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Abstract

Affine term structure models have been used to address a wide range of questions in

macroeconomics and finance. This paper investigates a number of their testable impli-

cations which have not previously been explored. We show that the assumption that

certain specified yields are priced without error is testable, and find that the implied

measurement or specification error exhibits serial correlation in all of the possible for-

mulations investigated here. We further find that the predictions of these models for

the average levels of different interest rates are inconsistent with the observed data, and

propose a more general specification that is not rejected by the data.
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1 Introduction.

Affine term structure models have become a fundamental tool for empirical research in macroe-

conomics and finance on the term structure of interest rates. The appeal of the framework

comes from the closed-form solutions it provides for bond and bond option prices under the

assumption that there are no possibilities for risk-free arbitrage (Duffie, Pan and Singleton,

2000). ATSM have been used for purposes such as measuring risk premia (Duffee, 2002;

Cochrane and Piazzesi, 2009), studying the effect of macroeconomic developments on the

term structure (Ang and Piazzesi, 2003; Beechey and Wright, 2009; Bauer, 2011), the role

of monetary policy (Rudebusch and Wu, 2008), explaining the bond-yield “conundrum” of

2004-2005 (Rudebusch, Swanson and Wu, 2006), inferring market expectations of inflation

(Christensen, Lopez and Rudebusch, 2010), and evaluating the effects of the extraordinary

central bank interventions during the financial crisis (Christensen, Lopez and Rudebusch,

2009; Smith, 2010; Hamilton and Wu, 2012a). Gürkaynak and Wright (2012) and Rudebusch

(2010) provide useful surveys of this literature.

Clive Granger’s primary interest was not in a model’s theoretical elegance, but instead

in its practical relevance. He would always want to know whether the framework generates

useful forecasts, and whether the properties of those forecasts could be used to test some of the

model’s implicit assumptions. To be sure, forecasting interest rates has been one important

goal for many users of ATSM. Improved forecasts are cited by Ang and Piazzesi (2003)

as an important reason for including observed macroeconomic factors in the model, and by

Christensen, Diebold and Rudebusch (2011) as an advantage of their dynamic Nelson-Siegel

specification.1 And comparing the fit of a broad class of different models has been attempted

by Dai and Singleton (2000), Hong and Li (2005) and Pericoli and Taboga (2008). However, as

implemented by these researchers, making these comparisons is an arduous process requiring

numerical estimation of highly nonlinear models on ill-behaved likelihood surfaces. As a

result, previous researchers have overlooked some of the basic empirical implications of these

models that are quite easy to test empirically.

In a companion paper (Hamilton and Wu, 2012b), we note that an important subset of

ATSM imply a restricted vector autoregression in observable variables. These restrictions

take two forms: (1) nonlinear restrictions on the VAR coefficients implied by the model, and

(2) blocks of zero coefficients. In this paper we test the first class of restrictions using the

χ2 test developed by Hamilton and Wu (2012b), and note that the second class of restrictions

often take the form of simple and easily testable Granger-causality restrictions, and indeed

1On the other hand, Duffee (2011a) found that the ATSM cross-section restrictions don’t and shouldn’t
help with forecasting.
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provide an excellent illustration of Granger’s (1969) proposal that testing such forecasting

implications can often be a very useful tool for evaluating a model.

We apply these tests to the data and find that the assumptions that are routinely invoked

in these models can in fact be routinely rejected. We show that the assumption that certain

specified yields are priced without error is testable, and find that the implied measurement

or specification error exhibits serial correlation in all of the possible formulations investigated

here.2 We further demonstrate that the predictions of these models for the average levels of

different interest rates are inconsistent with the observed data. We find that a specification

in which (1) the term structure factors are measured by the first three principal components

of the set of observed yields , (2) predictions for average levels of interest rates are relaxed,

and (3) measurement error is serially correlated, can be reconciled with the observed time

series behavior of interest rates. We illustrate how Granger-causality tests can also be used

to determine the specification of complicated macro-finance term structure models. Such

tests suggest that a strong premium should be placed on parsimony.

2 Affine term structure models.

Let Pnt denote the price at time t of a pure-discount bond that is certain to be worth $1

at time t + n. A broad class of finance models posit that Pnt = Et(Mt+1Pn−1,t+1) for some

pricing kernel Mt+1. Affine term structure models suppose that the price Pnt depends on a

possibly unobserved (m × 1) vector of factors Ft that follows a Gaussian first-order vector

autoregression,

Ft+1 = c+ ρFt + Σut+1 (1)

with ut an i.i.d. sequence of N(0, Im) vectors. The second component of ATSM is the

assumption that the pricing kernel is characterized by Mt+1 = exp
(
−rt − 1

2
λ′tλt − λ′tut+1

)
for

rt the risk-free one-period interest rate and λt an (m× 1) vector that characterizes investors’

attitudes toward risk; λt = 0 would correspond to risk neutrality. Both this risk-pricing

vector and the risk-free rate are postulated to be affine functions of the vector of factors:

λt = λ + ΛFt and rt = δ0 + δ′1Ft. The risk-free rate rt is simply the negative of the log of the

price of a one-period bond,

rt = log(P0t/P1t) = log(1)− log(P1t) = −p1t,
2Duffee (2011a) has also noted the substantial serial correlation of measurement errors.
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for pnt = log(Pnt). After a little algebra (e.g., Ang and Piazzesi, 2003), the above equations

imply that

pnt = an + b
′
nFt

where the values of bn and an can be calculated recursively from

b
′
n = b

′
n−1ρ

Q − δ′1 (2)

ρQ = ρ− ΣΛ (3)

an = an−1 + b
′
n−1c

Q + (1/2)b
′
n−1ΣΣ′bn−1 − δ0 (4)

cQ = c− Σλ (5)

starting from b1 = −δ1 and a1 = −δ0. The implied yield on an n-period bond, ynt = −n−1pnt,
is then characterized by

ynt = an + b′nFt (6)

bn = −n−1bn (7)

an = −n−1an. (8)

Suppose we observe a set of N different yields, Yt = (yn1,t, yn2,t, ..., ynN ,t)
′, and collect (6)

into a vector system

Yt = A+BFt (9)

for A an (N × 1) vector whose ith element is ani
and B an (N ×m) matrix whose ith row

is b′ni
. If m < N , then the model (9) is instantly refuted, because it implies that a regression

of any one of the yields on m others should have an R2 of unity. Although such an R2 is

not actually unity, it can be quite high, and this observation motivates the claim that a small

number m of factors might be used to give an excellent prediction of any bond yield. One

common approach is to suppose that there are m linear combinations of Yt for which (6) holds

exactly,

Y1t = A1 +B1Ft (10)

where the (m×1) vector Y1t is given by Y1t = H1Yt for H1 an (m×N) matrix, A1 = H1A, and

B1 = H1B. The matrix H1 might simply select a subset of m particular yields (e.g., Chen and

Scott, 1993; Ang and Piazzesi, 2003), or alternatively could be interpreted as the matrix that

defines the first m principal components of Yt (e.g., Joslin, Singleton and Zhu, 2011). The
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remaining Ne = N −m yields are assumed to be priced with error,

Y2t = A2 +B2Ft + u2t (11)

for u2t an (Ne × 1) vector of measurement or specification errors, Y2t = H2Yt, A2 = H2A,

and B2 = H2B for H2 (Ne × N). The measurement errors have invariably been regarded as

serially and mutually independent, u2t ∼ i.i.d. N(0,ΣeΣ
′
e) for Σe a diagonal matrix, and with

the sequence {u2t} assumed to be independent of the factor innovations {ut} in (1).

3 Testable implications when only yield data are used.

In this section we consider the popular class of models in which the entire vector of factors Ft

is treated as observed only through the yields themselves. We first describe the implications

for the underlying VAR in Yt, and then investigate tests of the various restrictions.

3.1 VAR representation.

As in Hamilton and Wu (2012b), we premultiply (1) by B1,

B1Ft+1 = B1c+B1ρB
−1
1 B1Ft +B1Σut+1.

Adding A1 to both sides and using (10),

Y1,t+1 = A∗1 + φ∗11Y1t + u1,t+1 (12)

A∗1 = A1 +B1c−B1ρB
−1
1 A1 (13)

φ∗11 = B1ρB
−1
1 (14)

u1,t+1 = B1Σut+1. (15)

Similar operations on (11) produce

Y2t = A∗2 + φ∗21Y1t + u2t (16)

A∗2 = A2 −B2B
−1
1 A1 (17)

φ∗21 = B2B
−1
1 , (18)

for u2t the identical error as in (11).
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Under the assumptions made above for ut and u2t, the error u1,t+1 in (12) is uncorrelated

with {Yt, Yt−1, ...}, and u2t in (16) is uncorrelated with {Yt−1, Yt−2, ...}. Hence although the

nonlinear recursions that define the ATSM are quite complicated, the fundamental structure

is very simple– the ATSM is simply a vector autoregression for (Y ′1t, Y
′
2t)
′ that is subject to a

variety of restrictions. A number of these restrictions are quite simple to test without using

the core equations (2) and (4), as we now discuss.

