It was used to determine how to move troops (located, for example, at training
basis in di�erent parts of the United States) to battlegrounds in Europe and
Asia.

2.4 The Dual of the Transportation Problem

Every LP has a dual. The neatest way to write the dual of the transportation
problem is: Find ui for i = 1; : : : ;m and vj for j = 1; : : : ; n to solve:

max�

mX

i=1

uiSi +

nX

j=1

vjDj

subject to
ui � vj � cij for all i = 1; : : : ;m and j = 1; : : : ; n:

This paragraph gives an explanation of how I arrived at the dual. It is only
an outline. I will not ask you to write the dual of a problem as complicated as
the transportation problem. So the material in this paragraph is optional. On
the other hand, it is extremely useful to know where duals come from. Arriving
at the formulation of the dual takes a bit of care. The tedious method is to
transform the original transportation problem so that it is in standard form, take
the dual of that, and simplify. The clever method is to notice that transportation
problem was written as a minimization (so that the dual will be a maximization);
it had equality constraints (so that the dual variables will be unconstrained); its
variables were constrained (so that in the dual the constraints are inequalities).
I did one other tricky thing. I let �ui be the name of the variable for the
ith constraint in the transportation problem. This created negative signs in the
objective function and constraints in the dual. This de�nition is mathematically
irrelevant (since the variable is unconstrained in sign), but leads to a form that
is consistent with the story I tell in the next paragraph.

Let me now try to interpret the dual. Here is a way to think of the possibility.
In the original transportation problem, the seller faces the problem of getting
goods from the supply centers to the demand centers. The only way to do this
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is by using conventional shipping lines and paying costs described by cij . Now,
for the purpose of the dual, imagine that someone o�ers to transport the goods
for the supplier. This mysterious shipper o�ers to buy goods from the supplier
at each supply center (at the price ui at supply center i) and resell them at
demand center j at the price vj . Somehow the mysterious shipper manages to
get the goods where they belong. The original seller doesn't care how the goods
get where they should be, as long as shipping cost is not too great. cij is the
amount it would cost to move an item from supply center i to demand center j
using conventional methods. Using the mysterious shipper it would cost vj �ui
(because the seller must pay vj to get the good back, but receives ui when he
sells it. Therefore, if the constraints in the dual are satis�ed, then it is no more
expensive to use the shipper than to use conventional shipping methods. The
dual objective function is the amount that the mystery shipper earns by buying
all of the supply and then reselling it at demand centers. This discussion leads
to the interpretation of the dual. The mystery shipper sets prices at each supply
and demand location so that the net cost of shipping an item is no greater than
the direct (cij) cost, and does so to maximize net revenue.

2.5 Example

Here is an example that is inspired by a similar problem in Hillier and Lieber-
man.

A lumber company has three sources of wood and �ve markets where wood is
demanded. The annual quantity of wood available in the three sources of supply
are 15, 20, and 15 million board feet respectively. The amount that can be sold
at the �ve markets is 11, 12, 9, 10, and 8 million board feet, respectively. The
company currently transports all of the wood by train. It wishes to evaluate
its transportation schedule, possibly shifting some or all of its transportation
to ships. The unit cost of shipment (in $10,000 along the various routes using
both methods is described in the table below.

Supply Market 1 Market 2 Market 3 Market 4 Market 5

A 51 62 35 45 56
B 59 68 50 39 46
C 49 56 53 51 37

Cost per Unit of Rail Transport

Supply Market 1 Market 2 Market 3 Market 4 Market 5

A 48 68 48 none 54
B 66 75 55 49 57
C none 61 64 59 50

Cost per Unit of Ship Transport

The management needs to decide to what extent to continue to rely on rail
transportation. Evaluate the following options and make a recommendation
about what to do.
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1. How much does it cost use rail transport exclusively?

2. How much does it cost to use ships exclusively?

3. How much does it cost to use the cheapest available mode of transportation
on each route?

4. Suppose that there is an annual cost of $100,000 to operate any ships (but
that this cost does not vary with the number of shipping lines kept open).
What is the optimal transportation plan?

5. How would your answer change if you learned that the supply at Center B
and the demand at market 3 were both expected to increase by 10 million
board feet?

I wrote a spreadsheet that describes the problem. It is available. On the spread-
sheet I wrote three cost arrays. One represents the costs of train transportation;
the second of ship transportation; and the third the minimum (route by route).
For the routes that for which shipping was not feasible (the \none" entries in
the cost table), I substituted a large number.

