Linear Programming Notes V
Problem Transformations

1 Introduction

Any linear programming problem can be rewritten in either of two standard
forms. In the first form, the objective is to maximize, the material constraints
are all of the form: “linear expression < constant” (a; - © < b;), and all variables
are constrained to be non-negative. In symbols, this form is:

max ¢ - x subject to Az < b,z > 0.

In the second form, the objective is to maximize, the material constraints
are all of the form: “linear expression = constant” (a; - = b;), and all variables
are constrained to be non-negative. In symbols, this form is:

max ¢ - x subject to Az =0b,z > 0.

In this formulation (but not the first) we can take b > 0.

Note: The ¢, A, b in the first problem are not the same as the ¢, A, b in the
second problem.

In order to rewrite the problem, I need to introduce a small number of
transformations. I'll explain them in these notes.

2 Equivalent Representations

When I say that I can rewrite a linear programming problem, I mean that I can
find a representation that contains exactly the same information. For example,
the expression 2z = 8 is equivalent to the expression x = 4. They both describe
the same fact about z. In general, an equivalent representation of a linear
programming problem will be one that contains exactly the same information
as the original problem. Solving one will immediately give you the solution to
the other.

When I claim that I can write any linear programming problem in a standard
form, I need to demonstrate that I can make several kinds of transformation:
change a minimization problem to a maximization problem; replace a constraint
of the form (a; - * < b;) by an equation or equations; replace a constraint of the
form (a; - > b;) by an equation or equations; replace a constraint of the form
(a; -z = b;) by an inequality or inequalities; replace a variable that is not ex-
plicitly constrained to be non-negative by a variable or variables so constrained.
If I can do all that, then I can write any problem in either of the desired forms.



3 Rewriting the Objective Function

The objective will be either to maximize or to minimize. If you start with
a maximization problem, then there is nothing to change. If you start with a
minimization problem, say min f(x) subject to € S, then an equivalent maxi-
mization problem is max — f(x) subject to € S. That is, minimizing — f is the
same as maximizing f. This trick is completely general (that is, it is not limited
to LPs). Any solution to the minimization problem will be a solution to the
maximization problem and conversely. (Note that the value of the maximization
problem will be —1 times the value of the minimization problem.)

In summary: to change a max problem to a min problem, just multiply the
objective function by —1.

4 Rewriting a constraint of the form (a; - x < b;)
To transform this constraint into an equation, add a non-negative slack variable:
a;-x <b;

is equivalent to
a; -x+s; =b; and s; > 0.

We have seen this trick before. If x satisfies the inequality, then s; = b; — a; - © > 0.
Conversely, if z and s; satisfy the expressions in the second line, then the first
line must be true. Hence the two expressions are equivalent. Note that by
multiplying both sides of the expression a; - © + s; = b; by —1 we can guarantee
that the right-hand side is non-negative.

5 Rewriting a constraint of the form (a; -z > b;)

To transform this constraint into an equation, subtract a non-negative surplus
variable:

is equivalent to
a;-x —s; =b; and s; > 0.

The reasoning is exactly like the case of the slack variable.
To transform this constraint into an inequality pointed in the other direction,
multiply both sides by —1.

Q; - T Z bi
is equivalent to

—a; T+ S8; S 7bi.



6 Rewriting a constraint of the form (a; - z = b;)

To transform an equation into inequalities, note that w = z is exactly that same
as w > z and w < z. That is, the one way for two numbers to be equal is for
one to be both less than or equal to and greater than or equal to the other. It
follows that

a;-r=2"b;
is equivalent to
a;-x <b;and a; - x > b;.
By the last section, the second line is equivalent to:

a;-xr <b;and —a; - -x < —b;.

7 Guaranteeing that All Variables are Explicitly
Constrained to be Non-Negative

Most of the problems that we look at requires the variables to be non-negative.
The constraint arises naturally in many applications, but it is not essential. The
standard way of writing linear programming problems imposes this condition.
The section shows that there is no loss in generality in imposing the restriction.
That is, if you are thinking about a linear programming problem, then I can
think of a mathematically equivalent problem in which all of the variables must
be non-negative.