3.2 Granger-causality tests: Y1.

Equations (12) and (16) are a special case of a VAR(1), whose first block in the absence of

restrictions would take the form

Y1t = A∗1 + φ∗11Y1,t−1 + φ∗12Y2,t−1 + u1t. (19)

In other words, the ATSM implies that the yields priced with error Y2 should not Granger-

cause the yields priced without error Y1. Since the coefficients of this unrestricted VAR can

be estimated by OLS equation by equation, this is an extremely straightforward hypothesis

to test.

We test this implication using end-of-month constant-maturity Treasury yields taken from

the daily FRED database of the Federal Reserve Bank of St. Louis, using maturities of 3

months, 6 months, 1 year, 2 years, 3 years, 5 years, 7 years and 10 years. All the in-sample

estimation was based on the subsample from 1983:M1 to 2002:M7, with the subsequent 60

months (2002:M8 to 2007:M7) reserved for out-of-sample exercises.3

For our baseline example, we use m = 3 factors and suppose that 3 yields– namely the

6-month, 2-year, and 10-year yields– are priced without error (Y1t = (y6t, y24t, y120t)
′), while

the other yields are priced with error (Y2t = (y3t, y12t, y36t, y60t, y84t)
′). The first row of Table 1

reports tests for Granger-causality from Y2 to Y1 for this specification. An F -test of the null

hypothesis that the first row of φ∗12 is zero (in other words, that Y2,t−1 does not help predict

the 6-month yield) leads to strong rejection with a p-value of 0.006. Analogous tests that the

second and third rows of φ∗12 are zero (Y2,t−1 does not predict y24,t or y120,t) fail to reject with

p-values of 0.198 and 0.204. A likelihood ratio test with Sims’ small-sample correction4 of the

3We have also repeated many of the calculations reported below using the alternative measures of interest
rates developed by Gürkaynak et al. (2007) and came up with broadly similar results.

4Let û1t denote the vector of OLS residuals from estimation of (19) over t = 1, ..., T and Ω̂1 =

T−1
∑T

t=1 û1tû
′
1t. Let ũ1t denote the vector of OLS residuals when Y2,t−1 is dropped from the equation

with Ω̂0 = T−1
∑T

t=1 ũ1tũ
′
1t. Then as in Hamilton (1994), equation [11.1.34], (T −N − 1)(log

∣∣∣Ω̂0

∣∣∣− log
∣∣∣Ω̂1

∣∣∣)
is approximately χ2(m(N − m)) for N the dimension of Yt and m the dimension of Y1t. All system-wide
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null hypothesis that all 15 elements of φ∗12 are zero leads to very clear rejection (last column

of row 1).

This test makes apparent that the specification of which yields are assumed to be priced

without error is not an arbitrary normalization, but instead is a testable restriction. If Y2t is

priced with error, it should contain no information about the factors beyond that contained

in Y1t, and therefore should not help to predict Y1,t+1. If some maturities are more helpful

than others for forecasting, those are the ones we’d want to include in Y1t for the ATSM to

be consistent with the data. In the subsequent rows of Table 1 we report analogous F -tests

and likelihood ratio tests for each of the
(
8
3

)
= 56 possible choices we could have made for

the 3 yields to include in Y1t. It turns out that every single possible specification of Y1t is

inconsistent with the data according to the likelihood ratio test.

Granger (1980) expressed the view that one wants with these tests to consider true pre-

dictive power, which may be different from the ability to fit a given observed sample of data.

For this reason, Granger stressed the importance of out-of-sample evaluation. In this spirit,

we estimated (19) for t = 1, 2, .., T and used the resulting coefficients and values of Y1T and

Y2T to predict the value of Y1,T+1, whose ith element we denote ŷi,T+1 and associated forecast

error ε̂i,T+1. We also estimated the restricted regressions with φ∗12 = 0 to calculate a restricted

forecast ŷ∗i,T+1 and error ε̂∗i,T+1. We then increased the sample size by one to generate ŷi,T+2

and ŷ∗i,T+2, and repeated this process for T +1, T +2, ..., T +R. The columns in Table 2 report

the percent improvement in post-sample mean squared error,

R−1
∑R

r=1

[(
ε̂∗i,T+r

)2 − (ε̂i,T+r)
2
]

R−1
∑R

r=1

[(
ε̂∗i,T+r

)2]
for i corresponding to the first, second, or third element of Y1t for each of the 56 possible choices

of Y1t. For example, inclusion of Y2,t−1 leads to a 25% out-of-sample improvement in forecasting

the 6-month yield and an 8% improvement for the 2-year yield for Y1t = (y6t, y24t, y120t)
′.

Clark and West (2007) discussed the statistical significance of such post-sample compar-

isons, noting that even if the null hypothesis is false (that is, even if Y2,t−1 actually is helpful in

predicting Y1t) we might expect the above statistic to be negative as a result of sampling un-

certainty. They proposed a test statistic that corrects for this which, while not asymptotically

likelihood ratio tests reported in this paper use this small-sample correction, with the exception of Table 9, in
which there are differing degrees of freedom across equations.
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Normal, seems to be reasonably well approximated by the N(0, 1) distribution,

C =

√
Rs√

R−1
∑R

r=1(sT+r − s)2

for s = R−1
∑R

r=1 sT+r and sT+r =
(
ε̂∗i,T+r

)2 − (ε̂i,T+r)
2 +

(
ŷ∗i,T+r − ŷi,T+r

)2
. Table 2 records

whether the Clark-West statistic leads to rejection based on the N(0, 1) approximation to a

one-sided test.5 For 51 out of the 56 possible specifications of Y1t, the out-of-sample evidence

that Y2,t−1 helps forecast Y1t is statistically significant at the 5% level for at least one of the

elements of Y1t.
6

One might think that perhaps the issue is that there may be more than 3 factors in Y1t. We

repeated the in-sample tests of whether Y2 Granger-causes Y1 for each of the
(
8
4

)
= 70 possible

ways that a 4-dimensional vector Y1t could be chosen from Yt. For 66 of these possibilities,

the likelihood ratio test leads to rejection, and the 4 that are not rejected by this test turn

out to be inconsistent with the Y2 Granger-causality tests reported in the next subsection. If

we let Y1t be a 5-dimensional vector, 52 of the 56 possibilities are rejected, and again the 4

that are not rejected here will be rejected by the tests below. Twenty-three of the 28 possible

choices for a 6-dimensional factor vector are rejected. And even if we say that 7 of the 8 yields

in Yt are themselves term-structure factors, for 5 of the 8 possible choices, we find that the

one omitted yield Granger-causes the remaining 7.

Even if no single choice for the yields to include in Y1t is consistent with the data, is there

some other linear combination of Yt that satisfies the Granger-causality restriction? One

popular choice is to use the first 3 principal components of Yt as the value for Y1t, that is,

use Y1t = (z1t, z2t, z3t)
′ for zit = h′iYt and hi the eigenvector associated with the ith largest

eigenvalue of

T−1
T∑
t=1

ỸtỸ
′
t (20)

where elements of Ỹt are obtained by subtracting the mean of the corresponding elements of

Yt. The first row of Table 3 reports p-values for tests that the first 3 principal components can

be predicted from the last 5, both individually (first 3 columns) and as a group (last column).

5That is, * indicates a value of C above 1.645 and ** a value above 2.33.
6One might note that the biggest out-of-sample improvements come from yields of 1-year maturity or less.

We attribute this to the fact that over the post-sample evaluation period (2002:M8 to 2007:M7), short rates
exhibited a dramatic swing down and back up while long rates remained fairly flat– there is simply more for
the regression to forecast with short rates than long rates on this subsample.

8



For example, we just fail to reject (p = 0.061) that α4 = α5 = · · · = α8 = 0 in the regression

z1t = α0 +
8∑
j=1

αjzj,t−1 + ε1t,

(row 1, column 1) and likewise just fail to reject the joint hypothesis that {z1t, z2t, z3t} cannot

be predicted on the basis of {zj,t−1}8j=4 (row 1, last column). Notwithstanding, these tests

are quite close to rejection, and one might wonder whether 3 principal components may not

be enough to capture the dynamics. But an interesting thing happens when we let Y1t be

a (4 × 1) vector corresponding to the first 4 principal components. As seen in the second

row of Table 3, the evidence for statistical predictability is stronger when we use 4 principal

components rather than 3. Indeed, we’d also reject a specification using 5, 6, or even 7

principal components.

Table 4 investigates the predictability of principal components out of sample7. While the

contribution of {z4,t−1, ..., z8,t−1} is not quite statistically significantly helpful for forecasting

z1t within sample (first row and column of Table 3), it is statistically significantly helpful out

of sample (first row and column of Table 4). Indeed, for all but one choice of the number of

principal components to use in constructing Y1t, there is at least one element of Y1t that can

be forecast statistically significantly out of sample on the basis of Y2,t−1.