I �rst solved the problem using rail transportation. I obtained

Supply Market 1 Market 2 Market 3 Market 4 Market 5

A 6 0 9 0 0
B 2 0 0 10 8
C 3 12 0 0 0

Solution Using only Rail Transit

The cost of this transportation plan is 2316. (I also computed the cost of
this transit schedule if ships were used instead of trains, this cost is 5530; 2298
is the cost of this shipping plan using the minimum cost method on each route.
There is no a priori reason why the cost of the shipping cost should be more
than the rail cost. The min cost must be lower (or equal). The fact that it is
strictly lower means that a positive amount of the lumber was transported over
routes that are less expensive to use ships than trains.

Next I solved the problem using only ship transit. (I just copied the original
spreadsheet and changed the objective function from train value to ship value.)
This is the solution.

Supply Market 1 Market 2 Market 3 Market 4 Market 5

A 11 0 4 0 0
B 0 0 5 10 5
C 0 12 0 0 3

Solution Using only Ship Transit

The cost of this plan (using ships) is 2654. It would be 2354 using trains and
2321 using the minimum cost method. Note that even though the transportation
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plan is optimal for ships, it costs more to use ships than trains (but if you were
going to use trains it would be cheaper still to use the �rst transportation plan).
Finally, as before, if you can use the minimum cost method, you would have an
even lower cost.

At this point I have answered the �rst question (2316) and the second ques-
tion (2652). If you must use only one mode of transportation, it does not pay
to switch. We can also conclude that using shipping selectively is pro�table.
We do not know how pro�table until we solve the third problem. I did and
obtained:

Supply Market 1 Market 2 Market 3 Market 4 Market 5

A 6 0 9 0 0
B 2 0 0 10 8
C 3 12 2 0 0

Solution Using Min Cost Transit

The cost of this transportation plan is 2298 (2316 if all were transported by
train and 5530 if all were transported by ship). This schedule is identical to the
�rst one. The solution is less expensive than using only ships or only trains. In
fact, we can conclude that it is worth $180,000 (remember units are $10,000)
per year to have the option to use ships. Provided that the cost of having a
ships is less than $180,000 it is worth operating the minimum cost plan. Ships
are used for only one route: connecting A to 1.

The last question asks you to redo the problem under the assumption that
the supply at B is 30 (instead of 20) and the demand at 3 is 19 (instead of 9). I
re-solved the problem and obtained the cost of 2774 for only trains using these
routes:

Supply Market 1 Market 2 Market 3 Market 4 Market 5
A 0 0 15 0 0
B 8 0 4 10 8
C 3 12 0 0 0

Solution 2 Using only Rail Transit

The basis changed (it is no longer pro�table to use the A to 1 route). Using
only ships the solution becomes:

Supply Market 1 Market 2 Market 3 Market 4 Market 5

A 11 0 4 0 0
B 0 0 15 10 5
C 0 12 0 0 3

Solution 2 Using only Ship Transit

with cost equal to 3202. The only di�erence between this transportation plan
and the original solution to the problem using ships is that now ten extra
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units are shipped from B to 3. The cost went up by 550. On the other
hand, going from the �rst to the second train made the cost go up by less
(458 = 2774� 2316) that 550. That is, although the direct transportation cost
from C to 3 is 55 per unit, by using other routes (at least for some of the units)
the extra demand can be transported at a smaller price.

Finally, when you solve the min problem you again �nd that the solution
agrees with the solution from the train transportation problem. Now, however,
you don't use any ships. That is, the additional demand makes it optimal to
only use rail transportation.

3 The Assignment Problem

3.1 Introduction

The Assignment Problem is a special case of the transportation problem in which
there are equal numbers of supply and demand centers, and that all demands
and supplies are equal to one. Sometimes you interpret the \costs" (cij) as
bene�ts, and solve a maximization problem instead of a minimization problem.
This change of interpretation has adds no theoretical problems.

The Assignment Problem deserves special attention because it is an inter-
esting special case. The usual story that comes with it goes like this. You are
the manager of a little league baseball team. After carefully watching the nine
children on your team, you can assign the value of having player i play position
j. (I am assuming that there are nine positions on a baseball team. This is still
true in the National League.) Denote this value aij . The objective is to �nd
an assignment - that is a position for each player on the team - such that each
player plays only one position and each position has only one player (this is,
there is only one pitcher and even the best player can play only one position)
that maximizes the total possible value. If we let xij be equal to 1 if player i is
assigned to position j and equal to zero otherwise, then the problem is to �nd
xij to solve:

max

nX

i=1

nX

j=1

xijaij

subject to
nX

i=1

xij = 1 for j = 1; : : : ; n

and
nX

j=1

xij = 1 for j = 1; : : : ; n:

Also, the variables xij must take on the values 0 or 1 (otherwise your assignment
would involve cutting people into pieces. This is very messy and usually does
not improve the performance of the baseball team.)
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The assignment model has a wide range of applications. You can imagine
matching women to men; workers to jobs; and so on. Variations of the model
are used to assign medical residents to hospital training programs. Complicated
versions of the model are used for scheduling (classes to classrooms or teams in
professional sports leagues).

