Sign Restrictions, Structural Vector Autoregressions, and Useful Prior Information*

James D. Hamilton, UCSD

Aarhus University CREATES Lecture

November 10, 2015

*Based on joint research with Christiane Baumeister, University of Notre Dame

Can we give structural interpretation to VARs using only sign restrictions?

- Parameters only set identified: data cannot distinguish different models within set
- Frequentist methods
 - Awkward and computationally demanding [Moon, Schorfheide, and Granziera, 2013]
- Bayesian methods
 - Numerically simple [Rubio-Ramírez, Waggoner, and Zha (2010)]
 - For some questions, estimate reflects only the prior [Poirier (1998); Moon and Schorfheide (2012)]

Today's lecture

- Calculate small-sample and asymptotic Bayesian posterior distributions for partially identified structural VAR
- Characterize regions of parameter space about which data are uninformative
- Explicate the prior that is implicit in traditional sign-restricted structural VAR algorithms
- Propose that researchers use informative priors and report difference between prior and posterior distributions
- Illustrate with simple model of labor market
- Code available at http://econweb.ucsd.edu/~jhamilton/BHcode.zip

Outline

- 1. Bayesian inference for partially identified structural VARs
- 2. Implicit priors in traditional approach
- 3. Empirical application: shocks to labor supply and demand

1. Bayesian inference for partially identified structural vector autoregressions

Structural model of interest:

$$\mathbf{A} \mathbf{y}_{t} = \mathbf{\lambda} + \mathbf{B}_{1} \mathbf{y}_{t-1} + \cdots + \mathbf{B}_{m} \mathbf{y}_{t-m} + \mathbf{u}_{t}$$

$$(n \times n)_{(n \times 1)}$$

$$\mathbf{u}_t \sim \text{i.i.d. } N(\mathbf{0}, \mathbf{D})$$

D diagonal

Example: demand and supply

$$q_{t} = k^{d} + \beta^{d} p_{t} + b_{11}^{d} p_{t-1} + b_{12}^{d} q_{t-1} + b_{21}^{d} p_{t-2} + b_{22}^{d} q_{t-2} + \dots + b_{m1}^{d} p_{t-m} + b_{m2}^{d} q_{t-m} + u_{t}^{d}$$

$$q_{t} = k^{s} + \alpha^{s} p_{t} + b_{11}^{s} p_{t-1} + b_{12}^{s} q_{t-1} + b_{21}^{s} p_{t-2} + b_{22}^{s} q_{t-2} + \dots + b_{m1}^{s} p_{t-m} + b_{m2}^{s} q_{t-m} + u_{t}^{s}$$

$$\mathbf{A} = \begin{bmatrix} -\beta^{d} & 1 \\ -\alpha^{s} & 1 \end{bmatrix}$$

Reduced-form (can easily estimate):

$$\mathbf{y}_{t} = \mathbf{c} + \mathbf{\Phi}_{1} \mathbf{y}_{t-1} + \cdots + \mathbf{\Phi}_{m} \mathbf{y}_{t-m} + \mathbf{\epsilon}_{t}$$

$$\mathbf{\epsilon}_{t} \sim \text{i.i.d. } N(\mathbf{0}, \mathbf{\Omega})$$

$$\mathbf{\hat{\Phi}}_{T} = \left(\sum_{t=1}^{T} \mathbf{y}_{t} \mathbf{x}_{t-1}^{\prime}\right) \left(\sum_{t=1}^{T} \mathbf{x}_{t-1} \mathbf{x}_{t-1}^{\prime}\right)^{-1}$$

$$\mathbf{x}_{t-1}^{\prime} = \left(1, \mathbf{y}_{t-1}^{\prime}, \mathbf{y}_{t-2}^{\prime}, \dots, \mathbf{y}_{t-m}^{\prime}\right)^{\prime}$$

$$\mathbf{\Phi} = \begin{bmatrix} \mathbf{c} & \mathbf{\Phi}_{1} & \mathbf{\Phi}_{2} & \cdots & \mathbf{\Phi}_{m} \end{bmatrix}$$

$$\mathbf{\hat{\epsilon}}_{t} = \mathbf{y}_{t} - \mathbf{\hat{\Phi}}_{T} \mathbf{x}_{t-1}$$

$$\mathbf{\hat{\Omega}}_{T} = T^{-1} \sum_{t=1}^{T} \mathbf{\hat{\epsilon}}_{t} \mathbf{\hat{\epsilon}}_{t}^{\prime}$$

