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Traditional principal component
analysis

1) Figure out how to make each y;, stationary.
2) Calculate y;; = (v — 11:)/o;.

3) Find eigenvectors associated with
T ~ ~y

biggest eigenvalues of Q = 7! 2. V.¥.



Problems with step 1:

a) Sometimes not clear what
transformation to use.

b) Should we treat AR(1) with p = 0.99

completely differently from p = 17



Consider trying to forecast y;
using a linear function of its

m most recent values as of ¢ — 4:
Vit = a;‘Zi,t—h + Cit

/
Zi,t—h — (1 9yi,t—h 9yi,t—h—1 RN ,J/i,t—h—m+1)



Vit = a;‘Zi,t—h T Cit

Hamilton (REStat, 2018): for

a large range of nonstationary
processes

1) c;; IS stationary.

2) a; can be consistently estimated
by OLS.



Example 1: suppose Ay, Is stationary
(d=1).

Accounting identity:

Vit = Vit-h T Z}:OI AV

vi: can be written as linear function of
yi—n Plus something stationary.



Example 2: Suppose A%y, is stationary
(d = 2).

Accounting identity:

Vit = Vig-h + WAV + Zj-:ol(j + DA%
vir can be written as linear function of
Vien,Virn—1 PlUS something stationary.



Our proposal
1) Estimate by OLS y;; = a.z;,; + ci
forziyn = (1,YiehsVieeh-ts-- > Vieh-m+1) -
2) Calculate 5, = (yir — 0;zi 1)/

3) Find eigenvectors associated with
T ~ ~/

biggest eigenvalues of Q = 7! 2. .5

We suggest to use & = 2 years as
definition of cyclical component
Of Vit.



Verifying that this works

Step 1: Assume that true cyclical
components cy;,...,cn; satisfy

an approximate factor structure

with true factors fi;, ...,/

Step 2: Verify that principal components
estimated from OLS residuals ¢y;,..,¢n;
consistently estimate space spanned

by true factors fi;,..., 1. 10



Vit = Cit — Cit

If v > 0 uniformly in i and ¢, then

subject to normalization conditions,

fie > Jin Vit
T Zt_fzt — E(f;) forj <r
T‘IZ fzt > 0forj>r
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Should we expect that E(v2) — 0?
thll Vit (al é\{i)/ Ztil ZitZ;‘t(ai — é\51)
This is proportional to OLS Wald test

of the (correct) null hypothesis that
a; IS the true value.
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T
>, vi converges in distribution to some

O,(1) variable in a variety of stationary

and nonstationary settings.
2 WIS O
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Application 2. Large
macroeconomic data set

» Stock and Watson (JME 1999) found that
first PC of a set of 85 different measures
of real economic activity was best way to
use big data set to predict inflation.

* This evolved into the Chicago Fed
National Activity Index (CFNALI).
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* McCracken and Ng (JBES 2016)
developed FRED-MD data set

— output and income; labor market; housing;
consumption, orders, and inventories; money
and credit; interest and exchange rates;
prices; and stock market

— 134 variables in 2015:4 vintage
— continually updated

— McCracken and Ng selected a transformation
to make each variable stationary
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Log of industrial production
iIndex
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Purchasing managers index

PMI (level)

PMI (transformed)
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Unemployment rate

Unemployment (level) Unemployment (transformedinemployment (cyclical)
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Series as transformed by
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PC1 of transformed data and
CFNAI

PC1 of transformed series
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Cyclical components as
identified by regressions
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PC1
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Dealing with outliers

* Traditional approach to outliers:

— Calculate interquartile range of transformed
data

— If observation exceeds k times the
interquartile range, treat as missing

— CFNAI historically used k=6

— McCracken-Ng used k =10 and found 79
outliers in 22 different variables in 1960-2014
data set
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Our approach: if y;; is a random walk,
then c; = 3

i
Even if ¢;; Is very non-Gaussian, by CLT

0 Eit—h-

c;. 1S not far from Gaussian.
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We find outliers in ¢;; for only two variables
in this sample (total and nonborrowed
reserves during Great Recession).

We recommend not doing anything
special about outliers; just use data

as is.
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Our recommended procedure
makes no corrections for outliers
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* WWhen dataset is expanded to include
recent data, McCracken-Ng algorithm
identifies 40 outliers in 2020:4
observations alone

« CFNAI modified their treatment of outliers
to accommodate COVID observations

* Even so, the index value in 2020:4 for both
McCracken-Ng and CFNAI is a huge
outlier; must plot on new scale
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» Cyclical components using h = 24 show
outliers for only two variables in 2020:4

— Initial claims for unemployment insurance
— Number unemployed for 5 weeks or less

* We construct PC1 just as before with no
changes and no outlier corrections

* PC1 of cyclical components is plotted on
same scale before and after 2020
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Median R? for variables in group explained
by first and second cyclical PC, 1963-2022

Group 1.
Group 2.
Group 3.
Group 4.
Group 5.
Group 6.
Group 7.
Group 8.

Output and income

Labor market

Housing

Consumption, orders, and inventories
Money and credit

Interest and exchange rates

Prices

Stock market

HX1

0.72
0.55
0.19
0.36
0.08
0.05
0.00
0.19

HX1&2
0.75
0.60
0.37
0.70
0.19
0.52
0.64
0.37
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First and second cyclical PC, 1963-2022
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Evaluate forecasts similarly to Stock and Watson
(JME, 1999) and McCracken and Ng (JBES, 2016)

yt . = (1200/h) log(CPI;,,/CPI,)
yi = 7Fx +uly

P e Lyl oy TS S
Estimate through ¢ = T, forecast A

1+1+h-

Expanding windows, different
evaluation periods.
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Table 1: Mean squared forecast errors for different models

CPI IP
sample  horizon AR MN CF HX1 HX2 AR MN CF HX1 HX2

1970-1996 h=1 791 099 1.00 1.03 090 7673 094 097 096 1.02
h=6 426 0.77 082 080 0.88 38.66 093 091 083 0.79
h=12 532 0.62 070 074 133 2719 1.06 1.01 121 0.87

1997-2014 h=1 1226 1.04 1.03 1.02 1.09 5890 0.83 085 098 1.00
h=6 608 123 123 123 1.11 2261 094 093 1.05 1.12
h=12 421 122 122 128 117 2011 101 096 106 1.11

2015-2022 h=1 6.66 154 193 140 1.05 72745 095 172 1.04 0.98
h=6 334 190 262 203 1.04 12678 1.18 223 1.03 0.88
h=12 273 166 248 1.69 1.01 5540 1.18 232 087 0.83

Notes to Table 1. AR columns report simulated out-of-sample mean squared forecast error for
purely autoregressive model evaluated over three different out-of-sample periods. MN columns
report the MSE relative to the AR MSE when lags of the first principal component calculated using
the procedures in McCracken and Ng (2016) are added to the autoregression, with a value less than
one indicating the variable is useful for forecasting. CF columns report the relative MSE when lags
of the Chicago Fed National Activity Index are added to the autoregression, HX1 when lags of the
first principal component of the estimated cyclical components are added to the autoregression,
and HX2 when lags of the second principal component of the estimated cyclical components are
added to the autoregression.