3.2 The Hungarian Method

The assignment problem is a linear programming problem (with the additional
constraint that the variables take on the values zero and one). In general,
the additional constraint makes the problem quite diÆcult. However, like the
transportation problem, the assignment problem has the property that when
you solve the problem ignoring the integer constraints you still get integer so-
lutions. This means that the simplex algorithm solves assignment problems.
Assignment problems have so much special structure that there are simpler al-
gorithms available for solving them. In this section, I will describe one of the
algorithms, called the Hungarian method. I suspect that it is politically incor-
rect now to name a method after a country. I believe (but I did not verify)
that the name is a tribute to the Hungarian mathematicians that originally
discovered the algorithm.

I will illustrate the algorithm with an example. Consider the assignment
problem with the costs given in the array below.

1 2 3 4

A 10 7 8 2
B 1 5 6 3
C 2 10 3 9
D 4 3 2 3

This array describes an assignment problem with four people (labeled A, B,
C, and D) and four jobs (1, 2, 3, 4). The �rst person has a cost 10 if assigned
to the �rst job; a cost 7 if assigned to the second job; etc. The goal is to assign
people to jobs in a way that minimizes total cost.

The algorithm uses a simple observation and one trick. The observation is
that you can subtract a constant from any row or column without changing the
solution to the problem. Take the �rst row (the costs associated with A). All
of these numbers are at least two. Since you must assign person A to some job,
you must pay at least two no matter what. If you'd like, think of that as a �xed
cost and further costs as variable costs depending on the job assigned to the
�rst person. Hence if I reduce all of the entries in the �rst row by two, I do not
change the optimal assignment (I lower the total cost by two). Doing so leaves
this table:

1 2 3 4

A 8 5 6 0
B 1 5 6 3
C 2 10 3 9
D 4 3 2 3
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Again, the solution to the problem described by the second table is exactly
the same as the solution to the �rst problem. Continuing in this way I can
subtract the \�xed cost" for the other three people (rows) so that there is
guaranteed to be at least one zero in each row. I obtain:

1 2 3 4

A 8 5 6 0
B 0 4 5 2
C 0 8 1 7
D 2 1 0 1

I'm not done using this observation yet. Just as I can subtract a constant
from any row, I can subtract a constant from any column. Take the second
column. It says that no matter who you assign to the second job, it will cost at
least 1. Treat the 1 as a �xed cost and subtract it. Since it cannot be avoided
it does not inuence your solution (it does inuence the value of the solution).
Once you make this reduction you get:

1 2 3 4

A 8 4 6 0
B 0 3 5 2
C 0 7 1 7
D 2 0 0 1

This is the end of what we can do with the simple observation. Now it is
time to use the observation. The last table is simpler that the original one. It
has the property that there is a zero in every row and in every column. All of the
entries are non-negative. Since you want to �nd an assignment that minimizes
total cost, it would be ideal if you could �nd an assignment that only pairs
people to jobs when the associated cost is zero. Keep this in mind: The goal
of the computation is to write the table in a way that is equivalent (has the
same solution) as the original problem and has a zero-cost assignment. I have
just �nished the step in which you reduce the costs so that there is at least one
zero in every row and every column. The example demonstrates that this is not
enough.

If you think about the table, you will see that this is not possible. If you try
to come up with a zero cost assignment, you must assign A to 4 (the only zero
in the row for A is in the 4 column) and you must assign B to 1. However, the
only way to get a zero cost from C is to assign it to 1 as well. I can't do this,
because I have already assigned B to 1. If you have followed up until now, you
will be able to conclude that you should do the next best thing: assign C to job
3 (at the cost 1) and then D to 2. This yields the solution to the problem (A to
4; B to 1; C to 3; D to 2). It is not, however, an algorithm. We made the �nal
assignments by guessing. (You should be sure that this is the solution. I argued
that it is impossible to solve the problem at cost zero, but then demonstrated
that it is possible to solve the problem at the next best cost, one.)
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To turn the intuition into an algorithm, we need a trick. When I subtracted
a constant from each row, I did so in order to make the smallest element of each
row 0. What I would like to do is to continue to create new cheap assignments
without changing the essence of the problem. The trick is to eliminate the zeroes
in the table and then try to reduce the remaining values.

