Granular Instrumental Variables

Discussion by James D. Hamilton

These slides available at http://econweb.ucsd.edu/ ~jhamilto/slides/ASSA_20220107_granular_IV.pdf

All variables measured in deviation from mean $q_{it} = \log of oil production in country i$ $p_t = \log of price of oil$ supply: $q_{it} = \phi^q p_t + \eta^q_t + u^q_{it}$ ϕ^q = elasticity of oil supply ($\phi^q > 0$) η_t^q = shock to supply that is common to all countries u_{it}^{q} = shock to supply that only affects *i*

$q_{t} = \log \text{ of total world oil production}$ $= \log \left(\sum_{i=1}^{N} \exp(q_{it}) \right)$ $\simeq \sum_{i=1}^{N} s_{i}^{q} q_{it}$ $s_{i}^{q} = \text{average share of country } i \text{ in world production}$ $\sum_{i=1}^{N} s_{i}^{q} = 1$

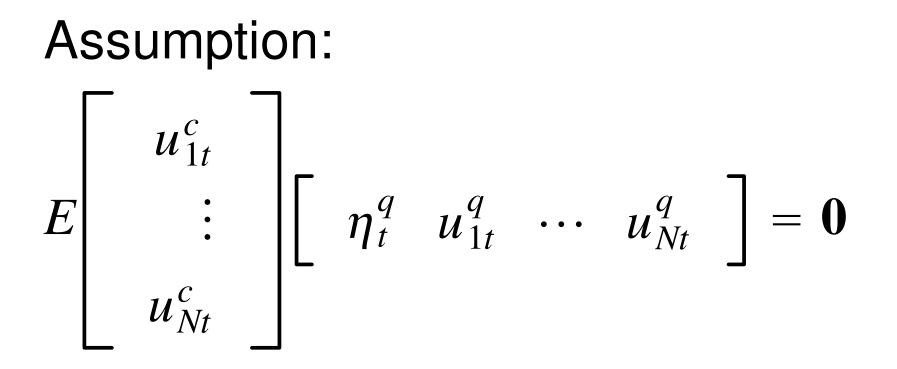
Multiply supply curve for country *i*

$$q_{it} = \phi^{q} p_{t} + \eta^{q}_{t} + u^{q}_{it}$$

by s^{q}_{i} and sum over i
 $q_{t} = \phi^{q} p_{t} + \eta^{q}_{t} + u^{q}_{t}$
 $u^{q}_{t} = \sum_{i=1}^{N} s^{q}_{i} u^{q}_{it}$

 $c_{it} = \log of oil consumption in country i$ demand: $c_{it} = \phi^{c} p_{t} + \eta^{c}_{t} + u^{c}_{it} \quad \phi^{c} < 0$ η_t^c = shock to demand that is common to all countries $c_t = \log of total world oil consumption \simeq \sum_{i=1}^N s_i^c c_{it}$ s_i^c = average share of country *i* consumption Multiply demand curve by s_i^c and sum over i

$$c_t = \phi^c p_t + \eta^c_t + u^c_t$$
$$u^c_t = \sum_{i=1}^N s^c_i u^c_{it}$$



- supply: $q_t = \phi^q p_t + \eta^q_t + u^q_t$ demand: $c_t = \phi^c p_t + \eta^c_t + u^c_t$ equilibrium: $c_t = q_t$ $\Rightarrow p_t = \frac{\eta^c_t + u^c_t - \eta^q_t - u^q_t}{\phi^s - \phi^q}$
- Cannot estimate ϕ^q by OLS because $\eta_t^q + u_t^q$ is correlated with p_t

$$c_{it} = \phi^{c} p_{t} + \eta^{c}_{t} + u^{c}_{it}$$

$$c_{t} = \phi^{c} p_{t} + \eta^{c}_{t} + u^{c}_{t}$$

$$z^{c}_{it} = c_{it} - c_{t} = u^{c}_{it} - u^{c}_{t}$$

$$z^{c}_{it} \text{ depends only on } u^{c}_{1t}, \dots, u^{c}_{Nt}$$

$$z^{c}_{it} \text{ is uncorrelated with } \eta^{q}_{t} + u^{q}_{t}$$

$$z^{c}_{it} \text{ is correlated with } p_{t}$$

$$\Rightarrow z^{c}_{it} \text{ is valid instrument for estimating } \phi^{q}$$

Could use z_{it}^c for any country *i* (have *N* instruments) Can test the (N - 1) overidentifying assumptions If u_{it}^c has variance σ_{ic}^2 and is uncorrelated with u_{jt}^c ,

optimal instrument is

$$\frac{\sum_{i=1}^N \sigma_{ic}^{-2} z_{it}^c}{\sum_{i=1}^N \sigma_{ic}^{-2}}$$

Authors suggest we might instead use

$$z_t^c = N^{-1} \sum_{i=1}^N z_{it}^c = N^{-1} \sum_{i=1}^N c_{it} - c_t$$

arithmetic average minus total.

Could in fact also use z_t^c to estimate supply elasticity ϕ_i^q for each country separately:

$$q_{it} = \phi_i^q p_t + \eta_t^q + u_{it}^q$$

and test restriction $\phi_1^q = \cdots = \phi_N^q$

To estimate demand elasticity, use

$$z_t^q = N^{-1} \sum_{i=1}^N q_{it} - q_t = N^{-1} \sum_{i=1}^N u_{it}^s - u_t^s$$

as an instrument for price in

$$c_t = \phi^c p_t + \eta^c_t + u^c_t$$

In general, these are different instruments because $\sum_{i=1}^{N} q_{it} \neq \sum_{i=1}^{N} c_{it}$

MLE can be interpreted as IV gives optimal way to implement $\mathbf{y}_{t} = (q_{1t}, \dots, q_{N,t}, c_{1t}, \dots, c_{N-1,t}, p_{t})'$ $\mathbf{y}_{t} = \mathbf{c} + \mathbf{\Phi}_{1}\mathbf{y}_{t-1} + \dots + \mathbf{\Phi}_{m}\mathbf{y}_{t-m} + \mathbf{\varepsilon}_{t}$ $E(\mathbf{\epsilon}_t \mathbf{\epsilon}'_t) = \mathbf{\Omega}(\mathbf{\theta})$ $\boldsymbol{\theta} = (\phi^q, \phi^c, E(\eta^q_t)^2, E(\eta^c_t)^2, E(u^q_{it})^2, E(u^c_{it})^2)'$ Could take upper $(N \times N)$ blocks of Φ_i to be diagonal