Structural model:

$$\mathbf{A}\mathbf{y}_{t} = \mathbf{\lambda} + \mathbf{B}_{1}\mathbf{y}_{t-1} + \cdots + \mathbf{B}_{m}\mathbf{y}_{t-m} + \mathbf{u}_{t}$$

 $\mathbf{u}_{t} \sim \text{i.i.d. } N(\mathbf{0}, \mathbf{D}) \quad \mathbf{D} \text{ diagonal}$

Reduced form:

$$\mathbf{y}_{t} = \mathbf{c} + \mathbf{\Phi}_{1} \mathbf{y}_{t-1} + \cdots + \mathbf{\Phi}_{m} \mathbf{y}_{t-m} + \mathbf{\varepsilon}_{t}$$
 $\mathbf{\varepsilon}_{t} \sim \text{i.i.d. } N(\mathbf{0}, \mathbf{\Omega})$
 $\mathbf{\varepsilon}_{t} = \mathbf{A}^{-1} \mathbf{u}_{t}$
 $\mathbf{A} \mathbf{\Omega} \mathbf{A}' = \mathbf{D} \quad \text{(diagonal)}$

Problem: there are more unknown elements in **D** and **A** than in Ω .

Supply and demand example:

4 structural parameters in A, D

$$(\alpha^{s}, \beta^{d}, d_{11}, d_{22})$$

only 3 parameters known from Ω

$$(\omega_{11}, \omega_{12}, \omega_{22})$$

We can achieve partial identification from

$$\alpha^s \geq 0, \ \beta^d \leq 0$$

Structural model:

$$\mathbf{A}\mathbf{y}_{t} = \mathbf{\lambda} + \mathbf{B}_{1}\mathbf{y}_{t-1} + \cdots + \mathbf{B}_{m}\mathbf{y}_{t-m} + \mathbf{u}_{t}$$

 $\mathbf{u}_{t} \sim \text{i.i.d. } N(\mathbf{0}, \mathbf{D})$ **D** diagonal
Intuition for results that follow:

If we knew row i of \mathbf{A} (denoted \mathbf{a}'_i), then we could estimate coefficients for ith structural equation (\mathbf{b}_i) by

$$\hat{\mathbf{b}}_{i} = \left(\sum_{t=1}^{T} \mathbf{x}_{t-1} \mathbf{x}'_{t-1}\right)^{-1} \left(\sum_{t=1}^{T} \mathbf{x}_{t-1} \mathbf{y}'_{t} \mathbf{a}_{i}\right) = \hat{\mathbf{\Phi}}'_{T} \mathbf{a}_{i}$$

$$\hat{d}_{ii} = T^{-1} \sum_{t=1}^{T} \hat{u}_{t}^{2} = \mathbf{a}'_{i} \hat{\mathbf{\Omega}}_{T} \mathbf{a}_{i} \quad \hat{\mathbf{D}} = \operatorname{diag}(\mathbf{A} \hat{\mathbf{\Omega}}_{T} \mathbf{A}')$$

Consider Bayesian approach where we begin with arbitrary prior $p(\mathbf{A})$ E.g., prior beliefs about supply and demand elasticities in the form of joint density $p(\alpha^s, \beta^d)$

$$\mathbf{A} = \begin{bmatrix} -\beta^d & 1 \\ -\alpha^s & 1 \end{bmatrix}$$

 $p(\mathbf{A})$ could also impose sign restrictions, zeros, or assign small but nonzero probabilities to violations of these constraints.