Why does the consistency with the data become even worse when we add more princi-

pal components? The assumption behind the ATSM was that, if we use enough principal

components, we can capture the true factors, and whatever is left over is measurement or

specification error, which was simply assumed to be white noise. But the feature in the data

is that, even though the higher principal components are tiny, they are in fact still serially

correlated. One can see this directly by looking at the vector autoregression for the elements

of Y2t alone,

Y2t = c2 + φ22Y2,t−1 + ε2t.

Suppose we let Y2t = (zm+1,t, zm+2,t, ..., zNt)
′ be the smallest principal components and test

whether φ22 = 0, that is, test the null hypothesis that Y2t is serially uncorrelated. This

hypothesis turns out to be rejected at the 1% level for each choice of m = 3, 4, 5, 6, or

7. Moreover, cross-correlations between these smaller principal components are statisti-

cally significant, which explains why even though it may be hard to forecast {z1t, z2t, z3t}
using {z4,t−1, z5,t−1, z6,t−1, z7,t−1, z8,t−1}, it is in fact easier to forecast {z1t, z2t, z3t, z4t} using

7Note that we keep hi the same for each r, that is, hi is based on (20) for the original sample through T,
so that for each T + r we are talking about forecasting the same variable.
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{z5,t−1, z6,t−1, z7,t−1, z8,t−1}.

3.3 Granger-causality tests: Y2.

We turn next to testable implications of (16), which embodies two sets of constraints. The

first is that the m linear combinations of Yt represented by Y1t are sufficient to capture all

the contemporaneous correlations. Specifically, if ynt is any element of the Ne = (N − m)

dimensional vector Y2t and Y
(n)
2t denotes the remaining Ne − 1 elements of Y2t, then in the

regression

ynt = c0 + c′1Y1t + c′2Y
(n)
2t + unt, (21)

we should find c2 = 0. The first row of Table 5 reports in-sample p-values associated with the

test of this null hypothesis when Y1t is specified as the 6-month, 2-year, and 10-year yields. For

ynt the 3-month yield, we fail to reject the null hypothesis (p = 0.139) that c2 = 0. However,

for each of the 4 other yields in Y2t (namely, the 1 year, 3 year, 5 year, and 7 year), the null

hypothesis is rejected at the 0.1% significance level, as reported in the remaining entries of the

first row of Table 5. Subsequent rows of Table 5 report the analogous tests for every possible

selection of 3 yields to include in Y1t. For every single choice, at least 4 of the resulting 5

elements in Y2t are predictable, at a significance level less than 1%, by some of the other yields

in Y2t for both in-sample tests (Table 5) and out of sample (Table 6).

Nor can this problem obviously be solved by making Y1t a higher-dimensional vector. For

the
(
8
4

)
= 70 possible 4-dimensional vectors for Y1t, in every single case at least one of the

elements of Y2t is predictable at the 0.1% significance level by the other 3. For the
(
8
5

)
= 56

possible 5-dimensional vectors, all but 8 have at least one ynt for which the null hypothesis of

no prediction is rejected at the 1% level. If we go to m = 6, of the 28 possible specifications

of the 2-dimensional vector Y2t, for 15 of them we find evidence at the 5% level that one is

predicted by the other.

Note that when Y1t and Y2t consist of selected principal components, the elements are

orthogonal by construction so that the specification would necessarily pass the above test.

A separate implication of (16) is that, if we condition on the contemporaneous value of

Y1t, lagged values of Yt−1 should be of no help in predicting the value of any element of Y2t.

That is, in the regression

ynt = c0 + c′1Y1t + c
′

2Yt−1 + unt,

we should find that the 8 elements of c2 are all zero if ynt is any element of Y2t. For each of

the 56 possible choices for the 3-dimensional vector Y1t, this hypothesis ends up being rejected

at the 1% level for each of the implied 5 elements of Y2t on the basis of both the in-sample F
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test and the out-of-sample Clark-West test.

Using a higher-dimensional Y1t or principal components does not solve this problem. For

example, let zjt denote the jth principal component and consider the regression

zjt = c0 +
m∑
i=1

c1izit + c′2Yt−1 + ujt

for some j > m. The first row of Table 7 shows that, for m = 3, we strongly reject the

hypothesis that c2 = 0 for each j = 4, 5, 6, 7, 8. Subsequent rows show that the same is true

for any choice of m. Table 8 confirms that the statistical contribution of Yt−1 to a forecast of

any of the smaller principal components is statistically significant out of sample as well.

Our conclusion from this and the preceding subsection is that the assumption that there

exists a readily observed factor of any dimension that captures all the predictability of Yt

is not consistent with the behavior of these data. At a minimum, a data-coherent specifi-

cation requires the assumption that the measurement or specification error must be serially

correlated.

3.4 Tests of predicted values for nonzero coefficients.

Up to this point we have been testing the large blocks of zero restrictions imposed by equations

(12) and (16) relative to an unrestricted VAR. We now consider the particular values predicted

by an ATSM for the nonzero elements in these two equations. Duffee (2011a) used mean-

squared-error comparisons to conclude that these nonlinear restrictions are typically rejected

statistically. Here we use the minimum-chi-square approach to test overidentifying restrictions

developed by Hamilton and Wu (2012b). First we will develop some new extensions of those

methods appropriate for the case in which the factors Ft are treated as directly observed in

the sense that the value of B1 in (10) is known a priori; the alternative case of latent factors

(that is, when B1 must be estimated) is discussed in Hamilton and Wu (2012b). Note that

the tests described in Sections 3.2-3.3 are perfectly valid regardless of whether the factors are

treated as latent or observed.

The values of φ∗11 in (12) and φ∗21 in (16) are completely determined by the matrix ρ and the

sequence {bn}, where the latter in turn can be calculated as functions of ρQ and δ1 using (2) and

(7) . The resulting value for B1, along with the structural parameters Σ and Σe, determine the

variance-covariance matrix of the innovations in (12) and (16). The sequence {bn} and values

of Σ, cQ, δ0, c and ρ can be used to calculate the constants A∗1 and A∗2 in (12) and (16). Thus

the likelihood function is fully specified by the structural parameters {c, ρ, cQ, ρQ, δ1,Σ,Σe, δ0}.
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As discussed in Hamilton and Wu (2012b), some further normalization is necessary in order

to be able to identify these structural parameters on the basis of observation of {Yt}Tt=1.

If we assume that m linear combinations of Yt are observed without error, Joslin, Singleton

and Zhu (2011) suggest that a natural normalization is to take the (m × 1) vector Ft to be

given by these particular linear combinations, Ft = H1Yt, for H1 a known (m × N) matrix.

For our base case specification in which Yt = (y3t, y6t, y12,ty24,t, y36,t, y60,t, y84,t, y120,t)
′ and Y1t =

(y6t, y24,t, y120,t)
′ we would have

H1 =

 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

 .
Premultiplying (9) by H1, and substituting the condition Ft = H1Yt gives

H1Yt = H1A+H1BH1Yt,

requiring H1A = 0 and H1B = Im. These conditions turn out to imply a normalization similar

to that of Joslin, Singleton and Zhu (2011) in which the (m ×m) matrix ρQ is known up to

its eigenvalues and the vector cQ is a known function of those eigenvalues along with δ0 and

Σ, as the following proposition demonstrates.

Proposition 1. Let ξ = (ξ1, ..., ξm)′ denote a proposed vector of ordered eigenvalues of

ρQ. Let ι denote an (m× 1) vector of ones and H1 a known (m×N) matrix. Define

γn(x)
(1×1)

= n−1
n−1∑
j=0

xj

K(ξ)
(m×N)

=


γn1(ξ1) γn2(ξ1) · · · γnN

(ξ1)

γn1(ξ2) γn2(ξ2) · · · γnN
(ξ2)

...
... · · · ...

γn1(ξm) γn2(ξm) · · · γnN
(ξm)



V (ξ)
(m×m)

=


ξ1 · · · 0
... · · · ...

0 · · · ξm


ρQ′

(m×m)

= [K(ξ)H ′1]
−1 [V (ξ)] [K(ξ)H ′1]
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δ1
(m×1)

= [K(ξ)H ′1]
−1ι.

Then for bn constructed from (2) and (7) it is the case that[
bn1 · · · bnN

]
H ′1 = Im. (22)

For given scalar δ0 and (m×m) matrix Σ, if we further define

ζn(ξ)
(1×m)

= n−1
[
b′1 + 2b′2 + · · ·+ (n− 1) b′n−1

]
ψn(ξ, δ0,Σ)

(1×1)
= δ0 − (2n)−1

[
b′1ΣΣ′b1 + 22b′2ΣΣ′b2 + · · ·+ (n− 1)2 b′n−1ΣΣ′bn−1

]

cQ
(m×1)

= −

H1


ζn1(ξ)

...

ζnN
(ξ)



−1

H1


ψn1(ξ, δ0,Σ)

...