The transformation uses a simple trick. You replace an unconstrained vari-
able x; by two variables u; and v;. Whenever you see x; in the problem, you
replace it with u; — v;. Furthermore, you impose the constraint that u;,v; > 0.
When you carry out the substitution, you replace z; by non-negative variables.
You don’t change the problem. Any value that x; can take, can be expressed as
a difference (in fact, there are infinitely many ways to express it). Specifically,
if z; > 0, then you can let u; = z; and v; = 0; if ; < 0, then you can let
u; =0 and v; = —z;.

8 What Is the Point?

The previous sections simply introduce accounting tricks. There is no substance
to the transformations. If you put the tricks together, they support the claim
that I made in the beginning of the notes. Who cares? The form of the problem
with equality constraints and non-negative variables is the form that the simplex
algorithm uses. The inequality constraint form (with non-negative variables) is
the form used in for the duality theorem.



Warnings: These transformations really are transformations. If you start
with a problem in which x; is not constrained to be non-negative, but act as
if it is so constrained, then you may not get the right answer (you'll be wrong
if the solution requires that z; take a negative value). If you treat an equality
constraint like an inequality constraint, then you’ll get the wrong answer (unless
the constraint binds at the solution). Similarly, you can’t treat as inequality
constraint as an equation in general. The transformations involve creating a new
variable or constraint to compensate for the changing inequalities to equations,
equations to inequalities, or whatever it is you do.

9 Example

You know all the ideas. Let me show you how they work. Start with the
problem:

min 4, + x9
subject to —2x1 4+ x4 > 6
r9 + X3 = 4
X Z —4
X9 I3 Z 0

and let’s write it in either of the two standard forms.
First, to get it into the form:

max ¢ - x subject to Az < b,z >0
change the objective to maximize by multiplying by —1:
max —4x, — To.
Next, change the constraints. Multiply the first constraint by —1:
2z1 — 22 < —6;
replace the second constraint by two inequalities:
ro+x3<4and —xzy— a3 < —4;
and replace the third constraint by the inequality:
—x1 < 4.
Finally, replace the unconstrained variable x1 everywhere by u; —v; and add

the constraints that ui,v; > 0. Putting these together leads to the reformulated
problem



max —4du; + 4dvy — a9

subject to 2u; — 21 — X9 < -6
2 + w3 < 4

— X2 — I3 S —4

—u; + U1 é 4

U1 U1 To I3 Z 0

In notation, this problem is in the form: maxc -z subject to Ax < b,z >0
with ¢ = (—4,4,-1,0),b = (—6,4,—4,4) and

2 -2 -1 0
0 0 1 1
0 0 -1 -1
-1 1 0 0

A:

Next, to put the problem into the form: maxc- x subject to Az = b,z > 0,
change the objective function to max as above; replace x; by u; — v; as above;
replace the first constraint with

—2uq + 2v1 + 22 — 51 = 6 and s; > 0;
leave the second constraint alone; and replace the third constraint with
—uy1 + vy —|—53 =4.

The problem then becomes

max —4uy + 4dvy — x9
subject to —2u; + 2v; + 2o — 8 = 6
To + x3 = 4
—-up  + U1 + s3 = 4
U1 U1 xTo I3 S1 S3 Z 0

In notation, this problem is in the form: maxc -z subject to Az =b,z >0
with ¢ = (—4,4,-1,0,0,0),b = (6,4,4) and

-2
A= 0
-1

1

o= \]

1
1
0

O = O

0
0

_ o O

In the two different transformations, the A, b, and ¢ used in the representa-
tion differ. Indeed, the two descriptions of the problem have different numbers
of variables and different numbers of constraints. It does not matter. If you
solve either problem, you can substitute back to find values for the original
variables, x1, ..., 24, and the original objective function.



Computer programs that solve linear programming problems (like Excel) are
smart enough to perform these transformations automatically. That is, you need
not perform any transformations of this sort in order to enter an LP into Excel.
The program asks you whether you are minimizing or maximizing, whether
each constraint is an inequality or an equation, and whether the variables are
constrained to be nonnegative.