Will use natural conjugate priors for other parameters:

$$p(\mathbf{D}|\mathbf{A}) = \prod_{i=1}^{n} p(d_{ii}|\mathbf{A})$$

$$d_{ii}^{-1}|\mathbf{A} \sim \Gamma(\kappa_{i}, \tau_{i})$$

$$E(d_{ii}^{-1}|\mathbf{A}) = \kappa_{i}/\tau_{i}$$

$$Var(d_{ii}^{-1}|\mathbf{A}) = \kappa_{i}/\tau_{i}^{2}$$

uninformative priors: $\kappa_i, \tau_i \rightarrow 0$

$$\mathbf{B} = \left[\begin{array}{ccccc} \boldsymbol{\lambda} & \mathbf{B}_1 & \mathbf{B}_2 & \cdots & \mathbf{B}_m \end{array} \right]$$

$$p(\mathbf{B}|\mathbf{D},\mathbf{A}) = \prod_{i=1}^{n} p(\mathbf{b}_i|\mathbf{D},\mathbf{A})$$

$$\mathbf{b}_i | \mathbf{A}, \mathbf{D} \sim N(\mathbf{m}_i, d_{ii} \mathbf{M}_i)$$

uninformative priors: $\mathbf{M}_i^{-1} \rightarrow \mathbf{0}$

Recommended default priors (Minnesota prior)

Doan, Litterman, Sims (1984)

Sims and Zha (1998)

elements of m_i corresponding to

lag 1 given by \mathbf{a}_i

- all other elements of m_i are zero
- M_i diagonal with smaller values on

bigger lags

⇒ prior belief that each element of

y, behaves like a random walk

 τ_i function of **A** (or prior mode of $p(\mathbf{A})$) and scale of data

Likelihood:

$$p(\mathbf{Y}_{T}|\mathbf{A},\mathbf{D},\mathbf{B}) = (2\pi)^{-Tn/2}|\det(\mathbf{A})|^{T}|\mathbf{D}|^{-T/2} \times \exp\left[-(1/2)\sum_{t=1}^{T}(\mathbf{A}\mathbf{y}_{t} - \mathbf{B}\mathbf{x}_{t-1})'\mathbf{D}^{-1}(\mathbf{A}\mathbf{y}_{t} - \mathbf{B}\mathbf{x}_{t-1})\right]$$

prior:

$$p(\mathbf{A}, \mathbf{D}, \mathbf{B}) = p(\mathbf{A})p(\mathbf{D}|\mathbf{A})p(\mathbf{B}|\mathbf{A}, \mathbf{D})$$
 posterior:

$$p(\mathbf{A}, \mathbf{D}, \mathbf{B}|\mathbf{Y}_T) = \frac{p(\mathbf{Y}_T|\mathbf{A}, \mathbf{D}, \mathbf{B})p(\mathbf{A}, \mathbf{D}, \mathbf{B})}{\int p(\mathbf{Y}_T|\mathbf{A}, \mathbf{D}, \mathbf{B})p(\mathbf{A}, \mathbf{D}, \mathbf{B})d\mathbf{A}d\mathbf{D}d\mathbf{B}}$$
$$= p(\mathbf{A}|\mathbf{Y}_T)p(\mathbf{D}|\mathbf{A}, \mathbf{Y}_T)p(\mathbf{B}|\mathbf{A}, \mathbf{D}, \mathbf{Y}_T)$$

Exact Bayesian posterior distribution (all T):