ψnN
(ξ, δ0,Σ)

 , (23)

then for an constructed from (4) and (8), it is the case that

H1


an1

...

anN

 =


0
...

0

 .
Suppose we assume that the factors are directly observable in the form of some known

linear combination Y1t = H1Yt, and define those linear combinations observed with error to be

Y2t = H2Yt for H2 a known (Ne×N) matrix with Ne = N−m. Then Proposition 1 establishes

that the likelihood function of {Yt}Tt=1 can be parameterized in terms of {c, ρ, ξ,Σ,Σe, δ0}.
While the conventional approach to parameter estimation would be to choose these parameters

so as to maximize the likelihood function directly, Hamilton and Wu (2012b) argue that

there are substantial benefits from estimating by the minimum-chi-square procedure originally

developed by Rothenberg (1973). The procedure is asymptotically equivalent to MLE but

often substantially easier to implement. The approach is to first estimate the reduced-form

parameters in (12) and (16) directly by ordinary least squares:

Π̂∗′1 =
[
Â∗1 φ̂∗11

]
=

(
T∑
t=1

Y1tx
′
1t

)(
T∑
t=1

x1tx
′
1t

)−1

x
′

1t =
[

1 Y ′1,t−1

]
13



Ω̂∗1 = T−1
T∑
t=1

(
Y1t − Π̂∗′1 x1t

)(
Y1t − Π̂∗′1 x1t

)′

Π̂∗′2 =
[
Â∗2 φ̂∗21

]
=

(
T∑
t=1

Y2tx
′
2t

)(
T∑
t=1

x2tx
′
2t

)−1

x′2t =
[

1 Y ′1t

]
Ω̂∗2 = T−1

T∑
t=1

(
Y2t − Π̂∗′2 x2t

)(
Y2t − Π̂∗′2 x2t

)′
.

The minimum-chi-square approach is to let these simple closed-form OLS formulas do

the job of maximizing the unrestricted likelihood for {Y1, ..., YT |Y0}, and then find estimates

of the structural parameters {c, ρ, ξ,Σ,Σe, δ0} whose predicted values for these reduced-form

coefficients are as close as possible to the OLS estimates. Closeness is defined in terms of

minimizing a quadratic form with weighting matrix given by a consistent estimate of the

information matrix:

θ̂MCS = arg min
θ
T [π̂ − g(θ)]′ R̂ [π̂ − g(θ)] . (24)

Here π̂ is the vector of reduced-form parameters,

π̂ =

([
vec(Π̂∗1)

]′
,
[
vech(Ω̂∗1)

]′
,
[
vec(Π̂∗2)

]′
,
[
vech(Ω̂∗2)

]′)′
, (25)

for vec(Π̂∗1) the m(m + 1) × 1 vector obtained by stacking columns of Π̂∗1, and vech(Ω̂∗1)

the m(m + 1)/2 × 1 vector from stacking those elements in Ω̂∗1 that are on or below the

principal diagonal. Also, g(θ) is the vector of predicted values for π using the expressions in

Section 3.1, while R̂ is a matrix whose diagonal blocks are given by Ω̂∗−11 ⊗T−1
∑T

t=1 x1tx
′
1t,

(1/2)D′m(Ω̂∗−11 ⊗ Ω̂∗−11 )Dm, Ω̂∗−12 ⊗T−1
∑T

t=1 x2tx
′
2t, and (1/2)D′Ne

(Ω̂∗−12 ⊗ Ω̂∗−12 )DNe , and whose

other elements are all zero, and where Dm denotes the m2 ×m(m + 1)/2 duplication matrix

satisfying Dmvech (Ω) = vec(Ω).

Note that since the information matrix is block diagonal with respect to the elements of

Ω∗2, and since Ω∗2 are the only reduced-form parameters affected by the measurement error

parameters Σe, MCSE for the latter can be obtained directly from the OLS estimates Ω̂∗2,

namely Σ̂eΣ̂
′
e = Ω̂∗2, and this does not affect estimates of any other structural parameters.

Moreover, this result still holds even when restrictions are imposed on Σe. For example,

for the usual specification in which the measurement error is taken to be contemporaneously

uncorrelated, the MCSE is obtained by setting diagonal elements of Σ̂e equal to the square

14



roots of the corresponding diagonal elements of Ω̂∗2, with off-diagonal elements of Σ̂e set to

zero, and again with no consequences for other parameter estimates.

Similarly, no matter what values might be chosen for the other parameters, as long as B1

is invertible, from equation (13) we can always choose ĉ so as to match Â∗1 exactly, and from

(14) we can choose ρ̂ so as to match φ̂∗11 exactly, so that the first block of π̂ contributes zero

to the objective function (24).8 Thus the numerical component of MCS estimation amounts

to choosing {ξ,Σ, δ0} so as to minimize

T [π̂2 − g2(θ)]′ R̂2 [π̂2 − g2(θ)] (26)

π̂2 =

([
vech(Ω̂∗1)

]′
,
[
vec(Π̂∗2)

]′)′
R̂2 =

[
(1/2)D′m(Ω̂∗−11 ⊗ Ω̂∗−11 )Dm 0

0 Ω̂∗−12 ⊗ T−1
∑T

t=1 x2tx
′
2t

]
.

In addition to being asymptotically equivalent to and often easier to compute than the

MLE, minimum-chi-square estimation has the further benefit that the optimized value for the

objective function (26) has an asymptotic χ2 distribution with degrees of freedom given by

the number of overidentifying restrictions. Hence an immediate by-product of the estimation

is an evaluation of the validity of the kinds of restrictions considered in this section. There

are m(m+ 1)/2 elements in Ω̂∗1 and (N −m)(m+ 1) elements in Π̂∗2, or 26 parameters in the

unrestricted reduced form for the case when m = 3 and N = 8. On the other hand, there are

m elements in ξ, m(m+ 1)/2 elements in Σ, and 1 element in δ0, or 10 structural parameters

for the above example. The model then imposes 16 overidentifying restrictions, or particular

ways in which the parameters in regressions of the elements of Y2t on a constant and Y1t should

be related to each other and related to the residual variance-covariance matrix for a VAR(1)

for Y1t itself.

We first apply this procedure to our base-case specification in which m = 3 and Y1t is taken

to be the 6-month, 2-year, and 10-year yields. The resulting χ2(16) statistic is 633.58, leading

to overwhelming rejection of the null hypothesis that the ATSM restrictions are consistent

with the data. The procedure also provides an immediate check on which elements of π̂2 are

most at odds with the predictions implied by g2(θ̂2). The biggest positive contributions to

(26) come from the constant terms Â∗2.

This claim might be surprising to many researchers, since it is often asserted that a standard

ATSM does a good job of capturing the cross-section distribution of returns, precisely the

8Joslin, Singleton and Zhu (2011) derived a similar result for maximum likelihood estimation.
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claim being tested by the above χ2 test. The usual basis for the claim is the observation

that 3 linear combinations of yields can account for an overwhelming fraction of the variances

and covariances of yields. However, the high R2 from such regressions only summarize the

comovements between the variables as distinct from their individual average levels. The

ATSM also has testable implications for the latter, which we have just seen are inconsistent

with the values observed in the data.

We can consider relaxing this feature of the ATSM by adding to each an an unrestricted

constant kn. This causes the parameter δ0 to be no longer identified, in effect replacing

the original single parameter δ0 for purposes of describing the average values of the differ-

ent yields with N − m new constants. The minimum value for (26) achieved by choice of

{ξ,Σ, km+1, ..., kN} turns out to be 132.75. Although this is a substantial improvement over

the original specification, it is still grossly inconsistent with a χ2(12) distribution.

Although the MCS χ2 statistic is not directly testing the separate zero restrictions that we

investigated earlier, some of those restrictions are maintained auxiliary assumptions that can

influence the outcome of the χ2 test. In particular, we saw above that there is very strong

evidence that the error term in the Y2t regression is serially correlated. We now investigate

MCS estimation of an ATSM when this restriction is relaxed.

Suppose that (16) holds, with φ∗21 given by the structural parameters B2B
−1
1 but A∗2 unre-

stricted and the error term correlated with lagged yields:

u2t = ψ2Yt−1 + ε2t. (27)

Substituting (27) into (16) results in

Y2t = A†2 +B2B
−1
1 Y1t + ψ2Yt−1 + ε2t

for which the corresponding unrestricted reduced form is

Y2t = A†2 + ψ†1Y1t + ψ†2Yt−1 + ε2t

whose unrestricted estimates are again easily obtained by OLS. We then choose {ξ,Σ, A†2, ψ
†
2}
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so as to minimize9

T
[
π̂†2 − g

†
2(θ)

]′
R̂†2

[
π̂†2 − g

†
2(θ)

]
(28)

where π̂†2 =

([
vech(Ω̂∗1)

]′
,
[
vec(Π̂†2)

]′)′
, x†′2t =

[
1 Y ′1t Y ′t−1

]
, and

R̂†2 =

[
(1/2)D′m(Ω̂∗−11 ⊗ Ω̂∗−11 )Dm 0

0 Ω̂†−12 ⊗ T−1
∑T

t=1 x
†
2tx
†′
2t

]

Π̂†′2 =

(
T∑
t=1

Y2tx
†′
2t

)(
T∑
t=1

x†2tx
†′
2t

)−1

Ω̂†2 = T−1
T∑
t=1

(
Y2t − Π̂†′2 x

†
2t

)(
Y2t − Π̂†′2 x

†
2t

)′
.

