Linear state-space models

A. State-space representation of a dynamic system

Consider following model

State equation:

$$\begin{array}{cccc} \boldsymbol{\xi}_{t+1} & = & \boldsymbol{F} \, \boldsymbol{\xi}_t & + \, \boldsymbol{v}_{t+1} \\ r \times 1 & & r \times 1 & r \times 1 \end{array}$$

Observation equation:

$$\mathbf{y}_{t} = \mathbf{A}' \mathbf{x}_{t} + \mathbf{H}' \mathbf{\xi}_{t} + \mathbf{w}_{t}$$

$$n \times k \times 1 \qquad n \times r_{r \times 1} \qquad n \times 1$$

Observed variables: $\mathbf{y}_t, \mathbf{x}_t$

Unobserved variables: $\xi_t, \mathbf{v}_t, \mathbf{w}_t$

Matrices of parameters: F, A, H

$$\begin{bmatrix} \mathbf{v}_t \\ \mathbf{w}_t \end{bmatrix} \sim \text{i.i.d. } N \begin{pmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{Q} & \mathbf{0} \\ \mathbf{0} & \mathbf{R} \end{bmatrix} \end{pmatrix}$$

$$\mathbf{Q} = r \times r$$

$$\mathbf{R} = n \times n$$

Example 1:

$$\begin{bmatrix}
\phi_1 & \phi_2 & \cdots & \phi_{r-1} & \phi_r \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{bmatrix} \xi_t + \begin{bmatrix}
\epsilon_{t+1} & 0 & 0 \\
0 & 0 & \vdots \\
0 & 0 & \vdots \\
0 & 0 & \vdots
\end{bmatrix}$$

$$\begin{split} \xi_{j,t+1} &= L^{j-1}\xi_{1t} \quad \text{for } j = 2,3,\dots,r \\ \xi_{1,t+1} &= \phi_1\xi_{1t} + \phi_2L^1\xi_{1t} + \phi_3L^2\xi_{1t} \\ &+ \dots + \phi_pL^{p-1}\xi_{1t} + \varepsilon_{t+1} \\ \phi(L)\xi_{1,t+1} &= \varepsilon_{t+1} \end{split}$$

Observation equation:

$$y_t = \mu + \begin{bmatrix} 1 & \theta_1 & \theta_2 & \cdots & \theta_{r-1} \end{bmatrix} \xi_t$$
$$y_t - \mu = \theta(L)\xi_{1t}$$

put together with state equation:

$$\phi(L)\xi_{1t} = \varepsilon_t$$

$$\phi(L)(y_t - \mu) = \theta(L)\varepsilon_t$$

Conclusion: any ARMA process can be written as a state-space model.

Example 2:

 C_t = state of business cycle

 χ_{it} = idiosyncratic component for

sector i

 C_t, χ_{it} unobserved

 y_{it} = growth in sector i (observed)

$$\xi_{t} = (C_{t}, \chi_{1t}, \chi_{2t}, \dots, \chi_{nt})'
\xi_{t+1} = \mathbf{F}\xi_{t} + \mathbf{V}_{t+1}
\mathbf{F} = \begin{bmatrix}
\phi_{C} & 0 & 0 & \cdots & 0 \\
0 & \phi_{1} & 0 & \cdots & 0 \\
0 & 0 & \phi_{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \phi_{r}
\end{bmatrix}$$

Observation equation:
$$\begin{bmatrix} y_{1t} \\ y_{2t} \\ \vdots \\ y_{nt} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix} + \begin{bmatrix} \gamma_1 & 1 & 0 & \cdots & 0 \\ \gamma_2 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ \gamma_n & 0 & 0 & \cdots & 1 \end{bmatrix} \xi_t$$

Sy	Purpose of state-space representation: ate vector $\boldsymbol{\xi}_t$ contains all information about $\boldsymbol{\eta}$ stem dynamics and forecasting. $\boldsymbol{\xi}_{t+1} = \boldsymbol{F}\boldsymbol{\xi}_t + \boldsymbol{V}_{t+1} \\ \boldsymbol{y}_t = \boldsymbol{A}'\boldsymbol{x}_t + \boldsymbol{H}'\boldsymbol{\xi}_t + \boldsymbol{w}_t \\ (\boldsymbol{y}_{t+j} \boldsymbol{\xi}_t,\boldsymbol{\xi}_{t-1},\ldots,\boldsymbol{\xi}_1,\boldsymbol{y}_t,\boldsymbol{y}_{t-1},\ldots,\boldsymbol{y}_1,\boldsymbol{x}_{t+j},\boldsymbol{x}_{t+j-1},\ldots,\boldsymbol{x}_1) \\ = \boldsymbol{A}'\boldsymbol{x}_{t+j} + \boldsymbol{H}'\boldsymbol{F}^j\boldsymbol{\xi}_t$	
	Linear state-space models A. State-space representation of a dynamic system B. Kalman filter	
	Purpose of Kalman filter: calculate distribution of $\boldsymbol{\xi}_t$ conditional on $\Omega_t = \{\boldsymbol{y}_t, \boldsymbol{y}_{t-1}, \dots, \boldsymbol{y}_1, \boldsymbol{x}_t, \boldsymbol{x}_{t-1}, \dots, \boldsymbol{x}_1\}$	

 $\boldsymbol{\xi}_t | \Omega_t \sim N(\widehat{\boldsymbol{\xi}}_{t|t}, \boldsymbol{P}_{t|t})$

$$\begin{aligned} \boldsymbol{\xi}_{t+1} &= \mathbf{F} \boldsymbol{\xi}_t + \mathbf{V}_{t+1} \\ \mathbf{y}_t &= \mathbf{A}' \mathbf{x}_t + \mathbf{H}' \boldsymbol{\xi}_t + \mathbf{w}_t \\ \begin{bmatrix} \mathbf{v}_t \\ \mathbf{w}_t \end{bmatrix} &\sim \text{i.i.d. } N \\ \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{Q} & \mathbf{0} \\ \mathbf{0} & \mathbf{R} \end{bmatrix} \end{aligned}$$

Begin with the prior:

$$\boldsymbol{\xi}_0 \sim N(\widehat{\boldsymbol{\xi}}_{0|0}, \mathbf{P}_{0|0})$$

 $\widehat{\xi}_{0|0}$ = prior best guess as to value of ξ_0

 $P_{0|0}$ = uncertainty about this guess

(much uncertainty = large diagonal elements of $P_{0|0}$)

$$\begin{split} \boldsymbol{\xi}_1 &= \boldsymbol{F}\boldsymbol{\xi}_0 + \boldsymbol{v}_1 \\ \boldsymbol{\xi}_1 &\sim \textit{N}(\widehat{\boldsymbol{\xi}}_{1|0}, \boldsymbol{P}_{1|0}) \\ \widehat{\boldsymbol{\xi}}_{1|0} &= \boldsymbol{F}\widehat{\boldsymbol{\xi}}_{0|0} \\ \boldsymbol{P}_{1|0} &= \boldsymbol{F}\boldsymbol{P}_{0|0}\boldsymbol{F}' + \boldsymbol{Q} \end{split}$$

Useful result: suppose that

$$\left[egin{array}{c} \mathbf{y}_1 | \mathbf{x} \\ \mathbf{y}_2 | \mathbf{x} \end{array} \right] \sim N \left[\left[egin{array}{c} \mathbf{\mu}_1 \\ \mathbf{\mu}_2 \end{array} \right], \left[egin{array}{c} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{array} \right]
ight)$$

where μ_i and Σ_{ij} may depend on \mathbf{x} . Then

$$\mathbf{y}_2|\mathbf{y}_1,\mathbf{x} \sim N(\mathbf{m}^*,\mathbf{M}^*)$$

$$\bm{m}^* \, = \, \bm{\mu}_2 + \bm{\Sigma}_{21} \bm{\Sigma}_{11}^{-1} (\bm{y}_1 - \bm{\mu}_1)$$

$$\mathbf{M}^* = \mathbf{\Sigma}_{22} - \mathbf{\Sigma}_{21} \mathbf{\Sigma}_{11}^{-1} \mathbf{\Sigma}_{12}$$