$$\begin{aligned} \mathbf{b}_{i}|\mathbf{A},\mathbf{D},\mathbf{Y}_{T} &\sim N(\mathbf{m}_{i}^{*},d_{ii}\mathbf{M}_{i}^{*}) \\ \mathbf{\tilde{Y}}_{i}^{'} &= (\mathbf{a}_{i}^{'}\mathbf{y}_{1},\ldots,\mathbf{a}_{i}^{'}\mathbf{y}_{T},\mathbf{m}_{i}^{'}\mathbf{P}_{i}) \\ [1\times(T+k)] \\ \mathbf{\tilde{X}}_{i}^{'} &= \begin{bmatrix} \mathbf{x}_{0} & \cdots & \mathbf{x}_{T-1} & \mathbf{P}_{i} \end{bmatrix} \\ \mathbf{m}_{i}^{*} &= (\mathbf{\tilde{X}}_{i}^{'}\mathbf{\tilde{X}}_{i})^{-1}(\mathbf{\tilde{X}}_{i}^{'}\mathbf{\tilde{y}}_{i}) \\ \mathbf{M}_{i}^{*} &= (\mathbf{\tilde{X}}_{i}^{'}\mathbf{\tilde{X}}_{i})^{-1} & \mathbf{P}_{i}\mathbf{P}_{i}^{'} &= \mathbf{M}_{i}^{-1} \\ \text{If uninformative prior } (\mathbf{M}_{i}^{-1} &= \mathbf{0}) \\ \text{then } \mathbf{m}_{i}^{*'} &= \mathbf{a}_{i}^{'}\mathbf{\hat{\Phi}}_{T} \end{aligned}$$

Frequentist interpretation of Bayesian posterior distribution as $T \to \infty$: If prior on **B** is not dogmatic (that is, if \mathbf{M}_{i}^{-1} is finite), then $\mathbf{m}_{i}^{*} \stackrel{p}{\rightarrow} \left[E(\mathbf{x}_{t-1}\mathbf{x}_{t-1}^{\prime}) \right]^{-1} E(\mathbf{x}_{t-1}\mathbf{y}_{t}^{\prime}) \mathbf{a}_{i} = \mathbf{\Phi}_{0}^{\prime} \mathbf{a}_{i}$ $\mathbf{M}_{i}^{*} \stackrel{p}{\rightarrow} \mathbf{0}$ $\mathbf{b}_i | \mathbf{A}, \mathbf{D}, \mathbf{Y}_T \stackrel{p}{\to} \mathbf{\Phi}_0' \mathbf{a}_i$

Posterior distribution for **D** | **A**

$$d_{ii}^{-1}|\mathbf{A}, \mathbf{Y}_{T} \sim \Gamma(\kappa_{i} + (T/2), \tau_{i} + (\zeta_{i}^{*}/2))$$

$$\zeta_{i}^{*} = (\mathbf{\tilde{Y}}_{i}^{'}\mathbf{\tilde{Y}}_{i}) - (\mathbf{\tilde{Y}}_{i}^{'}\mathbf{\tilde{X}}_{i})(\mathbf{\tilde{X}}_{i}^{'}\mathbf{\tilde{X}}_{i})^{-1}(\mathbf{\tilde{X}}_{i}^{'}\mathbf{\tilde{Y}}_{i})$$
If $\mathbf{M}_{i}^{-1} = \mathbf{0}$, $\zeta_{i}^{*} = T\mathbf{a}_{i}^{'}\mathbf{\hat{\Omega}}_{T}\mathbf{a}_{i}$

$$\mathbf{\hat{\Omega}}_{T} = T^{-1}\sum_{t=1}^{T}\mathbf{\hat{\varepsilon}}_{t}\mathbf{\hat{\varepsilon}}_{t}, \quad \mathbf{\hat{\varepsilon}}_{t} = \mathbf{y}_{t} - \mathbf{\hat{\Phi}}\mathbf{x}_{t-1}$$
($\mathbf{\hat{\varepsilon}}_{t}$ are unrestricted OLS residuals)

If priors on **B** and **D** are not dogmatic (that is, if \mathbf{M}_{i}^{-1} , κ_{i} , τ_{i} are all finite) then $\zeta_{i}^{*}/T \stackrel{p}{\to} \mathbf{a}_{i}' \mathbf{\Omega}_{0} \mathbf{a}_{i}$ $\mathbf{\Omega}_{0} = E(\mathbf{y}_{t} \mathbf{x}_{t-1}') - E(\mathbf{y}_{t} \mathbf{x}_{t-1}') \{E(\mathbf{x}_{t} \mathbf{x}_{t}')\}^{-1} E(\mathbf{x}_{t-1} \mathbf{y}_{t}')$ $d_{ii}|\mathbf{A}, \mathbf{Y}_{T} \stackrel{p}{\to} \mathbf{a}_{i}' \mathbf{\Omega}_{0} \mathbf{a}_{i}$

