Discussion of "Real-time forwardlooking skewness over the business cycle"

James D. Hamilton, UCSD

Summarizing conditional distribution

Conditional mean $E_t y_{t+1}$

(↓ says distribution center of mass shifted left)
Conditional variance E_t(y_{t+1} - E_ty_{t+1})²
(↑ says something big may happen)
Conditional skew E_t(y_{t+1} - E_ty_{t+1})³/[E_t(y_{t+1} - E_ty_{t+1})²]^{3/2}
(↓ says higher probability of left-tail event)

Distribution of annual sales growth across U.S. firms

Distribution of real GDP quarterly growth (at annual rates) in NBER expansions and contractions (1947:Q2-2019:Q4)

	Expansions	Contractions
Mean	4.0	-1.4
Standard deviation	3.0	3.5
Skew	0.9	-1.6

Growth in expansions: $N(\mu_1, \sigma^2)$ Growth in recessions: $N(\mu_2, \sigma^2)$ $\mu_1 = 4.0, \ \mu_2 = -1.4, \ \sigma = 3.0$ Probability of recession: π Density of next quarter's growth: $\pi \cdot N(\mu_2, \sigma^2) + (1 - \pi) \cdot N(\mu_1, \sigma^2)$

6

Distribution of GDP growth when probability of recession = 0.05

mean = 3.7, std dev = 3.2, skew = -0.2

Distribution of GDP growth when probability of recession = 0.2

mean = 2.9, std dev = 3.7, skew = -0.3

Distribution of GDP growth when probability of recession = 0.5

mean = 1.3, std dev = 4.0, skew = 0

Skew as a function of the probability that next quarter economy is in recession

Dew-Becker uses stock option prices to calculate

- Firm-level skew
 - Calculate skew for individual stock return, then take weighted average
- Market-level skew
 - Take weighted average of individual stock returns, then calculate skew
- Firm-level skew procyclical, market-level skew acyclical

- Weighted average of individual random variables that satisfy mixing condition would tend toward a Normal distribution (zero skew)
- However, stock returns are not mixing (there is a factor common to all)
- Weighted average uncovers this factor

 r_{it} = individual stock return r_{mt} = market return Dew-Becker: $r_{it} = r_{mt} + \varepsilon_{it}$ alternative: $r_{it} = \beta_i r_{mt} + \varepsilon_{it}$

Consider an asset that has a factor loading of 2 on the GDP recession factor $N(\mu_1, \sigma^2)$ in expansion $2 \cdot N(\mu_2, \sigma^2)$ in recession

Skew as a function of the probability that next quarter economy is in recession

- This might describe cyclical skew of fundamentals
 - Sales or dividend growth
- Cecchetti, Lam and Mark (AER, 1990)
 - If dividend growth shifts between two distributions, then stock returns shift between four distributions
 - In expansion, in recession, or transition up or down

• James Hamilton, "Why you should never use the Hodrick-Prescott Filter," REStat, 2018

Why you *should* use HP

- 1. Everybody else does it
- 2. Main conclusions don't change if I do it the right way
- I have to do something (skew is nonstationary)
- 4. HP is something

Conclusion: I have to use HP

- Autocorrelations and cross-autocorrelations of HP-filtered skew are summarizing properties of filter, not properties of skew
- Can easily calculate whether error I make forecasting firm skew 2 years ahead is correlated with error I make forecasting market skew 2 years ahead