Here

$$\begin{bmatrix} \mathbf{y}_{1}|\mathbf{x}_{1},\Omega_{0} \\ \boldsymbol{\xi}_{1}|\mathbf{x}_{1},\Omega_{0} \end{bmatrix} \sim \\ N\left(\begin{bmatrix} \mu_{1} \\ \mu_{2} \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}\right) \\ \mu_{2} = \hat{\boldsymbol{\xi}}_{1|0} \qquad \Sigma_{22} = \mathbf{P}_{1|0} \\ \mu_{1} = \mathbf{A}'\mathbf{x}_{1} + \mathbf{H}'\hat{\boldsymbol{\xi}}_{1|0} \qquad \Sigma_{11} = \mathbf{H}'\mathbf{P}_{1|0}\mathbf{H} + \mathbf{R} \\ \Sigma_{21} = \mathbf{P}_{1|0}\mathbf{H} \end{bmatrix}$$

Hence

$$\begin{split} \xi_{1}|\textbf{y}_{1},\textbf{x}_{1},&\Omega_{0}=\xi_{1}|\Omega_{1}\sim\textit{N}(\widehat{\xi}_{1|1},\textbf{P}_{1|1})\\ \widehat{\xi}_{1|1}&=\widehat{\xi}_{1|0}+\textbf{P}_{1|0}\textbf{H}(\textbf{H}'\textbf{P}_{1|0}\textbf{H}+\textbf{R})^{-1}\times\\ &\left(\textbf{y}_{1}-\textbf{A}'\textbf{x}_{1}-\textbf{H}'\widehat{\xi}_{1|0}\right)\\ \textbf{P}_{1|1}&=\textbf{P}_{1|0}-\\ &\textbf{P}_{1|0}\textbf{H}(\textbf{H}'\textbf{P}_{1|0}\textbf{H}+\textbf{R})^{-1}\textbf{H}'\textbf{P}_{1|0} \end{split}$$

Identical calculations: if $\xi_t | \Omega_t \sim N(\widehat{\xi}_{t|t}, \mathbf{P}_{t|t})$, then $\xi_{t+1} | \Omega_{t+1} \sim N(\widehat{\xi}_{t+1|t+1}, \mathbf{P}_{t+1|t+1})$ $\mathbf{P}_{t+1|t} = \mathbf{F}\mathbf{P}_{t|t}\mathbf{F}' + \mathbf{Q}$ $\mathbf{P}_{t+1|t+1} = \mathbf{P}_{t+1|t} - \mathbf{P}_{t+1|t}\mathbf{H}(\mathbf{H}'\mathbf{P}_{t+1|t}\mathbf{H} + \mathbf{R})^{-1}\mathbf{H}'\mathbf{P}_{t+1|t}$ $\widehat{\xi}_{t+1|t} = \mathbf{F}\widehat{\xi}_{t|t}$ $\widehat{\epsilon}_{t+1|t} = \mathbf{y}_{t+1} - \mathbf{A}'\mathbf{x}_{t+1} - \mathbf{H}'\widehat{\xi}_{t+1|t}$ $\widehat{\xi}_{t+1|t+1} = \widehat{\xi}_{t+1|t} + \mathbf{P}_{t+1|t}\mathbf{H}(\mathbf{H}'\mathbf{P}_{t+1|t}\mathbf{H} + \mathbf{R})^{-1}\widehat{\epsilon}_{t+1|t}$

Iterating on these calculations for t = 1, 2, ..., T to produce the sequences $\{\mathbf{P}_{t|t}\}_{t=1}^{T}$ and $\{\hat{\boldsymbol{\xi}}_{t|t}\}_{t=1}^{T}$ is called the Kalman filter.

 $\widehat{\boldsymbol{\xi}}_{t|t}$ is the expectation of $\boldsymbol{\xi}_t$ given observation of $\Omega_t = \{ \mathbf{y}_t, \mathbf{y}_{t-1}, \dots, \mathbf{y}_1, \mathbf{x}_t, \mathbf{x}_{t-1}, \dots, \mathbf{x}_1 \}.$ $\mathbf{P}_{t|t} = E\Big(\widehat{\boldsymbol{\xi}}_{t|t} - \boldsymbol{\xi}_t\Big)\Big(\widehat{\boldsymbol{\xi}}_{t|t} - \boldsymbol{\xi}_t\Big)^T$ where these expectations condition on the values of $\mathbf{F}, \mathbf{Q}, \mathbf{A}, \mathbf{H}, \mathbf{R}$.

Forecasting:

$$\begin{aligned} \mathbf{y}_t &= \mathbf{A}' \mathbf{x}_t + \mathbf{H}' \boldsymbol{\xi}_t + \mathbf{w}_t \\ & E(\mathbf{y}_{t+j} | \Omega_t, \mathbf{x}_{t+j}, \mathbf{F}, \mathbf{Q}, \mathbf{A}, \mathbf{H}, \mathbf{R}) \\ &= \mathbf{A}' \mathbf{x}_{t+j} + \mathbf{H}' \mathbf{F}^j \widehat{\boldsymbol{\xi}}_{t|t} \\ \text{MSE for } j &= 1 : \\ & E(\mathbf{y}_{t+1} - \widehat{\mathbf{y}}_{t+1|t}) (\mathbf{y}_{t+1} - \widehat{\mathbf{y}}_{t+1|t})^t \\ &= \mathbf{H}' \mathbf{P}_{t+1|t} \mathbf{H} + \mathbf{R} \end{aligned}$$

Smoothed inference: might also want to form inference about ξ_t using all the data Ω_T :

$$\boldsymbol{\xi}_t | \Omega_T \sim N(\widehat{\boldsymbol{\xi}}_{t|T}, \mathbf{P}_{t|T})$$

To derive formula, consider instead

$$\boldsymbol{\xi}_t | \boldsymbol{\xi}_{t+1}, \Omega_t \sim N(\boldsymbol{\xi}_{t|t}^*, \boldsymbol{\mathsf{P}}_{t|t}^*)$$

Same kind of derivation as for Kalman filter establishes that

$$\mathbf{\xi}_{t|t}^* = \widehat{\mathbf{\xi}}_{t|t} + \mathbf{J}_t (\mathbf{\xi}_{t+1} - \widehat{\mathbf{\xi}}_{t+1|t})$$

$$\mathbf{J}_t = \mathbf{P}_{t|t} \mathbf{F}' \mathbf{P}_{t+1|t}^{-1}$$

$$\mathbf{P}_{t|t}^* = \mathbf{P}_{t|t} - \mathbf{J}_t \mathbf{F} \mathbf{P}_{t|t}$$

Generalization: what if $P_{t+1|t}$ is singular?

If $\mathbf{P}_{t+1|t}$ is singular, then some linear combinations of $\boldsymbol{\xi}_{t+1}$ can be forecast perfectly from Ω_t , implying inference about $\boldsymbol{\xi}_t$ given Ω_t and these linear combinations of $\boldsymbol{\xi}_{t+1}$ is identical to inference about $\boldsymbol{\xi}_t$ given Ω_t alone.