Posterior distribution for A

$$p(\mathbf{A}|\mathbf{Y}_T) = \frac{k_T p(\mathbf{A}) [\det(\mathbf{A}\hat{\mathbf{\Omega}}_T \mathbf{A}')]^{T/2}}{\prod_{i=1}^n [(2\tau_i/T) + (\zeta_i^*/T)]^{\kappa_i + T/2}}$$

 k_T = constant that makes this integrate to 1 $p(\mathbf{A})$ = prior

If
$$\mathbf{M}_i^{-1} = \mathbf{0}$$
, and $\tau_i = \kappa_i = 0$,

$$p(\mathbf{A}|\mathbf{Y}_T) = \frac{k_T p(\mathbf{A}) |\det(\mathbf{A}\hat{\mathbf{\Omega}}_T \mathbf{A}')|^{T/2}}{\left\{\det\left[\operatorname{diag}(\mathbf{A}\hat{\mathbf{\Omega}}_T \mathbf{A}')\right]\right\}^{T/2}}$$

$$p(\mathbf{A}|\mathbf{Y}_T) = \frac{k_T p(\mathbf{A}) |\det(\mathbf{A}\hat{\mathbf{\Omega}}_T \mathbf{A}')|^{T/2}}{\left\{\det\left[\operatorname{diag}(\mathbf{A}\hat{\mathbf{\Omega}}_T \mathbf{A}')\right]\right\}^{T/2}}$$

If evaluated at **A** for which $\mathbf{A}\hat{\mathbf{\Omega}}_T\mathbf{A}' = \text{diag}(\mathbf{A}\hat{\mathbf{\Omega}}_T\mathbf{A}'),$ $p(\mathbf{A}|\mathbf{Y}_T) = k_Tp(\mathbf{A})$

$$p(\mathbf{A}|\mathbf{Y}_T) = \frac{k_T p(\mathbf{A}) |\det(\mathbf{A}\hat{\mathbf{\Omega}}_T \mathbf{A}')|^{T/2}}{\left\{\det\left[\operatorname{diag}(\mathbf{A}\hat{\mathbf{\Omega}}_T \mathbf{A}')\right]\right\}^{T/2}}$$

Hadamard's Inequality:

If evaluated at A for which

$$\mathbf{A}\hat{\mathbf{\Omega}}_{T}\mathbf{A}' \neq \operatorname{diag}(\mathbf{A}\hat{\mathbf{\Omega}}_{T}\mathbf{A}'),$$

 $\operatorname{det}\left[\operatorname{diag}(\mathbf{A}\hat{\mathbf{\Omega}}_{T}\mathbf{A}')\right] > \operatorname{det}(\mathbf{A}\hat{\mathbf{\Omega}}_{T}\mathbf{A}')$
 $p(\mathbf{A}|\mathbf{Y}_{T}) \rightarrow 0$

$$p(\mathbf{A}|\mathbf{Y}_T) \to \begin{cases} kp(\mathbf{A}) & \text{if } \mathbf{A} \in S(\mathbf{\Omega}_0) \\ 0 & \text{otherwise} \end{cases}$$

$$S(\Omega_0) = \{ \mathbf{A} : \mathbf{A}\Omega_0\mathbf{A}' \text{ diagonal} \}$$

$$\mathbf{\Omega}_0 = E(\mathbf{y}_t \mathbf{x}'_{t-1}) - E(\mathbf{y}_t \mathbf{x}'_{t-1}) \{ E(\mathbf{x}_t \mathbf{x}'_t) \}^{-1} E(\mathbf{x}_{t-1} \mathbf{y}'_t)$$

Special case: if model is point-identified (so that $S(\Omega)$ consists of a single point), then posterior distribution converges to a point mass at true **A**

2. Prior beliefs that are implicit in the traditional approach

Alternatively could specify priors in terms of impact matrix:

$$\mathbf{y}_{t} = \mathbf{\Phi} \mathbf{x}_{t-1} + \mathbf{H} \mathbf{u}_{t}$$
$$\mathbf{H} = \frac{\partial \mathbf{y}_{t}}{\partial \mathbf{u}'_{t}} = \mathbf{A}^{-1}$$

We found solution for all priors on \mathbf{A} and joint for $p(\mathbf{A}, \mathbf{D})$ when $\mathbf{D}|\mathbf{A}$ is natural conjugate.

