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Can we give structural interpretation
to VARs using only sign restrictions?

 Parameters only set identified: data cannot distinguish different
models within set

* Frequentist methods
 Awkward and computationally demanding [Moon, Schorfheide, and
Granziera, 2013]
e Bayesian methods
e Numerically simple [Rubio-Ramirez, Waggoner, and Zha (2010)]

e For some questions, estimate reflects only the prior [Poirier (1998); Moon and
Schorfheide (2012)]



Today’s lecture

e Calculate small-sample and asymptotic Bayesian posterior
distributions for partially identified structural VAR

e Characterize regions of parameter space about which data are
uninformative

e Explicate the prior that is implicit in traditional sign-restricted
structural VAR algorithms

e Propose that researchers use informative priors and report difference
between prior and posterior distributions

e |llustrate with simple model of labor market
e Code available at http://econweb.ucsd.edu/~jhamilton/BHcode.zip



Outline

1. Bayesian inference for partially identified structural VARs
2. Implicit priors in traditional approach
3. Empirical application: shocks to labor supply and demand



1. Bayesian inference for partially identified
structural vector autoregressions

Structural model of interest:

Ay, =A+Bwy,;+ - +Bmy,,+ Ut
(nxn)(nxl)

u: ~ I.I.d. N(O,D)
D diagona
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Reduced-form (can easily estimate):
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Structural model:

Ay, =A+B1y,;+ - +BmY,, + Ut
u: ~1..d. N(O,D) D diagonal
Reduced form:

YVi=C+D1y, , + - +DPnmy, ,, + &

gr ~ 1.1.d. N(O,Q)

g = A tuq

AQA' = D (diagonal)

Problem: there are more unknown
elements in D and A than in Q.



Supply and demand example:
4 structural parametersin A,D
(as, B9, d11,d2)
only 3 parameters known from Q
(@11,012,022)

We can achieve partial identification from
as>0, 9<0



Structural model:
Ay, =A+B1y, ;+ -+ BmY,, + Ut
u; ~1.I.d. N(O,D) D diagonal
Intuition for results that follow:

If we knew row i of A (denoted a;),
then we could estimate coefficients for
ith structural equation (bi) by

6i = (le Xt_lx{_l>_1<ZtT:1 xt_ly{ai> = &)’Tai

di = T—lth:l 02 = aQra; D =diag(AQtA")



Consider Bayesian approach where we
begin with arbitrary prior p(A)
E.g., prior beliefs about supply
and demand elasticities in the
form of joint density p(a®, 89)
—,Bd 1

—a> 1

A =




P(A) could also impose sign restrictions,
zeros, or assign small but nonzero
probabillities to violations of these
constraints.



Will use natural conjugate priors
for other parameters:

p(DIA) =[1., p(dii|A)

di*|A ~ T'(ki,7i)

E(d7YA) = kilti

Var(d:}|A) = kilt?
uninformative priors: «i,7; - 0



B:[x B, By - Bm]

p(BID,A) =[T", p(bi|D,A)

bilA,D ~ N(m;j,diM )
uninformative priors: M;t - 0



Recommended default priors (Minnesota prior)

Doan, Litterman, Sims (1984)
Sims and Zha (1998)

o elements of m; corresponding to
lag 1 given by a;

o all other elements of m; are zero

o M; diagonal with smaller values on
bigger lags

— prior belief that each element of
y, behaves like a random walk

7i function of A (or prior mode of p(A)) and
scale of data



Likelihood:
p(Y1|A,D,B) = (27) "?|det(A)|T|D[ % x
exp[ -(1/2) Y, (Ay, - Bxi1)' DAy, — Bx1) |

Orior:

0(A,D,B) = p(A)p(DIA)p(BIA,D)
nosterior:

0(A,D,BJY ;) = p(Y1]A.D.B)p(A.D,B)
Jp(YT|A,D,B)p(A,D,B)dAdDdB

= p(AlY 1)p(DIA,Y 1)p(BIA,D, Y 1)