Let ξ_t be $(r \times 1)$ and let the rank of $\mathbf{P}_{t+1|t}$ be $s \le r$. Define the $(s \times 1)$ vector $\xi_t^{**} = \mathbf{H}^{**}\xi_t$ for an arbitrary $(s \times r)$ matrix \mathbf{H}^{**} such that $\mathbf{P}_{t+1|t}^{**} \equiv \mathbf{H}^{**}\mathbf{P}_{t+1|t}\mathbf{H}^{**t}$ has rank s. For example, ξ_t^{**} might be the first s elements of ξ_t in which case $\mathbf{P}_{t+1|t}^{**}$ would be first s rows and columns of $\mathbf{P}_{t+1|t}$. Then $\xi_t|\xi_{t+1}$, Ω_t has same distribution as $\xi_t|\xi_{t+1}^{**}$, Ω_t .

Generalization of previous results for singular $P_{t+1|t}$:

$$\begin{aligned}
\xi_{t|t}^* &= \widehat{\xi}_{t|t} + \mathbf{J}_t^{**} (\xi_{t+1}^{**} - \widehat{\xi}_{t+1|t}^{**}) \\
\mathbf{J}_t^{**} &= \mathbf{P}_{t|t} (\mathbf{H}^{**} \mathbf{F})' \mathbf{P}_{t+1|t}^{**-1} \\
\mathbf{P}_{t|t}^* &= \mathbf{P}_{t|t} - \mathbf{J}_t^{**} \mathbf{H}^{**} \mathbf{F} \mathbf{P}_{t|t}
\end{aligned}$$

Next suppose that, in addition to $\boldsymbol{\xi}_{t+1}$, we had also observed $\mathbf{y}_{t+1}, \mathbf{y}_{t+2}, \dots, \mathbf{y}_{T}$. This would contain no more information about $\boldsymbol{\xi}_{t}$ than was provided by $\boldsymbol{\xi}_{t+1}$ and Ω_{t} alone: $\boldsymbol{\xi}_{t} | \boldsymbol{\xi}_{t+1}, \Omega_{T} \sim N(\boldsymbol{\xi}_{t|t}^{*}, \mathbf{P}_{t|t}^{*})$ for the same $\boldsymbol{\xi}_{t|t}^{*}, \mathbf{P}_{t|t}^{*}$.

And since

$$E(\boldsymbol{\xi}_{t}|\boldsymbol{\xi}_{t+1},\Omega_{T}) = \widehat{\boldsymbol{\xi}}_{t|t} + \mathbf{J}_{t}^{**}(\boldsymbol{\xi}_{t+1}^{**} - \widehat{\boldsymbol{\xi}}_{t+1|t}^{**}),$$

it follows from law of iterated expectations that

$$E(\boldsymbol{\xi}_{t}|\Omega_{T}) = \widehat{\boldsymbol{\xi}}_{t|t} + \mathbf{J}_{t}^{**}(\widehat{\boldsymbol{\xi}}_{t+1|T}^{**} - \widehat{\boldsymbol{\xi}}_{t+1|t}^{**})$$

which we can calculate by iterating backwards for t = T - 1, T - 2,...

The MSE's of these smoothed inferences are given by

$$E(\boldsymbol{\xi}_t - \widehat{\boldsymbol{\xi}}_{t|T})(\boldsymbol{\xi}_t - \widehat{\boldsymbol{\xi}}_{t|T})' = \mathbf{P}_{t|T}$$

where $\mathbf{P}_{t|T}$ can be found by iterating on

$$\mathbf{P}_{t|T} = \mathbf{P}_{t|t} + \mathbf{J}_{t}^{**} \mathbf{H}^{**} (\mathbf{P}_{t+1|T} - \mathbf{P}_{t+1|t}) \mathbf{H}^{**'} \mathbf{J}_{t}^{**'}$$

backward starting from t = T - 1.

Procedure to calculate smoothed inferences $\left\{ \widehat{\mathbf{\xi}}_{t|T}\right\} _{t=1}^{T}.$

(1) Perform Kalman filter recursion and save the values of

$$\left\{\widehat{\boldsymbol{\xi}}_{t|t},\widehat{\boldsymbol{\xi}}_{t+1|t},\mathbf{P}_{t|t},\mathbf{P}_{t+1|t}\right\}_{t=1}^{T}.$$

(2) Calculate

elements of ξ_t .

$$\mathbf{J}_t^{**} = \mathbf{P}_{t|t}(\mathbf{H}^{**}\mathbf{F})'(\mathbf{H}^{**}\mathbf{P}_{t+1|t}\mathbf{H}^{**t})^{-1}$$
 for $t = 1, 2, ..., T-1$, where \mathbf{H}^{**} is an $(s \times r)$ matrix selecting the nonredundant

(3) Calculate

$$\begin{split} \widehat{\boldsymbol{\xi}}_{t|T} &= \widehat{\boldsymbol{\xi}}_{t|t} + \boldsymbol{\mathsf{J}}_t^{**}\boldsymbol{\mathsf{H}}^{**}(\widehat{\boldsymbol{\xi}}_{t+1|T} - \widehat{\boldsymbol{\xi}}_{t+1|t}) \\ \text{for } t &= T-1 \text{ where } \widehat{\boldsymbol{\xi}}_{T-1|T-1}, \widehat{\boldsymbol{\xi}}_{T|T}, \text{ and } \\ \widehat{\boldsymbol{\xi}}_{T|T-1} \text{ are all known from step (1)}. \end{split}$$

1	1

(4) Evaluate

$$\widehat{\boldsymbol{\xi}}_{t|T} = \widehat{\boldsymbol{\xi}}_{t|t} + \mathbf{J}_{t}^{**} \mathbf{H}^{**} (\widehat{\boldsymbol{\xi}}_{t+1|T} - \widehat{\boldsymbol{\xi}}_{t+1|t})$$

for t = T - 2 where right-hand variables are all known from step (3). Iterate for t = T - 3, T - 4,...

Linear state-space models

- A. State-space representation of a dynamic system
- B. Kalman filter
- C. Maximum likelihood estimation

Starting value for t = 0:

$$\boldsymbol{\xi}_{t+1} = \mathbf{F}\boldsymbol{\xi}_t + \mathbf{v}_{t+1}$$

If eigenvalues of **F** are all inside unit circle, set

$$\widehat{\boldsymbol{\xi}}_{0|0} = E(\boldsymbol{\xi}_0) = \mathbf{0}$$

$$\mathbf{P}_{0|0} = E(\boldsymbol{\xi}_0 \boldsymbol{\xi}_0')$$

$$\operatorname{vec}(\mathbf{P}_{0|0}) = [\mathbf{I}_{r^2} - (\mathbf{F} \otimes \mathbf{F})]^{-1} \operatorname{vec}(\mathbf{Q})$$

12

Alternatively, can use any distribution $\boldsymbol{\xi}_0 \sim N(\boldsymbol{\hat{\xi}}_{0|0}, \mathbf{P}_{0|0})$ Frequentist perspective: this is unconditional distribution of observation 0 Bayesian perspective: this is prior beliefs about ξ_0 If diagonal elements of $\mathbf{P}_{0|0}$ are large (e.g. $\mathbf{P}_{0|0} = 10^4 \mathbf{I}_r$), has little influence on any results How to estimate unknown parameters? Let θ be vector containing unknown elements of F, Q, A, H, R frequentist principle: chose θ so as to max likelihood function (1) pick an arbitrary initial guess for θ (2) run through the KF for this fixed θ calculating $\widehat{\boldsymbol{\xi}}_{t|t-1}(\boldsymbol{\theta})$

 $\mathbf{P}_{t|t-1}(\mathbf{\theta})$

 $\widehat{\mathbf{y}}_{t|t-1}(\mathbf{\theta}) = \mathbf{A}(\mathbf{\theta})' \mathbf{x}_t + \mathbf{H}(\mathbf{\theta})' \widehat{\mathbf{\xi}}_{t|t-1}(\mathbf{\theta})$