Here I repeat the past table:

1 2 3 4

A j8 4 6 0
B j0 3 5 2
C j0 7 1 7
D j2 0 0 1

I have crossed out two rows and one column. Doing so \covers up" all of
the zeros. Now look at the uncovered cells and �nd the smallest number (it
turns out to be one). If I subtracted one from each cell in the entire matrix,
then I would leave the basic problem unchanged (that is, I would not change the
optimal assignment) and I would \create" a new low cost route (C to 3). That
is the good news. The bad news is that some entries (covered by lines) would
become negative. This is bad news because if there are negative entries, there
is no guaranteed that a zero-cost assignment really minimizes cost. So reverse
the process by adding the same constant you subtracted from every entry (1) to
each row and column with a line through it. Doing so creates this cost matrix:

1 2 3 4

A 9 4 6 0
B 0 2 4 1
C 0 6 0 6
D 3 0 0 1

The beauty of this table is that it again is non-negative. It turns out that
using this matrix it is possible to make another minimum cost assignment. In
fact, using this table, we can come up with an optimal assignment with cost
zero. It agrees with our intuition (A to 4; B to 1; C to 3; D to 2). You can
go back to the original matrix of costs to �gure out what the total cost is:
9 = 2 + 1 + 3 + 3. Mechanically:

1. Subtract the minimum number from each zero to leave one zero element
in each row.

2. Subtract the minimum number from each column to leave one zero element
in each column.

3. Find the minimum number of lines that cross out all of the zeroes in the
table.

4. >From all of the entries that are not crossed out, �nd the minimum number
(it should be positive). If the minimum is zero, then you haven't crossed
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out enough entries. If all of the entries are crossed out, then you already
should be able to �nd a zero cost assignment.1

5. Subtract the number that you found in Step 4 from all of the entries that
haven't been crossed out. Do not change the entry in any cell that has
one line through it. Add the number to those entries that have two lines
through it.

6. Return to Step 1.

The �rst two steps are simple. They make the problem more transparent. The
third and fourth steps are general versions of the �rst two steps. What you do in
these steps is redistribute the costs in a way that does not change the solution.

Step 3 is the mysterious step. I ask you to cross out all of the zeroes in the
table using the minimum number of lines. I recommend that you do this by
�nding the row or column that has the most zeroes; cross that one out. Next,
cross out the row or column that has the most remaining uncrossed zeroes.
(There may be more than one way to do this.) Continue until you are done.

In Step 5 you do two things. First, you subtract the number you found in
Step 4 from every element of the table. As you know, this does not change
the solution. It does, however, create negative numbers. Hence you must do
something to restore non-negativity in the cost table (otherwise you cannot
apply the rule that you want to �nd a zero-cost assignment to solve the problem).
You do this by adding the constant back to every row or column that you draw
a line through. When all is done, you are left with a table that satis�es the
properties in Step 5. All entries that are not \lined" go down; the ones that
have one line through them stay the same (go down and then go up by the same
amount); the ones that have two lines (none will have three) go up (they go
down, but then they go up twice).

You are done when you reach a stage in which you can �nd a zero-cost
assignment. I won't provide a general procedure for doing this. It is natural to
start by looking to see if any row or column has exactly one zero in it. If it does,
you must include the assignment corresponding to that cell. Do so, cross out
the corresponding row and column, and solve the remaining (smaller) problem.
If each row and column contains at least two zeroes, make one assignment using
an arbitrary row and column (with a zero cell) and continue. The problems that
I ask you to solve will be small enough to solve by trial and error.

There is one other loose end. I have not demonstrated that the algorithm
must give you a solution in a �nite number of steps. The basic idea is that
each step lowers the cost of your assignment. Verifying this requires a small
argument. I will spare you.

Here is another example.

1You are done if you need to draw as many lines as there are rows or columns in the cost

table.

12



1 2 3 4 5

A 81 14 36 40 31
B 20 31 25 26 81
C 30 87 19 70 65
D 23 56 60 18 45
E 12 15 18 21 100

I will �rst subtract the minimum element in each row:

1 2 3 4 5

A 67 0 22 26 17
B 0 11 5 6 61
C 11 68 0 51 46
D 5 38 42 0 27
E 0 3 6 9 88

Next, I subtract the minimum element from each column (only the �fth
column has no zero in it).

1 2 3 4 5

A j67 0 j22 j26 0
B j0 11 j5 j6 44
C j11 68 j0 j51 29
D j5 38 j42 j0 10
E j0 3 j6 j9 71

This array does not permit a zero-cost solution (both 2 and 5 must be matched
with A). Hence we need to change it.

1 2 3 4 5

A 70 0 25 29 0
B 0 8 5 6 41
C 11 65 0 51 26
D 5 35 42 0 7
E 0 0 6 9 67

>From this array we can �nd a zero-cost assignment. The solution is A to
5; B to 1; C to 3; D to 4; and E to 2. Using the costs from the original table,
the cost of this plan is:

31 + 20 + 19 + 18 + 15 = 103:
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