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Traditional principal component 
analysis

1) Figure out how to make each yit stationary.

2) Calculate y it  yit   i/ i.
3) Find eigenvectors associated with

biggest eigenvalues of   T1
t1
T y ty t

.
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Problems with step 1:

a) Sometimes not clear what

transformation to use.

b) Should we treat AR(1) with   0.99

completely differently from   1?
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Consider trying to forecast yit
using a linear function of its

m most recent values as of t  h:

yit   i
zi,th  cit

zi,th  1,yi,th,yi,th1, . . . ,yi,thm1
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yit   i
zi,th  cit

Hamilton (REStat, 2018): for

a large range of nonstationary

processes

1) cit is stationary.

2)  i can be consistently estimated

by OLS.
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Example 1: suppose yit is stationary

(d  1.

Accounting identity:

yit  yi,th  j0
h1 yi,tj

yit can be written as linear function of

yi,th plus something stationary.
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Example 2: Suppose 2yit is stationary

(d  2.

Accounting identity:

yit  yi,th  hyi,th  j0
h1

j  12yi,tj

yit can be written as linear function of

yi,th,yi,th1 plus something stationary.



Our proposal
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1) Estimate by OLS yit   i
zi,th  cit

for zi,th  1,yi,th,yi,th1, . . . ,yi,thm1.

2) Calculate y it  yit   i
zi,th/ i.

3) Find eigenvectors associated with

biggest eigenvalues of   T1 t1
T y ty t

.

We suggest to use h  2 years as

definition of cyclical component

of yit.



Verifying that this works
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Step 1: Assume that true cyclical

components c1t, . . . ,cNt satisfy

an approximate factor structure

with true factors f1t, . . . , frt.

Bai and Ng (Ecta 2002)

Stock and Watson (JASA 2002)
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N1
Ct 

Nr


r1
Ft 

N1
et

N
lim sup t s

 |Eetets/N| 

N
lim sup t N1 i1

N  j1
N |Eeitejt| 

N
lim sup t,s N1

i1
N 

j1
N |coveiseit,ejsejt| 



Verifying that this works

Step 2: Verify that principal components

estimated from OLS residuals ĉ1t, . . , ĉNt

consistently estimate space spanned

by true factors f1t, . . . , frt.
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vit  ĉit  cit   i0   izit

If vit
m.s.
 0 uniformly in i and t, then

subject to normalization conditions,

fjt
p
 fjt j, t

T1
t1
T fjt

2 p
 Efjt

2 for j  r

T1
t1
T fjt

2 p
 0 for j  r
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Should we expect that Evit
2   0?

vit   i0   izit
single stationary regressor:

zit  Op1 i0   i  op1

single unit-root regressor:

T1/2zit  Op1 T1/2i0   i  op1
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General case:


t1
T vit

2   i0   i t1
T zitzit

  i0   i

This is proportional to OLS Wald test

of the (correct) null hypothesis that

 i0 is the true value.
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
t1
T vit

2 converges in distribution to some

Op1 variable in a variety of stationary

and nonstationary settings.

vit
2 m.s.
 0



Application 1. Term structure of 
interest rates
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Conventional PCA on levels:

y it  yit  y i/ i

N1

y t 
Nr


r1
Ft 

N1
e t

r1
F t 

rN



N1

y t
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Let  j  eigenvector of correlation

matrix of raw yields associated with

jth largest eigenvalue.

Consider plot of weights of  j as a

function of maturity of yield i.



Factor loadings for first 3 PC of raw yields 
as a function of maturity in months
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First PC of raw yields as a 
function of time
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ĉit  residual from OLS regression of

yit on 1,yi,t24,yi,t25, . . . ,yi,t35.

 j  eigenvector of correlation

matrix of ĉit associated with

jth largest eigenvalue.

Now plot elements of  j as a

function of maturity of yield i.



Factor loadings for first 3 PC of cyclical 
components of yields
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First principal component of raw yields 
and cyclical component of yields
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• For this application, PCA on levels works 
fine because all variables share the same 
trend component.

• Principal components capture both level 
and trend.

• If we mix U.S. nominal interest rates with 
other variables that have different trends, 
nonstationarity is bigger concern.
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Application 2. Large 
macroeconomic data set

• Stock and Watson (JME 1999) found that 
first PC of a set of 85 different measures 
of real economic activity was best way to 
use big data set to predict inflation.

• This evolved into the Chicago Fed 
National Activity Index (CFNAI).
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• McCracken and Ng (JBES 2016) 
developed FRED-MD data set
– output and income; labor market; housing; 

consumption, orders, and inventories; money 
and credit; interest and exchange rates; 
prices; and stock market

– 134 variables in 2015:4 vintage

– continually updated

– McCracken and Ng selected a transformation 
to make each variable stationary
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Log of industrial production 
index
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Purchasing managers index
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Unemployment rate
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Series as transformed by 
McCracken and Ng
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PC1 of transformed data and 
CFNAI
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Cyclical components as 
identified by regressions
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PC1 of transformed data and of 
cyclical components
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Dealing with outliers

• Traditional approach to outliers:
– Calculate interquartile range of transformed 

data

– If observation exceeds k times the 
interquartile range, treat as missing

– CFNAI historically used k = 6

– McCracken-Ng used k =10 and found 79 
outliers in 22 different variables in 1960-2014 
data set
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Our approach is much more robust.

If it is one-month-ahead forecast error,

then two-year-ahead forecast error is


s0
23  isi,ts with  is  1 s if random walk.

Even if it is very Gaussian, s0
23  isi,ts

is much nearer Gaussian by CLT.
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One-month-ahead error forecasting

industrial production

April 2020: 13.2%
Sept 2008: 4.2%

Two-year ahead error:

April 2020: 20.7%
May 2009: 18.6%
May 1975: 17.6%
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We find outliers in ĉit in only two variables

in the 1960-2014 data set (nonborrowed and

total reserves in the Great Recession).

We recommend not doing anything special

with outliers, just use data as is.



Our recommended procedure 
makes no corrections for outliers
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• When dataset is expanded to include 
recent data, McCracken-Ng algorithm 
identifies 40 outliers in 2020:4 
observations alone

• CFNAI modified their treatment of outliers 
to accommodate COVID observations

• Even so, the index value in 2020:4 for both 
McCracken-Ng and CFNAI is a huge 
outlier; must plot on new scale
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• Cyclical components using h = 24 show 
outliers for only two variables in 2020:4
– Initial claims for unemployment insurance

– Number unemployed for 5 weeks or less

• We construct PC1 just as before with no 
changes and no outlier corrections

• PC1 of cyclical components is plotted on 
same scale before and after 2020
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Median R2 for variables in group explained 
by first and second cyclical PC, 1963-2022
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HX1 HX1&2
Group 1. Output and income 0.72 0.75
Group 2. Labor market 0.55 0.60
Group 3. Housing 0.19 0.37
Group 4. Consumption, orders, and inventories 0.36 0.70
Group 5. Money and credit 0.08 0.19
Group 6. Interest and exchange rates 0.05 0.52
Group 7. Prices 0.00 0.64
Group 8. Stock market 0.19 0.37



First and second cyclical PC, 1963-2023:2
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Evaluate forecasts similarly to Stock and Watson 
(JME, 1999) and McCracken and Ng (JBES, 2016)

yth
h  1200/h logCPIth/CPIt

yth
h  CFxt

CF  uth
m,h

xt
CF  1,yt1,yt1

1 , . . . ,yt5
1 , ftCF, ft1

CF , . . . , ft5
CF

Estimate through t  T1, forecast yT11h
h .

Expanding windows, different

evaluation periods.
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