Exact Bayesian posterior distribution (all T):
bi|A,D,Y-|- ~ N(mi*,diiM ,*)

~ |

Yi — (a:y]_;’aI/yT’m:P')
~ |
¥ :[ o xen P

- (%) (
Mi = (Xixi> PiPi = Mi*
If uninformative prior (M;* = 0)
then m?' = a/®r



Frequentist interpretation of Bayesian
posterior distribution as T - oo:

If prior on B Is not dogmatic

(that is, if Mt is finite), then

m; = [E(Xe1xp )] E(Xeaypai = ®oa
M* 50

bilA,D,Y > ®ha,



Posterior distribution for D|A

gl\A Y+ ~T(xi+ (T/2),1i + (cj,*/2))

- (V) - (W) (Rx) (xi¥
fM:1 =0, ¢ = TaQra
Qr=T" 1ZT €€, &t =Y, — OX1
(€; are unrestricted OLS residuals)



If priors on B and D are not dogmatic

(that is, if M%,«i,7; are all finite) then

CAT 5 alQoa

Qo = E(YXi1) - E(YXi){EXex)}  E(Xeayy)
dilA,Y 1 > alQoa



Posterior distribution for A

p(A ‘Y T) — kTp(A)[det(AQTA')] T2

[T, @rmecimsa

kt = constant that makes this integrate to 1
P(A) = prior
|f|\/|i_1 =0, and i = xj = 0,

kTp(A)|det(AQTA |72
P(AIY 1) = —RANEEA)
{ det| diag(AQTA") |}




krp(A)|det(AQTA")|T2
AlY ;) = —
P(A[Y 1) {det[oliag(AszA/)]}T’2

If evaluated at A for which
ASA)TA/ = diag(AszA’),
P(A]Y 1) = krp(A)



kTp(A)|det(AQTA (T2
p(A‘YT) — T .l A T, IT/2
{det| diag(AQTA") | }

Hadamard’s Inequality:

If evaluated at A for which
AQA' = diag(AQTA"),

det[ diag(AQTA") | > det(AQrA")

P(AlY 1) - O




" kp(A) ifA € S(Qo)

0 otherwise

P(AY 1) = <

.

S(Qo) ={A:AQoA' diagonal}

Qo = E(yX_1) — E(y X)) {E(XeXD) } T E(Xe-1y))



Special case: if model is point-identified (so that
S(Q2) consists of a single point), then posterior
distribution converges to a point mass at true A



2. Prior beliefs that are implicit in the

traditional approach
Alternatively could specify priors Iin

terms of impact matrix:
yt — (I)Xt_]_ + HUt

H=22 = Al

Ou
W e found solution for all priors on A
and joint for p(A,D) when DJA Is
natural conjugate.



Traditional approach best understood

as p(H|[Q).

(1) Calculate Cholesky factor Q = PP'.

(2) Generate (nx n) X = [X;j] of N(O,1).

(3) Find X = QR for Q orthogonal and
R upper triangular.

(4) Generate candidate H = PQ and

keep If it satisfies sign restrictions.



First column of Q = first column of X
normalized to have unit length:

J11

CInl

X11/ X3 + -+ + X3

Xntl (X3; + o+ + X5

E.g.,Ifn= 2, q11 = coso for 6 the
angle between (X11,X21) and (1,0)

while g21 = sIing.




