
Linear Programming Notes VII

Sensitivity Analysis

1 Introduction

When you use a mathematical model to describe reality you must make ap-
proximations. The world is more complicated than the kinds of optimization
problems that we are able to solve. Linearity assumptions usually are significant
approximations. Another important approximation comes because you cannot
be sure of the data that you put into the model. Your knowledge of the relevant
technology may be imprecise, forcing you to approximate values in A, b, or c.
Moreover, information may change. Sensitivity analysis is a systematic study
of how sensitive (duh) solutions are to (small) changes in the data. The basic
idea is to be able to give answers to questions of the form:

1. If the objective function changes, how does the solution change?

2. If resources available change, how does the solution change?

3. If a constraint is added to the problem, how does the solution change?

One approach to these questions is to solve lots of linear programming problems.
For example, if you think that the price of your primary output will be between
$100 and $120 per unit, you can solve twenty different problems (one for each
whole number between $100 and $120).1 This method would work, but it is
inelegant and (for large problems) would involve a large amount of computation
time. (In fact, the computation time is cheap, and computing solutions to
similar problems is a standard technique for studying sensitivity in practice.)
The approach that I will describe in these notes takes full advantage of the
structure of LP programming problems and their solution. It turns out that you
can often figure out what happens in “nearby” linear programming problems
just by thinking and by examining the information provided by the simplex
algorithm. In this section, I will describe the sensitivity analysis information
provided in Excel computations. I will also try to give an intuition for the
results.

2 Intuition and Overview

Throughout these notes you should imagine that you must solve a linear pro-
gramming problem, but then you want to see how the answer changes if the
problem is changed. In every case, the results assume that only one thing
about the problem changes. That is, in sensitivity analysis you evaluate
what happens when only one parameter of the problem changes.

1OK, there are really 21 problems, but who is counting?
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To fix ideas, you may think about a particular LP, say the familiar example:

max 2x1 + 4x2 + 3x3 + x4

subject to 3x1 + x2 + x3 + 4x4 ≤ 12
x1 − 3x2 + 2x3 + 3x4 ≤ 7

2x1 + x2 + 3x3 − x4 ≤ 10
x ≥ 0

We know that the solution to this problem is x0 = 42, x1 = 0;x2 = 10.4;x3 =
0;x4 = .4.

2.1 Changing Objective Function

Suppose that you solve an LP and then wish to solve another problem with the
same constraints but a slightly different objective function. (I will always make
only one change in the problem at a time. So if I change the objective function,
not only will I hold the constraints fixed, but I will change only one coefficient
in the objective function.)

When you change the objective function it turns out that there are two cases
to consider. The first case is the change in a non-basic variable (a variable that
takes on the value zero in the solution). In the example, the relevant non-basic
variables are x1 and x3.

What happens to your solution if the coefficient of a non-basic variable
decreases? For example, suppose that the coefficient of x1 in the objective
function above was reduced from 2 to 1 (so that the objective function is:
maxx1 + 4x2 + 3x3 + x4). What has happened is this: You have taken a
variable that you didn’t want to use in the first place (you set x1 = 0) and then
made it less profitable (lowered its coefficient in the objective function). You
are still not going to use it. The solution does not change.

Observation If you lower the objective function coefficient of a non-basic
variable, then the solution does not change.

What if you raise the coefficient? Intuitively, raising it just a little bit should
not matter, but raising the coefficient a lot might induce you to change the value
of x in a way that makes x1 > 0. So, for a non-basic variable, you should expect
a solution to continue to be valid for a range of values for coefficients of non-
basic variables. The range should include all lower values for the coefficient and
some higher values. If the coefficient increases enough (and putting the variable
into the basis is feasible), then the solution changes.

What happens to your solution if the coefficient of a basic variable (like x2 or
x4 in the example) decreases? This situation differs from the previous one in that
you are using the basis variable in the first place. The change makes the variable
contribute less to profit. You should expect that a sufficiently large reduction
makes you want to change your solution (and lower the value the associated
variable). For example, if the coefficient of x2 in the objective function in the
example were 2 instead of 4 (so that the objective was max 2x1+2x2+3x3+x4),
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maybe you would want to set x2 = 0 instead of x2 = 10.4. On the other hand, a
small reduction in x2’s objective function coefficient would typically not cause
you to change your solution. In contrast to the case of the non-basic variable,
such a change will change the value of your objective function. You compute
the value by plugging in x into the objective function, if x2 = 10.4 and the
coefficient of x2 goes down from 4 to 2, then the contribution of the x2 term to
the value goes down from 41.6 to 20.8 (assuming that the solution remains the
same).