For this case, there are m(m+1)/2+Ne(1+m+N) = 66 unrestricted reduced-form parameters

and m+m(m+1)/2+Ne(N+1) = 54 structural parameters for 12 overidentifying restrictions.

The χ2(12) statistic turns out to be 78.52, which still leads to strong rejection.

One could relax additional restrictions to try to arrive at a specification that is not rejected.

However, even if a specification were found that is consistent with the observed value for Π2,

the model would still have to contend with rejection of the many separate zero restrictions

documented above. Based on those earlier tests, the most promising specification was when

Y1t corresponds to the first 3 principal components, that is, Y1t = H1Yt for rows of H1 corre-

sponding to the first three eigenvectors of (20), and Y2t the remaining 5 principal components.

When we calculate the MCS statistic (26) for the original specification, we arrive at a χ2(16)

statistic of 650.47. Relaxing the constraint on the intercepts by introducing the km+1, ..., kN

parameters brings this down to χ2(12) = 145.05. Allowing for serial correlation in u2t yields

a χ2(12) statistic of 13.48 (p = 0.335), fully consistent with the data.

We conclude that representing the term structure factors by the first 3 principal compo-

nents offers more promise of fitting the data than using any subset of m yields. However, it

is necessary to acknowledge that the measurement or specification error is serially correlated.

One furthermore needs to relax the predictions of the ATSM for the average levels of the

various yields in order to describe accurately what is found in the data.

9Implementing this turns out to be quite simple, since with A†2 unrestricted, Σ is unrestricted and the MCSE

for Σ satisfies Σ̂Σ̂′ = Ω̂∗1. Recall also B1(ξ) = Im. Moreover, given ξ we can calculate Ỹ2t(ξ) = Y2t−B2(ξ)Y1t

and
[
Ã2(ξ) ψ̃2(ξ)

]
=
(∑T

t=1 Ỹ2t(ξ)
[

1 Y ′t−1
])(∑T

t=1

[
1

Yt−1

] [
1 Y ′t−1

])−1
from which g2(ξ) =

vec
([

Ã2(ξ) B2(ξ) ψ̃2(ξ)
]′)

and (28) need only be minimized with respect to the 3 elements of ξ.
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4 ATSM with observable macroeconomic factors.

Up to this point we have been discussing models in which the only data being used are the

yields themselves. There is a substantial literature beginning with Ang and Piazzesi (2003)

that also incorporates directly observable macroeconomic variables such as output growth and

inflation, collected in a vector f ot . In our empirical investigation of these models, we will take

f ot to be a (2 × 1) vector whose first element is the monthly Chicago Fed National Activity

Index and second element is the percentage change from the previous year in the implicit

price deflator for personal consumption expenditures from the FRED database of the Federal

Reserve Bank of St. Louis.

These observable macro factors f ot are then thought to supplement an (m × 1) vector of

conventional yield factors f `t in jointly determining the behavior of bond yields. The standard

assumption is that the P -measure dynamics of the factors could be described with a VAR:10

f ot = co + ρo1f
o
t−1 + ρo2f

o
t−2 + · · ·+ ρokf

o
t−k + ρo`f

`
t−1 + Σoou

o
t (29)

f `t = c` + ρ`1f
o
t−1 + ρ`2f

o
t−2 + · · ·+ ρ`kf

o
t−k + ρ``f

`
t−1 + Σ`ou

o
t + Σ``u

`
t. (30)

Defining F o
t = (f o′t , f

o′
t−1, ..., f

o′
t−k+1)

′, we can interpret (29)-(30) as an alternative formulation

of (1) where Ft is now the (2k +m) vector Ft = (F o′
t , f

`′
t )′,

ρ
(2k+m)×(2k+m)

=



ρo1 ρo2 · · · ρo,k−1 ρok ρo`

I2 0 · · · 0 0 0

0 I2 · · · 0 0 0
...

...
...

...
...

...

0 0 · · · I2 0 0

ρ`1 ρ`2 · · · ρ`,k−1 ρ`k ρ``


c

(2k+m)×1
= (c′o, 0

′, ..., 0′, c′`)
′

10The fact that only a single lag on f `t is used is without loss of generality. If f `t is a latent vector, one could
always stack a higher-order system for these latent variables into companion form, as we do below with the
observed macro factors. However, if one wanted to take this interpretation of the dimension of f `t literally,
one would want to impose corresponding additional restrictions on ρ.
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Σ
(2k+m)×(2k+m)

=



Σoo 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

...
...

Σ`o 0 0 · · · Σ``


.

Elements of the (m + 2k) × 1 vectors λ and δ1 and of the (m + 2k) × (m + 2k) matrix Λ

corresponding to zero blocks of Σ are set to zero. We can then calculate predicted yields

using (2) through (6) as before.

Among the choices to be made are the dimension of the latent vector (m), number of lags

to summarize macro dynamics (k), and whether the macro factors and latent factors can be

regarded as independent (as represented by the restrictions ρo` = 0, ρ`1 = · · · = ρ`k = 0,

and Σ`o = 0). Pericoli and Taboga (2008) conducted comprehensive investigations of this

question through the arduous process of estimating assorted specifications subject to the full

set of nonlinear restrictions imposed by the theory. Once again, however, it is possible to use

Granger’s suggestion of choosing among the possible specifications on the basis of extremely

simple tests of the underlying forecasting relations, as we now illustrate.

Suppose as in (10) that there is an (m × 1) vector of yields Y1t for which the predicted

pricing relations hold exactly, and as in (11) that there is an (Ne × 1) vector Y2t priced with

error. Then similar algebra to that used earlier produces the reduced form implied by the

system:

f ot
(2×1)

= A∗m + φ∗oo
(2×2k)

F o
t−1 + φ∗o1

(2×m)

Y1,t−1 + u∗ot (31)

Y1t
(m×1)

= A∗1 + φ∗1o
(m×2k)

F o
t−1 + φ∗11

(m×m)

Y1,t−1 + ψ∗1o
(m×2)

f ot + u∗1t (32)

Y2t
(Ne×1)

= A∗2 + φ∗2o
(Ne×2k)

F o
t + φ∗21

(Ne×m)

Y1t + u∗2t. (33)

If the macro and finance factors are independent, then the coefficient φ∗o1 in (31) must be zero.

Thus an immediate testable implication of independence of the macro and latent factors is

whether the yields in Y1t Granger-cause the observed macro factors. Furthermore, the choice

of k ends up determining the number of lags of f ot−j that are helpful for forecasting f ot , Y1t,

and Y2t (dimensions of φ∗oo, φ
∗
1o, and φ∗2o in (31) through (33)). All of these can be tested by

simple OLS without having to estimate the ATSM at all.

To illustrate this possibility, we focus on the choice in lag length between k = 1 or k = 12

and on whether one wants to model the latent factors and macro factors as independent.
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We further specify that m = 3 and that the 6-month, 2-year, and 10-year securities are

priced without error. Row 2 of Table 9 indicates that we would reject the null hypothesis

of independence under the maintained assumption of 12 lags, while row 3 indicates we would

reject the null hypothesis that only 1 lag is needed under the maintained assumption of

dependence.

Despite the superior in-sample fit, the least restrictive specification in row 1 of Table 9

is richly parameterized, with 28 to 30 regression coefficients estimated per equation. While

the model selection criterion11 suggested by Akaike reaches the same conclusion as the in-

sample F test, the Schwarz criterion favors the most parsimonious specification with k =

1 and independence of the macro and latent factors. Table 10 reinforces this conclusion

from Schwarz, finding that the out-of-sample, one-month-ahead forecast of yields generated

by the k = 1 specifications always beat k = 12. On the other hand, a specification that

allows dependence between the macro and latent factors usually dominates the independent

specification in terms of out-of-sample performance. These results suggest that a parsimonious

1-lag specification that still allows for interaction between the factors might be preferred.

5 Conclusion.

A number of previous researchers have discussed related shortcomings of ATSM. Cochrane and

Piazzesi (2009) documented that the linear combinations that describe the contemporaneous

correlations among yields are different from those that are most helpful for forecasting. Collin-

Dufresne and Goldstein (2002) found that lagged volatilities as well as lagged levels of yields

contribute to forecasts, while Ludvigson and Ng (2011), Cooper and Priestly (2009), and

Joslin, Priebsch and Singleton (2010) concluded that macro variables have useful forecasting

information beyond that contained in current yields. Duffee (2011b) suggested that these

results could be explained by near-cancellation of the forecasting and risk-pricing implications

of certain factors, causing these factors to be hidden from any collection of contemporaneous

yields and yet still useful for forecasting future yields.