 $\mathbf{C}_{t|t-1}(\mathbf{\theta}) = \mathbf{H}(\mathbf{\theta})' \mathbf{P}_{t|t-1}(\mathbf{\theta}) \mathbf{H}(\mathbf{\theta}) + \mathbf{R}(\mathbf{\theta})$

(3) since this θ implies

$$\mathbf{y}_{t}|\Omega_{t-1}, \mathbf{x}_{t}; \mathbf{\theta} \sim N(\widehat{\mathbf{y}}_{t|t-1}(\mathbf{\theta}), \mathbf{C}_{t|t-1}(\mathbf{\theta})),$$

choose $\hat{\theta}$ so as to maximize log likelihood:

$$\mathcal{L}(\boldsymbol{\theta}) = -\frac{Tn}{2}\log 2\pi - \frac{1}{2}\sum\nolimits_{t=1}^{T}\log |\mathbf{C}_{t|t-1}(\boldsymbol{\theta})|$$

$$-\frac{1}{2}\sum\nolimits_{t=1}^{T}[\mathbf{y}_{t}-\widehat{\mathbf{y}}_{t|t-1}(\boldsymbol{\theta})]'[\mathbf{C}_{t|t-1}(\boldsymbol{\theta})]^{-1}[\mathbf{y}_{t}-\widehat{\mathbf{y}}_{t|t-1}(\boldsymbol{\theta})]$$

by numerical search

(given guess θ_j , find a θ_{j+1}

associated with bigger value for $\mathcal{L}(\theta))$

Asymptotic standard errors from

$$\widehat{\boldsymbol{\theta}} \approx N(\boldsymbol{\theta}_0, \widehat{\mathbf{C}})$$

$$\widehat{\mathbf{C}} = \left[-\frac{\partial^2 \log p(\mathbf{Y}|\mathbf{\theta})}{\partial \mathbf{\theta} \, \partial \mathbf{\theta}'} \, \Big|_{\mathbf{\theta} = \widehat{\mathbf{\theta}}} \, \right]^{-1}$$

EM algorithm: convenient numerical algorithm for finding value of θ that maximizes $\mathcal{L}(\theta)$.

Let $p(y; \theta)$ denote likelihood (joint density of $y_1, y_2, ..., y_T$)

$$\log p(\mathbf{Y}; \boldsymbol{\theta}) = \sum_{t=1}^{T} \log p(\mathbf{y}_{t} | \Omega_{t-1}; \boldsymbol{\theta})$$

Consider $p(\mathbf{Y}, \mathbf{\Xi}; \mathbf{\theta}) = \text{joint density}$

of
$$y_1, y_2, ..., y_T, \xi_1, \xi_2, ..., \xi_T$$

if ξ , were observed.

$\log p(\mathbf{Y}, \mathbf{\Xi}; \mathbf{\theta}) = -\frac{Tr}{2} \log(2\pi) - \frac{T}{2} \log \mathbf{Q} $
$-\frac{1}{2}\operatorname{trace}\left[\mathbf{Q}^{-1}\sum_{t=1}^{T}(\boldsymbol{\xi}_{t}-\mathbf{F}\boldsymbol{\xi}_{t-1})(\boldsymbol{\xi}_{t}-\mathbf{F}\boldsymbol{\xi}_{t-1})'\right]$
$-\frac{Tr}{2}\log(2\pi) - \frac{T}{2}\log \mathbf{R} $
$-\frac{1}{2}\operatorname{trace}[\mathbf{R}^{-1}\sum_{t=1}^{T}(\mathbf{y}_{t}-\mathbf{A}'\mathbf{x}_{t}-\mathbf{H}'\boldsymbol{\xi}_{t})$
$\times (\mathbf{y}_t - \mathbf{A}' \mathbf{x}_t - \mathbf{H}' \mathbf{\xi}_t)']$

The EM algorithm is a sequence of values $\{\theta_1,\theta_2,\dots\}$ such that given θ_ℓ , the value of $\theta_{\ell+1}$ maximizes $\int \log p(\mathbf{Y},\Xi;\theta_{\ell+1})p(\mathbf{Y},\Xi;\theta_\ell)d\Xi$

1) Why does EM algorithm work? FOC will satisfy

$$\int \frac{\partial p(\mathbf{Y}, \mathbf{\Xi}; \boldsymbol{\theta}_{\ell+1})}{\partial \boldsymbol{\theta}_{\ell+1}} \frac{1}{p(\mathbf{Y}, \mathbf{\Xi}; \boldsymbol{\theta}_{\ell+1})} p(\mathbf{Y}, \mathbf{\Xi}; \boldsymbol{\theta}_{\ell}) d\mathbf{\Xi} = \mathbf{0}$$

If we had a fixed point $(\theta_{\ell+1} = \theta_{\ell})$, $\int \frac{\partial p(\mathbf{Y}, \mathbf{\Xi}; \boldsymbol{\theta}_{\ell+1})}{\partial \boldsymbol{\theta}_{\ell+1}} \frac{1}{p(\mathbf{Y}, \mathbf{\Xi}; \boldsymbol{\theta}_{\ell+1})} p(\mathbf{Y}, \mathbf{\Xi}; \boldsymbol{\theta}_{\ell+1}) d\mathbf{\Xi}$ $= \int \frac{\partial p(\mathbf{Y}, \mathbf{\Xi}; \boldsymbol{\theta}_{\ell+1})}{\partial \boldsymbol{\theta}_{\ell+1}} d\mathbf{\Xi}$ $= \frac{\partial}{\partial \boldsymbol{\theta}_{\ell+1}} \int p(\mathbf{Y}, \mathbf{\Xi}; \boldsymbol{\theta}_{\ell+1}) d\mathbf{\Xi}$ $= \frac{\partial p(\mathbf{Y}; \boldsymbol{\theta}_{\ell+1})}{\partial \boldsymbol{\theta}_{\ell+1}}$ $= \mathbf{0}$ so a fixed point is the MLE

Furthermore, it can be shown that $\mathcal{L}(\theta_{\ell+1}) > \mathcal{L}(\theta_{\ell})$ that is, each step of EM algorithm increases the log likelihood

(2) How do we implement EM algorithm? Suppose that ξ_t was observed directly and we want to choose θ to max $\log p(\mathbf{Y}, \mathbf{\Xi}; \mathbf{\theta}) = -\frac{Tr}{2} \log(2\pi) - \frac{T}{2} \log|\mathbf{Q}|$ $-\frac{1}{2} \operatorname{trace} \left[\mathbf{Q}^{-1} \sum_{t=1}^{T} (\xi_t - \mathbf{F} \xi_{t-1}) (\xi_t - \mathbf{F} \xi_{t-1})' \right] - \frac{Tr}{2} \log(2\pi) - \frac{T}{2} \log|\mathbf{R}|$ $-\frac{1}{2} \operatorname{trace} \left[\mathbf{R}^{-1} \sum_{t=1}^{T} (\mathbf{y}_t - \mathbf{A}' \mathbf{x}_t - \mathbf{H}' \xi_t) \times (\mathbf{y}_t - \mathbf{A}' \mathbf{x}_t - \mathbf{H}' \xi_t)' \right]$