If the coefficient of a basic variable goes up, then your value goes up and you
still want to use the variable, but if it goes up enough, you may want to adjust x
so that it x2 is even possible. In many cases, this is possible by finding another
basis (and therefore another solution). So, intuitively, there should be a range
of values of the coefficient of the objective function (a range that includes the
original value) in which the solution of the problem does not change. Outside of
this range, the solution will change (to lower the value of the basic variable for
reductions and increase its value of increases in its objective function coefficient).
The value of the problem always changes when you change the coefficient of a
basic variable.

2.2 Changing a Right-Hand Side Constant

We discussed this topic when we talked about duality. I argued that dual prices
capture the effect of a change in the amounts of available resources. When
you changed the amount of resource in a non-binding constraint, then increases
never changed your solution. Small decreases also did not change anything, but
if you decreased the amount of resource enough to make the constraint binding,
your solution could change. (Note the similarity between this analysis and the
case of changing the coefficient of a non-basic variable in the objective function.

Changes in the right-hand side of binding constraints always change the
solution (the value of x must adjust to the new constraints). We saw earlier
that the dual variable associated with the constraint measures how much the
objective function will be influenced by the change.

2.3 Adding a Constraint

If you add a constraint to a problem, two things can happen. Your original
solution satisfies the constraint or it doesn’t. If it does, then you are finished. If
you had a solution before and the solution is still feasible for the new problem,
then you must still have a solution. If the original solution does not satisfy the
new constraint, then possibly the new problem is infeasible. If not, then there
is another solution. The value must go down. (Adding a constraint makes the
problem harder to satisfy, so you cannot possibly do better than before). If your
original solution satisfies your new constraint, then you can do as well as before.
If not, then you will do worse.2

2There is a rare case in which originally your problem has multiple solutions, but only
some of them satisfy the added constraint. In this case, which you need not worry about,
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2.4 Relationship to the Dual

The objective function coefficients correspond to the right-hand side constants
of resource constraints in the dual. The primal’s right-hand side constants
correspond to objective function coefficients in the dual. Hence the exercise of
changing the objective function’s coefficients is really the same as changing the
resource constraints in the dual. It is extremely useful to become comfortable
switching back and forth between primal and dual relationships.

3 Understanding Sensitivity Information Pro-
vided by Excel

Excel permits you to create a sensitivity report with any solved LP. The report
contains two tables, one associated with the variables and the other associated
with the constraints. In reading these notes, keep the information in the sensi-
tivity tables associated with the first simplex algorithm example nearby.

3.1 Sensitivity Information on Changing (or Adjustable)
Cells

The top table in the sensitivity report refers to the variables in the problem. The
first column (Cell) tells you the location of the variable in your spreadsheet; the
second column tells you its name (if you named the variable); the third column
tells you the final value; the fourth column is called the reduced cost; the fifth
column tells you the coefficient in the problem; the final two columns are labeled
“allowable increase” and “allowable decrease.” Reduced cost, allowable increase,
and allowable decrease are new terms. They need definitions.

The allowable increases and decreases are easier. I will discuss them first.
The allowable increase is the amount by which you can increase the coefficient
of the objective function without causing the optimal basis to change. The
allowable decrease is the amount by which you can decrease the coefficient of
the objective function without causing the optimal basis to change.

Take the first row of the table for the example. This row describes the
variable x1. The coefficient of x1 in the objective function is 2. The allowable
increase is 9, the allowable decrease is “1.00E+30,” which means 1030, which
really means ∞. This means that provided that the coefficient of x1 in the ob-
jective function is less than 11 = 2 + 9 = original value + allowable increase, the
basis does not change. Moreover, since x1 is a non-basic variable, when the basis
stays the same, the value of the problem stays the same too. The information in
this line confirms the intuition provided earlier and adds something new. What
is confirmed is that if you lower the objective coefficient of a non-basic variable,
then your solution does not change. (This means that the allowable decrease
will always be infinite for a non-basic variable.) The example also demonstrates