T —

cosf —-sin@
| with prob 1/2
sind cosf
Q=< = —
cosf sing
| with prob 1/2
singd —coso
_ L _

0 ~U(-rm, )



di1 = Xil/‘/X%l + -+ xﬁl

= gy ~ Beta(1/2,(n - 1)/2)

g I'(n/2)

2\(n-3)/2 if A.
T(1/2)T((n-1)/2) (1- qil)(n e if dir € [-1,1]

P(di1) = <
0 otherwise

\~

hll = P11011 = y®11 (u1



Effect of one-standard deviation shock on variable i
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Alternatively, we might want to normalize shock 1 as
something that raises variable 1 by 1 unit:

« _ hor  p21Qutp2021 P2 n P22 X21
21 7 hyy P11011  Pu P11 X1

e.g., response of quantity to demand shock that raises
price by 1% is the short-run elasticity of supply
X21/X11 ~ Cauchy(O,l)

= hjlQ ~ Cauchy(cj, o}

wi—0 2 Wi
C' = wijlwj o :‘/ sl e

Wjj



Effect on variable i of shock that increases j by one unit
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Effect on variable i of shock that increases j by one unit
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Sign restrictions confine these distributions to particular regions
but do not change their basic features.



hi1 hoo P11 COSH P119N6
B No1 ho B (P21 COSH + P22 9NO) (P21 9NO — P22 COSH)

variable 1 = price, variable 2 = quantity
shock 1 = demand, 2 = supply

h11 h12 + +

B o1 hop + -

Can show if p,; > 0, sign restrictions require

0 < [0,0] for cot = poi/pa

= h3, € (—»,0] (demand elasticity unrestricted)

h;, € [wa1/w11,w22/@21] (SUpply elasticity in certain range)




Apply traditional algorithm to 8-lag VAR fit to growth rates of U.S. real
compensation per worker and U.S. employment, 1970:Q1-2014:Q2.



Implied elasticity of l[abor demand (= h22%*)

2
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Red = truncated Cauchy, blue = output of traditional algorithm



Implied elasticity of labor supply (= h21*)

Red = truncated Cauchy, blue = output of traditional algorithm



3. Application: Labor market dynamics

demand.:
ANy = kd + ﬂdAWt + b(lleWt—l + bngnt_l + bglAWt_z

+bhANs + -+ + bS AW m + b9, AN m + U
supply:
Any = K3+ oSAwW; + b3 AW 1 + b3AN 1 + b3 AW
+ b3ANe2 + .-+ + B2 AW m + DR, AN, + UP



What do we know from other sources about
short-run wage elasticity of labor demand?

e Hamermesh (1996) survey of microeconometric studies: 0.1 to 0.75

e Lichter, et. al. (2014) meta-analysis of 942 estimates: lower end of
Hamermesh range

e Theoretical macro models can imply value above 2.5 (Akerlof and
Dickens, 2007; Gali, et. al. 2012)



Prior for p: Student t with

location cg, scale o, d.f. vg,

truncated by g <0

csg = —0.6,053 = 0.6,vg =3

= Prob(p < -2.2) = 0.05
Prob(f > -0.1) = 0.05



What do we know from other sources about
wage elasticity of labor supply?

e Long run: often assumed to be zero because income and substitution
effects cancel (e.g., Kydland and Prescott, 1982)

e Short run: often interpreted as Frisch elasticity
e Reichling and Whalen survey of microeconometric studies: 0.27-0.53
e Chetty, et. al. (2013) review of 15 quasi-experimental studies: < 0.5

 Macro models often assume value greater than 2 (Kydland and
Prescott, 1982, Cho and Cooley, 1994, Smets and Wouters, 2007)



Prior for a: Student t with

location c,, scale o, d.f. va,

truncated by o > 0

C, = 0.6,0, =0.6,v, =3

= Prob(a < 0.1) = 0.05
Prob(a > 2.2) = 0.05



We might also use information about long-
run labor supply elasticity

Proposition: labor demand shock has

zero long run effect on employment iff

— S S S S
O=-a®-by —03 - =Dy

Usual approach: impose this condition
as untestable identifying assumption
Our suggestion: instead represent as
prior belief,

(b5, + b3, + - + b3)|A,D ~ N(—as,d2V)
V = 0.1 = prior given same weight

as 10 observations on y,



Prior and posterior distributions for short-run
elasticities and long-run impact
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Posterior medians and 95% credibility regions
for structural impulse-response functions
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