Consider first parameters of \mathbf{F} . If we observed $\boldsymbol{\xi}_t$ these would be found from OLS regression of $\boldsymbol{\xi}_t$ on $\boldsymbol{\xi}_{t-1}$: $\left(\sum_{t=1}^T \boldsymbol{\xi}_{t-1} \boldsymbol{\xi}_{t-1}'\right) \mathbf{F} = \left(\sum_{t=1}^T \boldsymbol{\xi}_t \boldsymbol{\xi}_{t-1}'\right).$

$$\begin{split} &\left(\sum_{t=1}^T \xi_{t-1} \xi_{t-1}'\right) \mathbf{F} = \left(\sum_{t=1}^T \xi_t \xi_{t-1}'\right). \\ &\text{In step } \ell + 1 \text{ of the EM algorithm} \\ &\text{we don't observe } \xi_t \text{ so don't} \\ &\text{maximize } \log p(\mathbf{Y}, \Xi; \theta) \text{ but instead} \\ &\text{max the expectation of } \log p(\mathbf{Y}, \Xi; \theta). \\ &\text{In other words, we integrate out } \Xi \\ &\text{conditioning on data } \mathbf{Y} \text{ and assuming} \\ &\text{the previous iteration's value for } \theta_\ell. \end{split}$$

$$\begin{split} E(\boldsymbol{\xi}_{t-1}\boldsymbol{\xi}_{t-1}'|\mathbf{Y},\boldsymbol{\theta}_{\ell}) \\ &= \mathbf{P}_{t-1|T}(\boldsymbol{\theta}_{\ell}) + \left[\boldsymbol{\hat{\xi}}_{t-1|T}(\boldsymbol{\theta}_{\ell})\right] \left[\boldsymbol{\hat{\xi}}_{t-1|T}(\boldsymbol{\theta}_{\ell})\right]' \\ &\equiv \mathbf{S}_{t-1}(\boldsymbol{\theta}_{\ell}) \\ \text{where } \boldsymbol{\hat{\xi}}_{t-1|T}(\boldsymbol{\theta}_{\ell}) \text{ and } \mathbf{P}_{t-1|T}(\boldsymbol{\theta}_{\ell}) \text{ denote} \\ \text{the estimates coming from the Kalman smoother evaluated at previous} \\ \text{iteration's value for } \boldsymbol{\theta}_{\ell}. \end{split}$$

17

Similarly

$$egin{aligned} E(\mathbf{\xi}_t \mathbf{\xi}_{t-1}^{\prime} | \mathbf{Y}, \mathbf{\theta}_{\ell}) \ &= \mathbf{P}_{t,t-1|T}(\mathbf{\theta}_{\ell}) + \left[\mathbf{\hat{\xi}}_{t|T}(\mathbf{\theta}_{\ell}) \right] \left[\mathbf{\hat{\xi}}_{t-1|T}(\mathbf{\theta}_{\ell}) \right]^{\prime} \ &\equiv \mathbf{S}_{t,t-1|T}(\mathbf{\theta}_{\ell}) \end{aligned}$$

for

$$\mathbf{P}_{t,t-1|T}(\mathbf{\theta}_{\ell}) = \mathbf{J}_{t-1}(\mathbf{\theta}_{\ell})\mathbf{P}_{t|T}(\mathbf{\theta}_{\ell})$$

$$\mathbf{J}_{t-1}(\boldsymbol{\theta}_{\ell}) = \mathbf{P}_{t-1|t-1}(\boldsymbol{\theta}_{\ell})\mathbf{F}_{\ell}'[\mathbf{P}_{t|t-1}(\boldsymbol{\theta}_{\ell})]^{-1}$$

FOC if ξ , observed:

$$\left(\sum\nolimits_{t=1}^T \boldsymbol{\xi}_{t-1} \boldsymbol{\xi}_{t-1}'\right) \mathbf{F} = \left(\sum\nolimits_{t=1}^T \boldsymbol{\xi}_t \boldsymbol{\xi}_{t-1}'\right).$$

Value of ${\bf F}$ chosen by step $\ell+1$ of EM algorithm:

$$\begin{bmatrix} T^{-1} \sum_{t=1}^{T} \mathbf{S}_{t-1|T}(\boldsymbol{\theta}_{\ell}) \end{bmatrix} \mathbf{F}_{\ell+1}$$

$$= \begin{bmatrix} T^{-1} \sum_{t=1}^{T} \mathbf{S}_{t,t-1|T}(\boldsymbol{\theta}_{\ell}) \end{bmatrix}$$

$$\mathbf{F}_{\ell+1} = \begin{bmatrix} T^{-1} \sum_{t=1}^{T} \mathbf{S}_{t-1|T}(\boldsymbol{\theta}_{\ell}) \end{bmatrix}^{-1}$$

$$\times \begin{bmatrix} T^{-1} \sum_{t=1}^{T} \mathbf{S}_{t,t-1|T}(\boldsymbol{\theta}_{\ell}) \end{bmatrix}.$$

Likewise, if we were estimating

 \mathbf{Q} with $\boldsymbol{\xi}_{t}$ observed, we would max

$$-\frac{Tr}{2}\log(2\pi) - \frac{T}{2}\log|\mathbf{Q}|$$

$$-\frac{1}{2}\mathsf{trace}\Big[\mathbf{Q}^{-1}\sum\nolimits_{t=1}^{T}(\mathbf{\xi}_{t}-\mathbf{F}\mathbf{\xi}_{t-1})(\mathbf{\xi}_{t}-\mathbf{F}\mathbf{\xi}_{t-1})'\,\Big]$$

$$\Rightarrow \mathbf{Q} = T^{-1} \sum\nolimits_{t=1}^{T} (\boldsymbol{\xi}_{t} - \hat{\mathbf{F}} \boldsymbol{\xi}_{t-1}) (\boldsymbol{\xi}_{t} - \hat{\mathbf{F}} \boldsymbol{\xi}_{t-1})'.$$

Step $\ell+1$ of EM chooses

$$\mathbf{Q}_{\ell+1} = T^{-1} \sum_{t=1}^{T} \{ \mathbf{S}_{t|T}(\mathbf{\theta}_{\ell}) - \mathbf{F}_{\ell+1} \mathbf{S}_{t-1,t}(\mathbf{\theta}_{\ell}) \\ - \mathbf{S}_{t-1,t}(\mathbf{\theta}_{\ell})' \mathbf{F}_{\ell+1}' + \mathbf{F}_{\ell+1} \mathbf{S}_{t-1|T}(\mathbf{\theta}_{\ell}) \mathbf{F}_{\ell+1}' \}.$$

1	Q

Analogously, with ξ_t observed we would choose **A**, **H** to max $-\frac{Tr}{2}\log(2\pi) - \frac{T}{2}\log|\mathbf{R}|$

$$\begin{split} & -\frac{Tr}{2}\log(2\pi) - \frac{T}{2}\log|\mathbf{R}| \\ & -\frac{1}{2}\mathrm{trace}[\mathbf{R}^{-1}\sum_{t=1}^{T}(\mathbf{y}_{t} - \mathbf{A}'\mathbf{x}_{t} - \mathbf{H}'\boldsymbol{\xi}_{t}) \\ & \times (\mathbf{y}_{t} - \mathbf{A}'\mathbf{x}_{t} - \mathbf{H}'\boldsymbol{\xi}_{t})'] \end{split}$$

If ξ_t were observed we would do OLS regression of \mathbf{y}_t on \mathbf{z}_t :

$$\mathbf{z}_{t} = \begin{bmatrix} \mathbf{x}_{t} \\ \boldsymbol{\xi}_{t} \end{bmatrix}$$

$$\boldsymbol{\Pi} = \begin{bmatrix} \mathbf{A}' & \mathbf{H}' \end{bmatrix}$$

$$\left(\sum_{t=1}^{T} \mathbf{z}_{t} \mathbf{z}_{t}'\right) \boldsymbol{\Pi} = \left(\sum_{t=1}^{T} \mathbf{y}_{t} \mathbf{z}_{t}'\right).$$