your value will stay the same.
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that increasing the coefficient of a non-basic variable may lead to a change in
basis. In the example, if you increase the coefficient of x1 from 2 to anything
greater than 9 (that is, if you add more than the allowable increase of 7 to the
coefficient), then you change the solution. The sensitivity table does not tell
you how the solution changes, but common sense suggests that x1 will take on a
positive value. Notice that the line associated with the other non-basic variable
of the example, x3, is remarkably similar. The objective function coefficient is
different (3 rather than 2), but the allowable increase and decrease are the same
as in the row for x1. It is a coincidence that the allowable increases are the same.
It is no coincidence that the allowable decrease is the same. We can conclude
that the solution of the problem does not change as long as the coefficient of x3

in the objective function is less than or equal to 10.
Consider now the basic variables. For x2 the allowable increase is infinite

while the allowable decrease is 2.69 (it is 2 9
13 to be exact). This means that

if the solution won’t change if you increase the coefficient of x2, but it will
change if you decrease the coefficient enough (that is, by more than 2.7). The
fact that your solution does not change no matter how much you increase x2’s
coefficient means that there is no way to make x2 > 10.4 and still satisfy the
constraints of the problem. The fact that your solution does change when you
increase x2’s coefficient by enough means that there is a feasible basis in which
x2 takes on a value lower than 10.4. (You knew that. Examine the original
basis for the problem.) The range for x4 is different. Line four of the sensitivity
table says that the solution of the problem does not change provided that the
coefficient of x4 in the objective function stays between 16 (allowable increase
15 plus objective function coefficient 1) and -4 (objective function coefficient
minus allowable decrease). That is, if you make x4 sufficiently more attractive,
then your solution will change to permit you to use more x4. If you make x4

sufficiently less attractive the solution will also change. This time to use less
x4. Even when the solution of the problem does not change, when you change
the coefficient of a basic variable the value of the problem will change. It will
change in a predictable way. Specifically, you can use the table to tell you
the solution of the LP when you take the original constraints and replace the
original objective function by

max 2x1 + 6x2 + 3x3 + x4

(that is, you change the coefficient of x2 from 4 to 6), then the solution to the
problem remains the same. The value of the solution changes because now you
multiply the 10.4 units of x2 by 6 instead of 4. The objective function therefore
goes up by 20.8.

The reduced cost of a variable is the smallest change in the objective func-
tion coefficient needed to arrive at a solution in which the variable takes on a
positive value when you solve the problem. This is a mouthful. Fortunately,
reduced costs are redundant information. The reduced cost is the negative of
the allowable increase for non-basic variables (that is, if you change the coeffi-
cient of x1 by −7, then you arrive at a problem in which x1 takes on a positive
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value in the solution). This is the same as saying that the allowable increase in
the coefficient is 7. The reduced cost of a basic variable is always zero (because
you need not change the objective function at all to make the variable positive).
Neglecting rare cases in which a basis variable takes on the value 0 in a solution,
you can figure out reduced costs from the other information in the table: If the
final value is positive, then the reduced cost is zero. If the final value is zero,
then the reduced cost is negative one times the allowable increase. Remarkably,
the reduced cost of a variable is also the amount of slack in the dual constraint
associated with the variable. With this interpretation, complementary slackness
implies that if a variable that takes on a positive value in the solution, then its
reduced cost is zero.

3.2 Sensitivity Information on Constraints

The second sensitivity table discusses the constraints. The cell column identifies
the location of the left-hand side of a constraint; the name column gives its name
(if any); the final value is the value of the left-hand side when you plug in the final
values for the variables; the shadow price is the dual variable associated with
the constraint; the constraint R.H. side is the right hand side of the constraint;
allowable increase tells you by how much you can increase the right-hand side
of the constraint without changing the basis; the allowable decrease tells you
by how much you can decrease the right-hand side of the constraint without
changing the basis.

Complementary Slackness guarantees a relationship between the columns in
the constraint table. The difference between the “Constraint Right-Hand Side”
column and the “Final Value” column is the slack. (So, from the table, the slack
for the three constraints is 0 (= 12− 12), 37 (= 7− (−30)), and 0 (= 10− 10),
respectively. We know from Complementary Slackness that if there is slack in
the constraint then the associated dual variable is zero. Hence CS tells us that
the second dual variable must be zero.