However, the results in our paper go beyond any of these claims. We find that for Y1t a

collection of m yields or principal components and Y2t the remaining yields or components,

the data consistently reject the hypothesis that Y2 does not Granger-cause Y1, regardless of

how large one makes m, and further reject the hypothesis that the residuals from a regression

of Y2t on Y1t are serially uncorrelated. These results could not be attributed to hidden or

omitted factors in the sense of Duffee (2011b) or Collin-Dufresne and Goldstein (2002), since

11See for example Lütkepohl (1993), p. 202.
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our explanatory variables are direct functions of the yields themselves. Instead we find that

the data speak conclusively that the specification or measurement error in the system must

have its own important dynamic structure.

As noted by Duffee (2011a) and Duffee (2011b), the specification error could be broadly

attributed to factors such as bid/ask spreads, preferred habitats of particular investors, in-

terpolation errors, and liquidity premia. None of these factors would a priori be expected

to be white noise, and it should not be surprising that we find the measurement error terms

in these models to be quite predictable. Furthermore, it is not a defense to argue that

this serial correlation can be ignored because the errors themselves are small– this form of

model misspecification makes conventional standard errors unreliable and invalidates standard

hypothesis tests about any parameters of the system.

In this paper we suggested one approach to dealing with these problems, which is to

postulate as a primitive that the specification errors have their own mean and serial dependence

structure, and estimate these separately from the parameters of the core ATSM. We illustrated

estimation of a system of this form that seems to be consistent with the data. A more

satisfactory approach would be to try to understand the features of these specification errors

in a more structural way, for example, trying to model liquidity effects directly. This seems a

particularly important task if one’s goal is to understand the behavior of the term structure

during the financial crisis in the fall of 2008, for which Gürkaynak and Wright (2012) showed

that even the most basic arbitrage relations appeared to break down.

Apart from these issues, our paper illustrates that many of the key underlying assumptions

of ATSM are trivially easy to test. Clive Granger’s perennial question of whether the model’s

specification is consistent with basic forecasting relations in the data seems a particularly

helpful guide for research using ATSM.
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6 Appendix

Proof of Proposition 1. Observe that

bn = n−1
[
Im +

(
ρQ′
)

+
(
ρQ′
)2

+ · · ·+
(
ρQ′
)n−1]

δ1

(
ρQ′
)s

= [K(ξ)H ′1]
−1 [V (ξ)]s [K(ξ)H ′1]

[V (ξ)]s =


ξs1 · · · 0
... · · · ...

0 · · · ξsm


bn = n−1

{
[K(ξ)H ′1]

−1 [Im + V (ξ) + V (ξ)2 + · · ·V (ξ)n−1
]

[K(ξ)H ′1
}

[K(ξ)H ′1]
−1ι

= [K(ξ)H ′1]
−1


γn(ξ1) · · · 0

... · · · ...

0 · · · γn(ξm)

 ι

= [K(ξ)H ′1]
−1


γn(ξ1)

...

γn(ξm)



[
bn1 · · · bnN

]
H ′1 = [K(ξ)H ′1]

−1


γn1(ξ1) · · · γnN

(ξ1)
...

...

γn1(ξm) · · · γnN
(ξm)

H ′1
= [K(ξ)H ′1]

−1
K(ξ)H ′1

= Im.
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Furthermore, for an satisfying (4) and (8) and cQ satisfying (23),

H1


an1

...

anN

 = H1


ψn1(ξ, δ0,Σ)

...

ψnN
(ξ, δ0,Σ)

+H1


ζn1(ξ)

...

ζnN
(ξ)

 cQ

= H1


ψn1(ξ, δ0,Σ)

...

ψnN
(ξ, δ0,Σ)

−H1


ζn1(ξ)

...

ζnN
(ξ)

×
H1


ζn1(ξ)

...

ζnN
(ξ)



−1

H1


ψn1(ξ, δ0,Σ)

...

ψnN
(ξ, δ0,Σ)



=


0
...

0

 .
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Specification of Y1t Granger-causality tests
1st 2nd 3rd system

6m,2y,10y 0.006** 0.198 0.204 0.000**
6m,2y,3m 0.000** 0.219 0.002** 0.000**
6m,2y,1y 0.005** 0.223 0.021* 0.000**
6m,2y,3y 0.065 0.235 0.155 0.000**
6m,2y,5y 0.049* 0.242 0.086 0.000**
6m,2y,7y 0.020* 0.211 0.110 0.000**
6m,10y,3m 0.000** 0.522 0.004** 0.000**
6m,10y,1y 0.010** 0.205 0.022* 0.000**
6m,10y,3y 0.001** 0.215 0.116 0.000**
6m,10y,5y 0.000** 0.252 0.164 0.000**
6m,10y,7y 0.000** 0.232 0.206 0.000**
6m,3m,1y 0.003** 0.002** 0.021* 0.000**
6m,3m,3y 0.000** 0.003** 0.141 0.000**
6m,3m,5y 0.000** 0.004** 0.151 0.000**
6m,3m,7y 0.000** 0.004** 0.252 0.000**
6m,1y,3y 0.010** 0.022* 0.128 0.000**
6m,1y,5y 0.015* 0.024* 0.081 0.000**
6m,1y,7y 0.012* 0.023* 0.110 0.000**
6m,3y,5y 0.012* 0.118 0.082 0.001**
6m,3y,7y 0.004** 0.111 0.110 0.000**
6m,5y,7y 0.000** 0.124 0.121 0.000**
2y,10y,3m 0.183 0.243 0.006** 0.002**
2y,10y,1y 0.176 0.203 0.025* 0.000**
2y,10y,3y 0.216 0.296 0.249 0.000**
2y,10y,5y 0.602 0.314 0.391 0.002**
2y,10y,7y 0.346 0.241 0.263 0.001**
2y,3m,1y 0.182 0.004** 0.018* 0.000**
2y,3m,3y 0.188 0.080 0.112 0.000**
2y,3m,5y 0.193 0.060 0.080 0.001**
2y,3m,7y 0.183 0.023* 0.121 0.002**
2y,1y,3y 0.192 0.075 0.141 0.000**
2y,1y,5y 0.205 0.086 0.090 0.000**
2y,1y,7y 0.181 0.049* 0.112 0.000**
2y,3y,5y 0.176 0.109 0.081 0.000**
2y,3y,7y 0.165 0.159 0.126 0.000**
2y,5y,7y 0.278 0.179 0.134 0.000**
10y,3m,1y 0.289 0.009** 0.017* 0.018*
10y,3m,3y 0.259 0.001** 0.119 0.001**
10y,3m,5y 0.301 0.000** 0.184 0.000**
10y,3m,7y 0.264 0.000** 0.243 0.000**
10y,1y,3y 0.219 0.011* 0.128 0.000**
10y,1y,5y 0.263 0.010** 0.217 0.000**
10y,1y,7y 0.232 0.011* 0.217 0.000**
10y,3y,5y 0.282 0.357 0.332 0.015*
10y,3y,7y 0.230 0.179 0.235 0.000**
10y,5y,7y 0.222 0.110 0.161 0.000**
3m,1y,3y 0.010** 0.017* 0.106 0.000**
3m,1y,5y 0.018* 0.018* 0.090 0.019*
3m,1y,7y 0.013* 0.018* 0.142 0.049*
3m,3y,5y 0.014* 0.106 0.081 0.002**
3m,3y,7y 0.004** 0.109 0.124 0.000**
3m,5y,7y 0.000** 0.140 0.137 0.000**
1y,3y,5y 0.043* 0.108 0.082 0.000**
1y,3y,7y 0.020* 0.111 0.110 0.000**
1y,5y,7y 0.008** 0.145 0.124 0.000**
3y,5y,7y 0.188 0.164 0.129 0.004**

Table 1: In-sample Granger causality tests of null hypothesis that Y2 does not Granger-cause Y1 for
alternative specifications for Y1. Table entries report p-values, with * denoting rejection at the 5%
level and ** denoting rejection at the 1% level. First three columns report p-value for predictability
of the ith element of Y1, while last column tests predictability of the full vector Y1. Regressions
estimated 1983:M1-2002:M7. 27