Step $\ell+1$ of EM algorithm thus uses

$$\begin{bmatrix} \mathbf{A}_{\ell+1}^{\prime} & \mathbf{H}_{\ell+1}^{\prime} \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{t=1}^{T} \mathbf{y}_{t} \mathbf{x}_{t}^{\prime} & \sum_{t=1}^{T} \mathbf{y}_{t} \hat{\boldsymbol{\xi}}_{t|T}(\boldsymbol{\theta}_{\ell})^{\prime} \end{bmatrix}$$

$$\times \begin{bmatrix} \sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{\prime} & \sum_{t=1}^{T} \mathbf{x}_{t} \boldsymbol{\xi}_{t|T}(\boldsymbol{\theta}_{\ell})^{\prime} \\ \sum_{t=1}^{T} \boldsymbol{\xi}_{t|T}(\boldsymbol{\theta}_{\ell}) \mathbf{x}_{t}^{\prime} & \sum_{t=1}^{T} \mathbf{S}_{t|T}(\boldsymbol{\theta}_{\ell}) \end{bmatrix}^{-1}$$

Linear state-space models

- A. State-space representation of a dynamic system
- B. Kalman filter
- C. Maximum likelihood estimation
- D. Applications
 - 1. Time-varying parameter models and missing observations

Suppose that F, Q, A, H, R are known functions of t (or more generally, known functions of \mathbf{x}_t):

$$\mathbf{\xi}_{t+1} = \mathbf{F}_{t}\mathbf{\xi}_{t} + \mathbf{v}_{t+1} \qquad E(\mathbf{v}_{t+1}\mathbf{v}_{t+1}') = \mathbf{Q}_{t}$$

$$\mathbf{y}_{t} = \mathbf{A}_{t}'\mathbf{x}_{t} + \mathbf{H}_{t}'\mathbf{\xi}_{t} + \mathbf{w}_{t} \qquad E(\mathbf{w}_{t}\mathbf{w}_{t}') = \mathbf{R}_{t}$$

Then Kalman filter recursion immediately generalizes to:

$$\begin{split} \mathbf{P}_{t+1|t} &= \mathbf{F}_{t} \mathbf{P}_{t|t} \mathbf{F}_{t}' + \mathbf{Q}_{t} \\ \mathbf{P}_{t+1|t+1} &= \mathbf{P}_{t+1|t} - \\ \mathbf{P}_{t+1|t} \mathbf{H}_{t+1} (\mathbf{H}_{t+1}' \mathbf{P}_{t+1|t} \mathbf{H}_{t+1} + \mathbf{R}_{t+1})^{-1} \mathbf{H}_{t+1}' \mathbf{P}_{t+1|t} \\ \widehat{\xi}_{t+1|t} &= \mathbf{F}_{t} \widehat{\xi}_{t|t} \\ \widehat{\varepsilon}_{t+1|t} &= \mathbf{y}_{t+1} - \mathbf{A}_{t+1}' \mathbf{x}_{t+1} - \mathbf{H}_{t+1}' \widehat{\xi}_{t+1|t} \\ \widehat{\xi}_{t+1|t+1} &= \widehat{\xi}_{t+1|t} + \\ \mathbf{P}_{t+1|t} \mathbf{H}_{t+1} (\mathbf{H}_{t+1}' \mathbf{P}_{t+1|t} \mathbf{H}_{t+1} + \mathbf{R}_{t+1})^{-1} \widehat{\varepsilon}_{t+1|t} \end{split}$$

One simple trick for handling missing observations: if observation y_{it} is missing for date t, set ith rows of \mathbf{A}_t' and \mathbf{H}_t' to zero, take $y_{it} = 0$, set row i, col i of \mathbf{R}_t to 1 and all other elements of row i or col i of \mathbf{R}_t to zero.

Why it works: suppose for illustration the first r elements of \mathbf{y}_{t+1} are missing.

$$\mathbf{A}_{t+1}' = \begin{bmatrix} \mathbf{0} \\ \tilde{\mathbf{A}}' \end{bmatrix} \quad \mathbf{H}_{t+1}' = \begin{bmatrix} \mathbf{0} \\ \tilde{\mathbf{H}}' \end{bmatrix}$$

$$\mathbf{R}_{t+1} = \begin{bmatrix} \mathbf{I}_r & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{R}} \end{bmatrix}$$

Then	
$\mathbf{H}_{t+1} = \begin{bmatrix} 0 & \mathbf{\tilde{H}} \end{bmatrix}$]
$\mathbf{P}_{t+1 t}\mathbf{H}_{t+1} = \begin{bmatrix} 0 \end{bmatrix}$	_
$\mathbf{H}_{t+1}^{\prime}\mathbf{P}_{t+1 t}\mathbf{H}_{t+1} =$	$\begin{bmatrix} 0 & 0 \\ 0 & \mathbf{\tilde{H}}' \mathbf{P}_{t+1 t} \mathbf{\tilde{H}} \end{bmatrix}$

$$\mathbf{P}_{t+1|t}\mathbf{H}_{t+1}(\mathbf{H}'_{t+1}\mathbf{P}_{t+1|t}\mathbf{H}_{t+1} + \tilde{\mathbf{R}})^{-1}$$

$$= \begin{bmatrix} \mathbf{0} & \mathbf{P}_{t+1|t}\tilde{\mathbf{H}} \end{bmatrix} \times$$

$$\begin{bmatrix} \mathbf{I}_{r} & \mathbf{0} \\ \mathbf{0} & (\tilde{\mathbf{H}}'\mathbf{P}_{t+1|t}\tilde{\mathbf{H}} + \tilde{\mathbf{R}})^{-1} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{0} & \mathbf{P}_{t+1|t}\tilde{\mathbf{H}}(\tilde{\mathbf{H}}'\mathbf{P}_{t+1|t}\tilde{\mathbf{H}} + \tilde{\mathbf{R}})^{-1} \end{bmatrix}$$

$$\begin{aligned} \mathbf{P}_{t+1|t}\mathbf{H}_{t+1} &(\mathbf{H}_{t+1}^{\prime} \mathbf{P}_{t+1|t} \mathbf{H}_{t+1} + \tilde{\mathbf{R}})^{-1} \\ &= \begin{bmatrix} \mathbf{0} & \mathbf{P}_{t+1|t} \tilde{\mathbf{H}} (\tilde{\mathbf{H}}^{\prime} \mathbf{P}_{t+1|t} \tilde{\mathbf{H}} + \tilde{\mathbf{R}})^{-1} \end{bmatrix} \\ \hat{\xi}_{t+1|t+1} &= \hat{\xi}_{t+1|t} + \\ \mathbf{P}_{t+1|t} \mathbf{H}_{t+1} &(\mathbf{H}_{t+1}^{\prime} \mathbf{P}_{t+1|t} \mathbf{H}_{t+1} + \mathbf{R}_{t+1})^{-1} \hat{\boldsymbol{\varepsilon}}_{t+1|t} \\ \text{acts as if first } r \text{ elements of } \mathbf{y}_{t} \\ \text{weren't there} \end{aligned}$$

Linear state-space models

- D. Applications
 - 1. Time-varying parameter models and missing observations
 - 2. Using mixed-frequency data as they arrive in real time