Like the case of changes in the variables, you can figure out information on
allowable changes from other information in the table. The allowable increase
and decrease of non-binding variables can be computed knowing final value and
right-hand side constant. If a constraint is not binding, then adding more of
the resource is not going to change your solution. Hence the allowable increase
of a resource is infinite for a non-binding constraint. (A nearly equivalent, and
also true, statement is that the allowable increase of a resource is infinite for a
constraint with slack.) In the example, this explains why the allowable increase
of the second constraint is infinite. One other quantity is also no surprise.
The allowable decrease of a non-binding constraint is equal to the slack in the
constraint. Hence the allowable decrease in the second constraint is 37. This
means that if you decrease the right-hand side of the second constraint from its
original value (7) to anything greater than −30 you do not change the optimal
basis. In fact, the only part of the solution that changes when you do this is that
the value of the slack variable for this constraint changes. In this paragraph, the
point is only this: If you solve an LP and find that a constraint is not binding,
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then you can remove all of the unused (slack) portion of the resource associated
with this constraint and not change the solution to the problem.

The allowable increases and decreases for constraints that have no slack are
more complicated. Consider the first constraint. The information in the table
says that if the right-hand side of the first constraint is between 10 (original
value 12 minus allowable decrease 2) and infinity, then the basis of the problem
does not change. What these columns do not say is that the solution of the
problem does change. Saying that the basis does not change means that the
variables that were zero in the original solution continue to be zero in the new
problem (with the right-hand side of the constraint changed). However, when
the amount of available resource changes, necessarily the values of the other
variables change. (You can think about this in many ways. Go back to a
standard example like the diet problem. If your diet provides exactly the right
amount of Vitamin C, but then for some reason you learn that you need more
Vitamin C. You will certainly change what you eat and (if you aren’t getting
your Vitamin C through pills supplying pure Vitamin C) in order to do so you
probably will need to change the composition of your diet - a little more of some
foods and perhaps less of others. I am saying that (within the allowable range)
you will not change the foods that you eat in positive amounts. That is, if you
ate only spinach and oranges and bagels before, then you will only eat these
things (but in different quantities) after the change. Another thing that you
can do is simply re-solve the LP with a different right-hand side constant and
compare the result.

To finish the discussion, consider the third constraint in the example. The
values for the allowable increase and allowable decrease guarantee that the basis
that is optimal for the original problem (when the right-hand side of the third
constraint is equal to 10) remains obtain provided that the right-hand side
constant in this constraint is between -2.3333 and 12. Here is a way to think
about this range. Suppose that your LP involves four production processes
and uses three basic ingredients. Call the ingredients land, labor, and capital.
The outputs vary use different combinations of the ingredients. Maybe they
are growing fruit (using lots of land and labor), cleaning bathrooms (using
lots of labor), making cars (using lots of labor and and a bit of capital), and
making computers (using lots of capital). For the initial specification of available
resources, you find that your want to grow fruit and make cars. If you get an
increase in the amount of capital, you may wish to shift into building computers
instead of cars. If you experience a decrease in the amount of capital, you may
wish to shift away from building cars and into cleaning bathrooms instead.

As always when dealing with duality relationships, the the “Adjustable
Cells” table and the “Constraints” table really provide the same information.
Dual variables correspond to primal constraints. Primal variables correspond
to dual constraints. Hence, the “Adjustable Cells” table tells you how sensi-
tive primal variables and dual constraints are to changes in the primal objective
function. The “Constraints” table tells you how sensitive dual variables and pri-
mal constraints are to changes in the dual objective function (right-hand side
constants in the primal).
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4 Example

In this section I will present another formulation example and discuss the solu-
tion and sensitivity results.

Imagine a furniture company that makes tables and chairs. A table requires
40 board feet of wood and a chair requires 30 board feet of wood. Wood costs
$1 per board foot and 40,000 board feet of wood are available. It takes 2 hours
of skilled labor to make an unfinished table or an unfinished chair. Three more
hours of labor will turn an unfinished table into a finished table; two more hours
of skilled labor will turn an unfinished chair into a finished chair. There are 6000
hours of skilled labor available. (Assume that you do not need to pay for this
labor.) The prices of output are given in the table below:

Product Price
Unfinished Table $70
Finished Table $140

Unfinished Chair $60
Finished Chair $110

We want to formulate an LP that describes the production plans that the firm
can use to maximize its profits.

The relevant variables are the number of finished and unfinished tables, I
will call them TF and TU , and the number of finished and unfinished chairs, CF

and CU . The revenue is (using the table):

70TU + 140TF + 60CU + 110CF ,

, while the cost is 40TU + 40TF + 30CU + 30CF (because lumber costs $1 per
board foot).