Specification of Y1t Out-of-sample improvement in MSE
1st 2nd 3rd

6m,2y,10y 25%** 8%* 0%
6m,2y,3m 25%** 9%* -1%*
6m,2y,1y 19%** 5%* 21%**
6m,2y,3y 10%** 6% 4%
6m,2y,5y 17%** 7% 4%
6m,2y,7y 15%** 7%* 3%
6m,10y,3m -4%* 2% -17%
6m,10y,1y 4%* -1% 16%**
6m,10y,3y 28%** 0% 6%*
6m,10y,5y 29%** -2% 2%
6m,10y,7y 33%** -2% 0%
6m,3m,1y 39%** 16%** 18%**
6m,3m,3y 11%** -10% 7%*
6m,3m,5y -2%* -18% 6%*
6m,3m,7y -5%* -19% 5%*
6m,1y,3y 5%* 16%** 4%
6m,1y,5y -3% 13%** 3%
6m,1y,7y -4% 13%** 2%
6m,3y,5y 23%** 6% 4%
6m,3y,7y 18%** 6%* 3%
6m,5y,7y 16%** 3% 2%
2y,10y,3m 7%* -1% 27%**
2y,10y,1y 8%* 0% 25%**
2y,10y,3y 5%* -3% 1%
2y,10y,5y 2% -4% -2%
2y,10y,7y -3% -2% -1%
2y,3m,1y 5% 13%** 14%**
2y,3m,3y 4% 6%* 3%
2y,3m,5y 5% 17%** 3%
2y,3m,7y 6% 17%** 2%
2y,1y,3y 7%* 22%** 5%
2y,1y,5y 8%* 25%** 4%
2y,1y,7y 8%* 23%** 3%
2y,3y,5y 7%* 4% 3%
2y,3y,7y 6%* 4% 1%
2y,5y,7y 8%* 2% 1%
10y,3m,1y 0% 0%* 9%**
10y,3m,3y -1% 36%** 6%*
10y,3m,5y -2% 43%** 3%
10y,3m,7y -2% 53%** 0%
10y,1y,3y 0% 24%** 5%*
10y,1y,5y -2% 23%** 1%
10y,1y,7y -2% 15%** 0%
10y,3y,5y -3% 0% -1%
10y,3y,7y -1% 0% 0%
10y,5y,7y 1% 4% 3%
3m,1y,3y -1%* 8%** 4%
3m,1y,5y -7% 5%* 4%
3m,1y,7y -7% 6%* 3%
3m,3y,5y 28%** 5% 3%
3m,3y,7y 26%** 6%* 2%
3m,5y,7y 30%** 4% 2%
1y,3y,5y 24%** 6% 4%
1y,3y,7y 21%** 6%* 3%
1y,5y,7y 22%** 3% 2%
3y,5y,7y 6%* 3% 2%

Table 2: Out-of-sample Granger causality tests of null hypothesis that Y2 does not Granger-cause Y1
for alternative specifications for Y1. Table entries report percent improvement in MSE for equation
that includes Y2,t−1 over equation that does not. Asterisk (*) denotes Clark-West statistic leads to
rejection of the null hypothesis of no improvement in the forecast at the 5% level, while ** denotes
rejection at 1% level. Based on recursive regressions generating out-of-sample forecasts for 2002:M8-
2007:M7. 28



Number of Granger-causality tests
principal components 1st 2nd 3rd 4th 5th 6th 7th system
m = 3 0.0609 0.1958 0.6889 – – – – 0.0687
m = 4 0.0340* 0.5368 0.5669 0.0294* – – – 0.0150*
m = 5 0.1493 0.4269 0.7404 0.5477 0.0214* – – 0.0276*
m = 6 0.3783 0.7817 0.6129 0.3961 0.0537 0.0016** – 0.0089**
m = 7 0.1675 0.6911 0.4241 0.2816 0.0817 0.0030** 0.5170 0.0050*

Table 3: In-sample Granger causality tests that last N −m principal components do not Granger-
cause the first m for various values of m. Table entries report p-values, with * denoting rejection
at the 5% level and ** denoting rejection at the 1% level. The first 7 columns report predictability
of zjt, the jth principal component of Yt, on the basis of zm+1,t−1, ..., zN,t−1, while the last column
reports predictability of the vector (z1t, ..., zmt)

′ on the basis of zm+1,t−1, ..., zN,t−1. All regressions
include (z1,t−1, ..., zm,t−1)

′ and were estimated 1983:M1-2002:M7.

Number of Out-of-sample improvement in MSE
principal components 1st 2nd 3rd 4th 5th 6th 7th

m = 3 7%* -4% -3% – – – –
m = 4 4%* -2% -2% -2% – – –
m = 5 6%* -3% -2% -1% -8% – –
m = 6 3% 0% -2% -2% -5% -5% –
m = 7 2% 0% -1% -1% 5%* -2% 2%*

Table 4: Out-of-sample Granger causality test that last N−m principal components do not Granger-
cause the first m for various values of m. Table entries report percent improvement in MSE for
equation that includes last N − m principal components over equation that does not. Asterisk
(*) denotes Clark-West statistic leads to rejection of the null hypothesis of no improvement in the
forecast at the 5% level, while ** denotes rejection at 1% level. Table estimates represent out-
of-sample improvement in MSE for equation that includes zm+1,t−1, ..., zN,t−1 over equation that
does not. Asterisk (*) denotes statistically significant contribution at the 5% level, and ** denotes
significant at 1% level. The jth column reports predictability of zjt, the jth principal component of
Yt. Principal components estimated 1983:M1-2002:M7 and evaluated using recursive regressions and
out-of-sample forecasts for 2002:M8-2007:M7.
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Specification of Y1t Ability to predict each element of Y2t
4th 5th 6th 7th 8th

6m,2y,10y 0.139 0.000** 0.000** 0.000** 0.000**
6m,2y,3m 0.000** 0.000** 0.000** 0.000** 0.000**
6m,2y,1y 0.000** 0.001** 0.000** 0.000** 0.000**
6m,2y,3y 0.000** 0.038* 0.000** 0.000** 0.000**
6m,2y,5y 0.000** 0.076 0.000** 0.587 0.000**
6m,2y,7y 0.000** 0.284 0.000** 0.000** 0.000**
6m,10y,3m 0.000** 0.000** 0.000** 0.000** 0.000**
6m,10y,1y 0.000** 0.001** 0.000** 0.000** 0.000**
6m,10y,3y 0.000** 0.001** 0.000** 0.000** 0.000**
6m,10y,5y 0.000** 0.000** 0.000** 0.000** 0.000**
6m,10y,7y 0.000** 0.000** 0.000** 0.000** 0.000**
6m,3m,1y 0.000** 0.000** 0.000** 0.000** 0.000**
6m,3m,3y 0.000** 0.000** 0.000** 0.000** 0.000**
6m,3m,5y 0.000** 0.000** 0.000** 0.000** 0.000**
6m,3m,7y 0.000** 0.000** 0.000** 0.000** 0.000**
6m,1y,3y 0.000** 0.000** 0.001** 0.000** 0.000**
6m,1y,5y 0.000** 0.000** 0.001** 0.000** 0.000**
6m,1y,7y 0.000** 0.000** 0.001** 0.000** 0.000**
6m,3y,5y 0.000** 0.000** 0.000** 0.000** 0.000**
6m,3y,7y 0.000** 0.000** 0.002** 0.000** 0.002**
6m,5y,7y 0.000** 0.000** 0.000** 0.000** 0.000**
2y,10y,3m 0.000** 0.000** 0.000** 0.000** 0.000**
2y,10y,1y 0.000** 0.000** 0.000** 0.000** 0.000**
2y,10y,3y 0.000** 0.000** 0.000** 0.000** 0.000**
2y,10y,5y 0.000** 0.000** 0.000** 0.000** 0.000**
2y,10y,7y 0.000** 0.000** 0.000** 0.000** 0.000**
2y,3m,1y 0.009** 0.000** 0.000** 0.000** 0.000**
2y,3m,3y 0.000** 0.000** 0.000** 0.000** 0.000**
2y,3m,5y 0.000** 0.000** 0.000** 0.007** 0.000**
2y,3m,7y 0.000** 0.000** 0.000** 0.000** 0.000**
2y,1y,3y 0.000** 0.000** 0.000** 0.000** 0.000**
2y,1y,5y 0.000** 0.000** 0.000** 0.001** 0.000**
2y,1y,7y 0.000** 0.015* 0.000** 0.000** 0.000**
2y,3y,5y 0.000** 0.000** 0.000** 0.000** 0.000**
2y,3y,7y 0.000** 0.000** 0.000** 0.000** 0.448
2y,5y,7y 0.000** 0.000** 0.000** 0.000** 0.000**
10y,3m,1y 0.064 0.000** 0.000** 0.000** 0.000**
10y,3m,3y 0.000** 0.000** 0.000** 0.000** 0.000**
10y,3m,5y 0.000** 0.000** 0.000** 0.000** 0.000**
10y,3m,7y 0.000** 0.000** 0.000** 0.000** 0.000**
10y,1y,3y 0.000** 0.007** 0.000** 0.000** 0.000**
10y,1y,5y 0.000** 0.000** 0.000** 0.000** 0.000**
10y,1y,7y 0.000** 0.000** 0.000** 0.000** 0.000**
10y,3y,5y 0.000** 0.000** 0.000** 0.000** 0.000**
10y,3y,7y 0.000** 0.000** 0.000** 0.000** 0.000**
10y,5y,7y 0.000** 0.000** 0.000** 0.000** 0.000**
3m,1y,3y 0.080 0.000** 0.000** 0.000** 0.000**
3m,1y,5y 0.053 0.000** 0.000** 0.000** 0.000**
3m,1y,7y 0.037* 0.000** 0.000** 0.000** 0.000**
3m,3y,5y 0.000** 0.000** 0.000** 0.000** 0.000**
3m,3y,7y 0.000** 0.000** 0.000** 0.000** 0.001**
3m,5y,7y 0.000** 0.000** 0.000** 0.000** 0.000**
1y,3y,5y 0.000** 0.000** 0.000** 0.000** 0.000**
1y,3y,7y 0.000** 0.000** 0.000** 0.000** 0.003**
1y,5y,7y 0.000** 0.000** 0.000** 0.000** 0.000**
3y,5y,7y 0.000** 0.000** 0.000** 0.000** 0.000**