Practical problem for economic forecasters: Different data are of different, asynchronous frequencies and are subsequently revised Example: "Introducing the Euro-Sting: Short Term Indicator of Euro Area Growth", Maximo Camacho and Gabriel Perez-Quiros	
Assumption: there is an unobserved scalar f_t representing the monthly growth rate of real economic activity. $\mathbf{z}_t^h = (4 \times 1)$ vector of "hard" indicators of f_t	
z_{1t}^h = industrial production growth z_{2t}^h = retail sales growth z_{3t}^h = new industrial orders growth z_{4t}^h = Euro area export growth z_{it}^h = k_i^h + $\beta_i^h f_t$ + u_{it}^h	

$$\begin{aligned} z_{it}^{h} &= k_{i}^{h} + \beta_{i}^{h} f_{t} + u_{it}^{h} \\ f_{t} &= a_{1} f_{t-1} + a_{2} f_{t-2} + \dots + a_{6} f_{t-6} + \varepsilon_{t}^{f} \\ \varepsilon_{t}^{f} &\sim N(0,1) \\ u_{it}^{h} &= c_{i1}^{h} u_{i,t-1}^{h} + c_{i2}^{h} u_{i,t-2}^{h} + \dots + c_{i,6}^{h} u_{i,t-6}^{h} + \varepsilon_{it}^{h} \\ \varepsilon_{it}^{h} &\sim N(0,\sigma_{hi}^{2}) \\ \mathbf{z}_{t}^{h} &= \mathbf{k}^{h} + \mathbf{\beta}^{h} f_{t} + \mathbf{u}_{t}^{h} \\ \mathbf{u}_{t}^{h} &= \mathbf{C}_{1}^{h} \mathbf{u}_{t-1}^{h} + \mathbf{C}_{2}^{h} \mathbf{u}_{t-2}^{h} + \dots + \mathbf{C}_{6}^{h} \mathbf{u}_{t-6}^{h} + \varepsilon_{t}^{h} \\ \boldsymbol{\xi}_{t} &= (f_{t}, f_{t-1}, \dots, f_{t-5}, \mathbf{u}_{t}^{h}, \mathbf{u}_{t-1}^{h}, \dots, \mathbf{u}_{t-5}^{h})' \end{aligned}$$

Also have some "soft" survey measures intended to reflect year-over-year growth

 z_{1t}^s = Belgium overall business indicator

 z_{2t}^s = Euro-zone economic sentiment

 z_{3t}^s = German IFO business climate

 z_{4t}^s = Euro manufacturing purchasing managers index

 z_{5t}^s = services PMI

$$z_{it}^{s} = k_{i}^{s} + \beta_{i}^{s} \sum_{j=0}^{11} f_{t-j} + u_{it}^{s}$$

$$u_{it}^{s} = c_{i1}^{s} u_{i,t-1}^{s} + c_{i2}^{s} u_{i,t-2}^{s} + \dots + c_{i,6}^{s} u_{i,t-6}^{s} + \varepsilon_{it}^{s}$$

2	1

q_t = true monthly growth rate of real GDP in deviation from mean (not observed) $q_t = \frac{1}{3}\beta^q f_t + u_t^q$ $u_t^q = c_1^q u_{t-1}^q + c_2^q u_{t-2}^q + \dots + c_6^q u_{t-6}^q + \epsilon_t^q$	
Every three months we do observe a second revision of quarterly GDP growth $y_t^2 = k^2 + \frac{1}{3}q_t + \frac{2}{3}q_{t-1} + q_{t-2} + \frac{2}{3}q_{t-3} + \frac{1}{3}q_{t-4}$	
40 days earlier a more preliminary first revision was available $y_t^1 = y_t^2 + e_{2t}$ 20 days before that the initial "flash" estimate of GDP was released $y_t^0 = y_t^1 + e_{1t}$	

Model also uses quarterly employment growth ℓ_t . Potential observation vector: $\mathbf{y}_t = (y_t^2, \mathbf{z}_t^{h\prime}, \mathbf{z}_t^{s\prime}, \ell_t, y_t^1, y_t^0)^{\prime}.$ Potential observation vector: $\mathbf{y}_t = (y_t^2, \mathbf{z}_t^{h\prime}, \mathbf{z}_t^{s\prime}, \ell_t, y_t^1, y_t^0)^{\prime}.$ In every month, some of these (e.g., y_t^2, ℓ_t , and y_t^0) are treated as missing observations On any given day before the end of the month, a smaller subset is observed. $\boldsymbol{\xi}_{t} = (f_{t}, f_{t-1}, \dots, f_{t-11}, u_{t}^{q}, u_{t-1}^{q}, \dots, u_{t-5}^{q}, \dots)$ $\mathbf{u}_{t}^{h'},\ldots,\mathbf{u}_{t-5}^{h'},\mathbf{u}_{t}^{s'},\ldots,\mathbf{u}_{t-5}^{s'},u_{t}^{\ell},\ldots,u_{t-5}^{\ell})'$ Model allows forecast of any variable using all information available as of any day

Real-time forecasts of 2007:Q4 real GDP growth from release of
Real-time forecasts of 2007:Q4 real GDP growth from release of second revision on 2007/07/12 until 2008/02/13

Linear state-space models

- D. Applications
 - 1. Time-varying parameter models and missing observations
 - 2. Using mixed-frequency data as they arrive in real time
 - 3. Estimation of dynamic stochastic general equilibrium models

Basic approach:

- (1) Find a state-space model that approximates solution to DSGE
- (2) Estimate parameters of DSGE by maximizing implied likelihood

Example:

$$\max_{\{c_t,k_{t+1}\}_{t=0}^{\infty}} E_0 \sum_{t=0}^{\infty} \beta^t \log c_t$$
s.t. $c_t + k_{t+1} = e^{z_t} k_t^{\alpha} + (1 - \delta) k_t$ $t = 1, 2, ...$

$$z_t = \rho z_{t-1} + \sigma \varepsilon_t \quad t = 1, 2, ...$$

$$k_0, z_0 \text{ given}$$

$$\varepsilon_t \sim N(0, 1)$$

If $\beta, \alpha, \rho \in (0,1)$, solution takes the form

$$c_t = c(k_t, z_t; \sigma)$$

$$k_{t+1} = k(k_t, z_t; \sigma)$$

Problem: The functions c(.) and k(.) cannot be found analytically.

- (1) Take a fixed numerical value for $\theta = (\beta, \alpha, \delta, \rho, \sigma)'$.
- (2) Find values c, c_k, c_z, k, k_k, k_z as functions of θ for which

$$c(k_t, z_t; \sigma) \simeq c + c_k(k_t - k) + c_z z_t$$

$$k(k_t, z_t; \sigma) \simeq k + k_k(k_t - k) + k_z z_t.$$

(3) If we think of observed value $(\tilde{c}_t, \tilde{k}_t)$ as differing from model and by measurement or specification $\tilde{c}_t = c_t + \varepsilon_{ct}$ $\tilde{k}_t = k_t + \varepsilon_{kt}$, then resulting system has state-strepresentation with state vector $\boldsymbol{\xi}_t = (\hat{k}_t, z_t)^T$ for $\hat{k}_t = k_t - k$ (deviations from mean).	nalogs (c_t, k_t) error,		
state equation: $\hat{k}_{t+1} = k_k \hat{k}_t + k_z z_t$ $z_{t+1} = \rho z_t + \sigma \varepsilon_{t+1}$ observation equation $\tilde{c}_t = c + c_k \hat{k}_t + c_z z_t + \varepsilon_t$ $\tilde{k}_t = k + \hat{k}_t + \varepsilon_{kt}$			
How do we achieve step (2)? One approach: perturbation moreon consider a continuum of economic indexed by σ and use Taylor's to find approximation in neighbor $\sigma = 0$ (that is, as economy be deterministic).	omies Theorem oorhood of		

First-order conditions:

$$\frac{1}{c_t} = \beta E_t \left[\frac{1 - \delta + \alpha k_{t+1}^{\alpha - 1} \exp(z_{t+1})}{c_{t+1}} \right]$$

$$c_t + k_{t+1} = e^{z_t} k_t^{\alpha} + (1 - \delta)k_t$$

$$z_t = \rho z_{t-1} + \sigma \varepsilon_t$$

(2a) Find steady-state (solutions for the case $\sigma=0$) :

$$c_t = c_{t+1} = c$$

$$k_t = k_{t+1} = k$$

$$z_t = 0$$

$$\sigma = 0$$

$$\frac{1}{c} = \beta \left[\frac{1 - \delta + \alpha k^{\alpha - 1}}{c} \right]$$

$$c+k=k^\alpha+(1-\delta)k$$

In this case c and k can be found analytically:

$$1 = \beta[1 - \delta + \alpha k^{\alpha - 1}]$$

$$c=k^{\alpha}-\delta k.$$

2	Λ
J	U

More generally, could be found numerically.