The constraints are:

1. 40TU + 40TF + 30CU + 30CF ≤ 40000.

2. 2TU + 5TF + 2CU + 4CF ≤ 6000.

The first constraint says that the amount of lumber used is no more than what
is available. The second constraint states that the amount of labor used is no
more than what is available.

Excel finds the answer to the problem to be to construct only finished chairs
(1333.333 - I’m not sure what it means to make a sell 1

3 chair, but let’s assume
that this is possible). The profit is $106,666.67.

Here are some sensitivity questions.

1. What would happen if the price of unfinished chairs went up? Currently
they sell for $60. Because the allowable increase in the coefficient is $50,
it would not be profitable to produce them even if they sold for the same
amount as finished chairs. If the price of unfinished chairs went down,
then certainly you wouldn’t change your solution.
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2. What would happen if the price of unfinished tables went up?

Here something apparently absurd happens. The allowable increase is
greater than 70. That is, even if you could sell unfinished tables for more
than finished tables, you would not want to sell them. How could this
be? The answer is that at current prices you don’t want to sell finished
tables. Hence it is not enough to make unfinished tables more profitable
than finished tables, you must make them more profitable than finished
chairs. Doing so requires an even greater increase in the price.

3. What if the price of finished chairs fell to $100? This change would alter
your production plan, since this would involve a $10 decrease in the price
of finished chairs and the allowable decrease is only $5. In order to figure
out what happens, you need to re-solve the problem. It turns out that the
best thing to do is specialize in finished tables, producing 1000 and earning
$100,000. Notice that if you continued with the old production plan your
profit would be 70× 1333 1

3 = 93, 333 1
3 , so the change in production plan

was worth more than $6,000.

4. How would profit change if lumber supplies changed? The shadow price
of the lumber constraint is $2.67. The range of values for which the basis
remains unchanged is 0 to 45,000. This means that if the lumber supply
went up by 5000, then you would continue to specialize in finished chairs,
and your profit would go up by $2.67×5000 = $10, 333. At this point you
presumably run out of labor and want to reoptimize. If lumber supply
decreased, then your profit would decrease, but you would still specialize
in finished chairs.

5. How much would you be willing to pay an additional carpenter? Skilled
labor is not worth anything to you. You are not using the labor than you
have. Hence, you would pay nothing for additional workers.

6. Suppose that industrial regulations complicate the finishing process, so
that it takes one extra hour per chair or table to turn an unfinished product
into a finished one. How would this change your plans?

You cannot read your answer off the sensitivity table, but a bit of common
sense tells you something. The change cannot make you better off. On
the other hand, to produce 1,333.33 finished chairs you’ll need 1,333.33
extra hours of labor. You do not have that available. So the change will
change your profit. Using Excel, it turns out that it becomes optimal to
specialize in finished tables, producing 1000 of them and earning $100,000.
(This problem differs from the original one because the amount of labor
to create a finished product increases by one unit.)

7. The owner of the firm comes up with a design for a beautiful hand-crafted
cabinet. Each cabinet requires 250 hours of labor (this is 6 weeks of full
time work) and uses 50 board feet of lumber. Suppose that the company
can sell a cabinet for $200, would it be worthwhile? You could solve this
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problem by changing the problem and adding an additional variable and
an additional constraint. Note that the coefficient of cabinets in the objec-
tive function is 150, which reflects the sale price minus the cost of lumber.
I did the computation. The final value increased to 106,802.7211. The
solution involved reducing the output of unfinished chairs to 1319.727891
and increasing the output of cabinets to 8.163265306. (Again, please tol-
erate the fractions.) You could not have guessed these figures in advance,
but you could figure out that making cabinets was a good idea. The way
to do this is to value the inputs to the production of cabinets. Cabinets
require labor, but labor has a shadow price of zero. They also require lum-
ber. The shadow price of lumber is $2.67, which means that each unit of
lumber adds $2.67 to profit. Hence 50 board feet of lumber would reduce
profit by $133.50. Since this is less than the price at which you can sell
cabinets (minus the cost of lumber), you are better off using your resources
to build cabinets. (You can check that the increase in profit associated
with making cabinets is $16.50, the added profit per unit, times the num-
ber of cabinets that you actually produce.) I attached a sheet where I did
the same computation assuming that the price of cabinets was $150. In
this case, the additional option does not lead to cabinet production.
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