Table 5: In-sample tests of null hypothesis that contemporaneous values for Y2t do not help predict
other elements of Y2t once Y1t is included in the regression for alternative specifications of Y1t.
Table entries report p-values, with * denoting rejection at the 5% level, and ** rejection at the 1%
level. Individual columns report predictability for individual elements of Y2t. Regressions estimated
1983:M1-2002:M7. 30



Specification of Y1t Out-of-sample improvement in MSE
4th 5th 6th 7th 8th

6m,2y,10y 36%** 32%** 64%** 68%** 44%**
6m,2y,3m 98%** -267% 89%** 98%** 98%**
6m,2y,1y 98%** 19%** 93%** 98%** 99%**
6m,2y,3y 92%** 22%** 8%** 80%** 91%**
6m,2y,5y 69%** 28%** 25%** 6%* 63%**
6m,2y,7y 29%** 27%** 32%** 48%** 51%**
6m,10y,3m 98%** -17%** 99%** 94%** 79%**
6m,10y,1y 96%** 1%* 98%** 92%** 72%**
6m,10y,3y 47%** 45%** 46%** 28%** 29%**
6m,10y,5y 88%** 49%** 36%** 84%** 16%**
6m,10y,7y 96%** 56%** 43%** 97%** 82%**
6m,3m,1y 98%** 99%** 99%** 99%** 99%**
6m,3m,3y 71%** 97%** -515% 94%** 97%**
6m,3m,5y 95%** 88%** -155%** 95%** 76%**
6m,3m,7y 97%** 64%** -73%** 97%** 81%**
6m,1y,3y 74%** 97%** 11%** 95%** 97%**
6m,1y,5y 93%** 86%** 4%** 93%** 75%**
6m,1y,7y 95%** 56%** 1%* 96%** 77%**
6m,3y,5y 8%** 63%** 37%** 33%** 63%**
6m,3y,7y 30%** 22%** 34%** 43%** 26%**
6m,5y,7y 91%** 46%** 26%** -1%** 90%**
2y,10y,3m 79%** 73%** 75%** 74%** 54%**
2y,10y,1y 69%** 76%** 54%** 60%** 35%**
2y,10y,3y 94%** 87%** 76%** -17%* 18%**
2y,10y,5y 96%** 90%** 85%** 43%** 17%**
2y,10y,7y 97%** 92%** 87%** 73%** 60%**
2y,3m,1y 16%** 98%** 92%** 98%** 99%**
2y,3m,3y 67%** 92%** 57%** 81%** 91%**
2y,3m,5y 75%** 71%** 67%** 29%** 62%**
2y,3m,7y 75%** 36%** 69%** 59%** 51%**
2y,1y,3y 56%** 91%** 71%** 82%** 92%**
2y,1y,5y 66%** 65%** 74%** -6% 65%**
2y,1y,7y 71%** 17%** 75%** 41%** 50%**
2y,3y,5y 94%** 69%** 86%** 79%** 65%**
2y,3y,7y 94%** 30%** 85%** 79%** 12%**
2y,5y,7y 96%** 35%** 89%** 87%** 50%**
10y,3m,1y 13%** 96%** 98%** 92%** 74%**
10y,3m,3y 85%** 69%** 83%** 39%** 39%**
10y,3m,5y 88%** 93%** 86%** 87%** 20%**
10y,3m,7y 92%** 98%** 91%** 98%** 86%**
10y,1y,3y 76%** 17%** 80%** 15%** 21%**
10y,1y,5y 70%** 85%** 78%** 85%** 13%**
10y,1y,7y 71%** 93%** 78%** 95%** 78%**
10y,3y,5y 98%** 76%** 93%** 93%** 18%**
10y,3y,7y 98%** 80%** 94%** 94%** 29%**
10y,5y,7y 99%** 96%** 95%** 97%** 89%**
3m,1y,3y -3% 73%** 97%** 95%** 97%**
3m,1y,5y 4%** 93%** 86%** 93%** 73%**
3m,1y,7y 4%** 95%** 59%** 96%** 76%**
3m,3y,5y 81%** 46%** 63%** 77%** 63%**
3m,3y,7y 80%** 55%** 25%** 78%** 25%**
3m,5y,7y 80%** 92%** 39%** 76%** 90%**
1y,3y,5y 71%** -3% 64%** 76%** 65%**
1y,3y,7y 77%** 12%** 16%** 78%** 25%**
1y,5y,7y 63%** 91%** 49%** 68%** 91%**
3y,5y,7y 98%** 74%** 20%** 93%** 94%**

Table 6: Out-of-sample tests of null hypothesis that contemporaneous values for Y2t do not help
predict other elements of Y2t once Y1t is included in the regression for alternative specifications of

Y1t. Table entries report percent improvement in MSE for equation that includes Y
(n)
2t over equation

that does not for Y
(n)
2t the elements of Y2t other than that on the left-hand side of the regression.

Asterisk (*) denotes Clark-West statistic leads to rejection of the null hypothesis of no improvement
in the forecast at the 5% level, while ** denotes rejection at 1% level. Based on recursive regressions
generating out-of-sample forecasts for 2002:M8-2007:M7.

31



Number of Predictability tests
principal components 4th 5th 6th 7th 8th

m = 3 0.000** 0.000** 0.000** 0.000** 0.000**
m = 4 0.000** 0.000** 0.000** 0.000**
m = 5 0.000** 0.000** 0.000**
m = 6 0.000** 0.000**
m = 7 0.000**

Table 7: In-sample tests of null hypothesis that lagged Yt−1 does not help predict once m contem-
poraneous principal components are included in the regression. The row m, column j entry reports
p-value for predicting the jth principal component zjt when the contemporaneous values of the first
m principal components are included. Regressions estimated 1983:M1-2002:M7.

Number of Predictability tests
principal components 4th 5th 6th 7th 8th

m = 3 75%** 6%** 44%** 65%** 39%**
m = 4 11%** 44%** 66%** 33%**
m = 5 41%** 71%** 34%**
m = 6 68%** 36%**
m = 7 36%**

Table 8: Out-of-sample tests of null hypothesis that lagged Yt−1 does not help predict once m
contemporaneous principal components are included in the regression. The row m, column j entry
reports the percent improvement in MSE for predicting the jth principal component zjt when the
contemporaneous values of the first m principal components are included. Asterisk (*) indicates that
the Clark-West statistic leads to rejection of the null hypothesis of no improvement in the forecast
at the 5% level, while ** denotes rejection at 1% level. Based on recursive regressions generating
out-of-sample forecasts for 2002:M8-2007:M7.

lag length interaction likelihood ratio test AIC BIC
k = 12 dependent – -3094 -2038
k = 12 independent κ2 (6) = 15.9

(p=0.0141)∗
-3090 -2054

k = 1 dependent κ2 (220) = 442.3265
(p=0.0000)∗∗

-3090 -2783

k = 1 independent κ2 (226) = 463.6942
(p=0.0000)∗∗

-3080 -2794

Table 9: In-sample comparison of macro-finance models with different independence and lag length
assumptions. First column reports likelihood ratio tests (p-value in parentheses) for testing indicated
row against the first row. AIC = Akaike Information Criterion, and BIC = Schwarz Criterion, with
bold indicating the preferred specification by that criterion. Regressions estimated 1983:M1-2002:M7.
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lag length interaction 6m 2y 10y 3m 1y 3y 5y 7y
k = 12 dependent 0.025 0.077 0.092 0.038 0.035 0.095 0.104 0.099
k = 12 independent 0.026 0.077 0.092 0.040 0.035 0.094 0.104 0.099
k = 1 dependent 0.013 0.054 0.078 0.027 0.024 0.073 0.088 0.088
k = 1 independent 0.015 0.059 0.082 0.028 0.023 0.079 0.093 0.092

Table 10: Post-sample comparison of macro finance models with different independence and lag
length assumptions. Table entry is out-of-sample MSE for one-month-ahead forecast of the indi-
cated yield on the basis of the indicated specification, with bold indicating the best out-of-sample
performance for that variable. Based on recursive regressions generating out-of-sample forecasts for
2002:M8-2007:M7.
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