Traditional approach best understood as $p(\mathbf{H}|\mathbf{\Omega})$.

- (1) Calculate Cholesky factor $\Omega = \mathbf{PP}'$.
- (2) Generate $(n \times n) \mathbf{X} = [x_{ij}]$ of N(0,1).
- (3) Find X = QR for Q orthogonal andR upper triangular.
- (4) Generate candidate $\mathbf{H} = \mathbf{PQ}$ and keep if it satisfies sign restrictions.

First column of \mathbf{Q} = first column of \mathbf{X} normalized to have unit length:

$$\begin{bmatrix} q_{11} \\ \vdots \\ q_{n1} \end{bmatrix} = \begin{bmatrix} x_{11}/\sqrt{x_{11}^2 + \dots + x_{n1}^2} \\ \vdots \\ x_{n1}/\sqrt{x_{11}^2 + \dots + x_{n1}^2} \end{bmatrix}$$

E.g., if n=2, $q_{11}=\cos\theta$ for θ the angle between (x_{11},x_{21}) and (1,0) while $q_{21}=\sin\theta$.

$$\mathbf{Q} = \begin{cases} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} & \text{with prob } 1/2 \\ \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} & \text{with prob } 1/2 \end{cases}$$

$$\theta \sim U(-\pi, \pi)$$

$$q_{i1} = x_{i1} / \sqrt{x_{11}^2 + \dots + x_{n1}^2}$$

$$\Rightarrow q_{i1}^2 \sim \text{Beta}(1/2, (n-1)/2)$$

$$p(q_{i1}) = \begin{cases} \frac{\Gamma(n/2)}{\Gamma(1/2)\Gamma((n-1)/2)} (1 - q_{i1}^2)^{(n-3)/2} & \text{if } q_{i1} \in [-1, 1] \\ 0 & \text{otherwise} \end{cases}$$

$$h_{11} = p_{11}q_{11} = \sqrt{\omega_{11}} q_{11}$$

Effect of one-standard deviation shock on variable i

Alternatively, we might want to normalize shock 1 as something that raises variable 1 by 1 unit:

$$h_{21}^* = \frac{h_{21}}{h_{11}} = \frac{p_{21}q_{11} + p_{22}q_{21}}{p_{11}q_{11}} = \frac{p_{21}}{p_{11}} + \frac{p_{22}}{p_{11}} \frac{x_{21}}{x_{11}}$$

e.g., response of quantity to demand shock that raises price by 1% is the short-run elasticity of supply

$$x_{21}/x_{11} \sim \text{Cauchy}(0,1)$$

$$\Rightarrow h_{ij}^* | \Omega \sim \text{Cauchy}(c_{ij}^*, \sigma_{ij}^*)$$

$$c_{ij}^* = \omega_{ij}/\omega_{jj}$$
 $\sigma_{ij}^* = \sqrt{\frac{\omega_{ii}-\omega_{ij}^2/\omega_{jj}}{\omega_{jj}}}$

Effect on variable i of shock that increases j by one unit

Effect on variable i of shock that increases j by one unit

Sign restrictions confine these distributions to particular regions but do not change their basic features.

$$\begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} = \begin{bmatrix} p_{11}\cos\theta & p_{11}\sin\theta \\ (p_{21}\cos\theta + p_{22}\sin\theta) & (p_{21}\sin\theta - p_{22}\cos\theta) \end{bmatrix}$$

variable 1 = price, variable 2 = quantity shock 1 = demand, 2 = supply

$$\left[\begin{array}{cc} h_{11} & h_{12} \\ h_{21} & h_{22} \end{array}\right] = \left[\begin{array}{cc} + & + & \\ + & - & \end{array}\right]$$

Can show if $p_{21} > 0$, sign restrictions require

$$\theta \in [0, \tilde{\theta}] \text{ for } \cot \tilde{\theta} = p_{21}/p_{22}$$

 $\Rightarrow h_{22}^* \in (-\infty, 0]$ (demand elasticity unrestricted)

 $h_{21}^* \in [\omega_{21}/\omega_{11}, \omega_{22}/\omega_{21}]$ (supply elasticity in certain range)

Apply traditional algorithm to 8-lag VAR fit to growth rates of U.S. real compensation per worker and U.S. employment, 1970:Q1-2014:Q2.

Implied elasticity of labor demand (= h22*)

Red = truncated Cauchy, blue = output of traditional algorithm

Implied elasticity of labor supply (= h21*)

Red = truncated Cauchy, blue = output of traditional algorithm

3. Application: Labor market dynamics

demand:

$$\Delta n_{t} = k^{d} + \beta^{d} \Delta w_{t} + b_{11}^{d} \Delta w_{t-1} + b_{12}^{d} \Delta n_{t-1} + b_{21}^{d} \Delta w_{t-2} + b_{22}^{d} \Delta n_{t-2} + \dots + b_{m1}^{d} \Delta w_{t-m} + b_{m2}^{d} \Delta n_{t-m} + u_{t}^{d}$$
supply:

$$\Delta n_t = k^s + \alpha^s \Delta w_t + b_{11}^s \Delta w_{t-1} + b_{12}^s \Delta n_{t-1} + b_{21}^s \Delta w_{t-2} + b_{22}^s \Delta n_{t-2} + \dots + b_{m1}^s \Delta w_{t-m} + b_{m2}^s \Delta n_{t-m} + u_t^s$$

What do we know from other sources about short-run wage elasticity of labor demand?

- Hamermesh (1996) survey of microeconometric studies: 0.1 to 0.75
- Lichter, et. al. (2014) meta-analysis of 942 estimates: lower end of Hamermesh range
- Theoretical macro models can imply value above 2.5 (Akerlof and Dickens, 2007; Gali, et. al. 2012)

Prior for β : Student t with location c_{β} , scale σ_{β} , d.f. v_{β} , truncated by $\beta \leq 0$

$$c_{\beta} = -0.6, \sigma_{\beta} = 0.6, v_{\beta} = 3$$

$$\Rightarrow \text{Prob}(\beta < -2.2) = 0.05$$

$$Prob(\beta > -0.1) = 0.05$$

What do we know from other sources about wage elasticity of labor supply?

- Long run: often assumed to be zero because income and substitution effects cancel (e.g., Kydland and Prescott, 1982)
- Short run: often interpreted as Frisch elasticity
- Reichling and Whalen survey of microeconometric studies: 0.27-0.53
- Chetty, et. al. (2013) review of 15 quasi-experimental studies: < 0.5
- Macro models often assume value greater than 2 (Kydland and Prescott, 1982, Cho and Cooley, 1994, Smets and Wouters, 2007)

Prior for α : Student t with location c_{α} , scale σ_{α} , d.f. v_{a} , truncated by $\alpha \geq 0$

$$c_{\alpha} = 0.6, \sigma_{\alpha} = 0.6, \nu_{\alpha} = 3$$

$$\Rightarrow \text{Prob}(\alpha < 0.1) = 0.05$$

$$Prob(\alpha > 2.2) = 0.05$$

We might also use information about longrun labor supply elasticity

Proposition: labor demand shock has zero long run effect on employment iff

$$0 = -\alpha^{s} - b_{11}^{s} - b_{21}^{s} - \dots - b_{m1}^{s}$$

Usual approach: impose this condition as untestable identifying assumption

Our suggestion: instead represent as prior belief,

$$(b_{11}^s + b_{21}^s + \dots + b_{m1}^s)|\mathbf{A}, \mathbf{D} \sim N(-\alpha^s, d_{22}V)$$

 $V = 0.1 \Rightarrow$ prior given same weight as 10 observations on \mathbf{y}_t

Prior and posterior distributions for short-run elasticities and long-run impact

Posterior medians and 95% credibility regions for structural impulse-response functions