- (a) Make arbitrary initial guess ($\ell = 0$) for (c_0, k_0) .
- (b) Calculate

$$\left\{ \frac{1}{c_{\ell}} - \beta \left[\frac{1 - \delta + \alpha k_{\ell}^{\alpha - 1}}{c_{\ell}} \right] \right\}^{2} + \left\{ c_{\ell} + k_{\ell} - \left[k_{\ell}^{\alpha} + (1 - \delta) k_{\ell} \right] \right\}^{2}.$$

(c) Find better guess $(c_{\ell+1},k_{\ell+1})$ until objective function acceptably small.

What if data are nonstationary?

One approach: let \tilde{c}_t denote some measure of detrended consumption, and assume

$$\tilde{c}_t = c_t + \varepsilon_{ct}$$

for c_t the magnitude described by model. Alternative approach: explicitly model trend in z_t , find transformation in model that induces a stationary magnitude c_t , and apply same transformation to data.

(2b) Use Taylor's Theorem to find approx linear coefficients.

(Take $\delta = 1$ case for illustration)

Write F.O.C. as $E_t \mathbf{a}(k_t, z_t; \sigma, \varepsilon_{t+1}) = \mathbf{0}$

$$a_1(k_t, z_t; \sigma, \varepsilon_{t+1}) = \frac{1}{c(k_t, z_t; \sigma)} - \beta \frac{ak(k_t, z_t; \sigma)^{\alpha-1} \exp(\rho z_t + \sigma \varepsilon_{t+1})}{c(k(k_t, z_t; \sigma), \rho z_t + \sigma \varepsilon_{t+1}; \sigma)}$$

$$a_2(k_t, z_t; \sigma, \varepsilon_{t+1}) = c(k_t, z_t; \sigma) + k(k_t, z_t; \sigma)$$

$$- e^{z_t} k_t^{\alpha} - (1 - \delta) k_t$$

3	1

First-order approximation:

Since $E_t \mathbf{a}(k_t, z_t; \sigma, \varepsilon_{t+1}) = \mathbf{0}$ for all

 $k_t, z_t; \sigma$, it follows that

$$E_t \mathbf{a}_k(k_t, z_t; \sigma, \varepsilon_{t+1}) = \mathbf{0}$$

for
$$\mathbf{a}_k(k_t, z_t; \sigma, \varepsilon_{t+1}) = \frac{\partial \mathbf{a}(k_t, z_t; \sigma, \varepsilon_{t+1})}{\partial k_t}$$

likewise

$$E_t \mathbf{a}_z(k_t, z_t; \sigma, \varepsilon_{t+1}) = E_t \mathbf{a}_\sigma(k_t, z_t; \sigma, \varepsilon_{t+1}) = \mathbf{0}$$

$$E_{t}\left\{\frac{\partial a_{1}(k_{t},z_{t};\sigma,\varepsilon_{t+1})}{\partial k_{t}}\Big|_{k_{t}=k,z_{t}=0,\sigma=0}\right\} = \frac{-1}{c^{2}}c_{k} - \frac{\beta\alpha(\alpha-1)k^{\alpha-2}}{c}k_{k} + \frac{\beta\alpha k^{\alpha-1}}{c^{2}}c_{k}k_{k}$$

Since c and k are known from previous step, setting this to zero gives us an equation in the unknowns c_k and k_k where for example

$$c_k = \frac{\partial c(k_t, z_t; \sigma)}{\partial k_t} \Big|_{k_t = k, z_t = 0, \sigma = 0}$$

$$\frac{\partial a_2(k_t, z_t; \sigma)}{\partial k_t} \Big|_{k_t = k, z_t = 0, \sigma = 0} = c_k + k_k - \alpha k^{\alpha - 1} - (1 - \delta)$$

This is a second equation in c_k, k_k , which together with the first can now be solved for c_k, k_k as a function of c and k

$$E_{t} \left\{ \frac{\partial a_{1}(k_{t}, z_{t}; \sigma, \varepsilon_{t+1})}{\partial z_{t}} \Big|_{k_{t}=k, z_{t}=0, \sigma=0} \right\} =$$

$$\frac{-1}{c^{2}} c_{z} - \frac{\beta \alpha (\alpha-1)k^{\alpha-2}}{c} k_{z} - \frac{\beta \alpha k^{\alpha-1} \rho}{c}$$

$$+ \frac{\beta \alpha k^{\alpha-1}}{c^{2}} (c_{k}k_{z} + \rho c_{z})$$

$$\frac{\partial a_{2}(k_{t}, z_{t}; \sigma)}{\partial z_{t}} \Big|_{k_{t}=k, z_{t}=0, \sigma=0} =$$

$$c_{z} + k_{z} - k^{\alpha}$$

setting these to zero allows us to solve for c_z, k_z

$$\frac{\partial a_{1}(k_{t},z_{t};\sigma,\varepsilon_{t+1})}{\partial \sigma}\Big|_{k_{t}=k,z_{t}=0,\sigma=0} = \frac{1}{c^{2}}c_{\sigma} - \frac{\beta\alpha(\alpha-1)k^{\alpha-2}}{c}k_{\sigma} - \frac{\beta\alpha k^{\alpha-1}\varepsilon_{t+1}}{c} + \frac{\beta\alpha k^{\alpha-1}}{c^{2}}(c_{k}k_{\sigma} + \varepsilon_{t+1}c_{z} + c_{\sigma}) \\
\frac{\partial a_{2}(k_{t},z_{t};\sigma)}{\partial \sigma}\Big|_{k_{t}=k,z_{t}=0,\sigma=0} = c_{\sigma} + k_{\sigma}$$

Taking expectations and setting to zero yields

$$\frac{-1}{c^2}c_{\sigma} - \frac{\beta\alpha(\alpha-1)k^{\alpha-2}}{c}k_{\sigma} + \frac{\beta\alpha k^{\alpha-1}}{c^2}(c_k k_{\sigma} + c_{\sigma}) = 0$$

$$c_{\sigma} + k_{\sigma} = 0$$

which has solution $c_{\sigma} = k_{\sigma} = 0$ \Rightarrow volatility, risk aversion play no role in first-order approximation

In this example, values for c_k, c_z, k_k, k_z could be found analytically. More generally, we will have a quadratic system of equations in unknowns like c_k, c_z, k_k, k_z . Common approach to solving: recognize as linear rational-expectations model and use numerical methods to find stable solution (assuming exists and is unique). In general, better solutions obtained

(particularly for trending data) if linearize in logs rather than levels.

$$\widehat{c}_{t} = \log c_{t}, \ \widehat{k}_{t} = \log k_{t}$$

$$\frac{1}{\exp(\widehat{c}_{t})} = \beta E_{t} \left[\frac{1 - \delta + \alpha \exp[(\alpha - 1)\widehat{k}_{t+1}] \exp(z_{t+1})}{\exp(\widehat{c}_{t+1})} \right]$$

$$\exp(\widehat{c}_{t}) + \exp(\widehat{k}_{t+1}) = e^{z_{t}} \exp(\alpha \widehat{k}_{t})$$

$$+ (1 - \delta) \exp(\widehat{k}_{t})$$

$$\widehat{c}_{t} = \widehat{c}(\widehat{k}_{t}, z_{t}; \sigma)$$

$$\widehat{k}_{t+1} = \widehat{k}(\widehat{k}_{t}, z_{t}; \sigma)$$

(3) Once we have state-space representation for observed data $\mathbf{y}_t = (\tilde{c}_t, \tilde{k}_t)'$ associated with this fixed θ , we can choose θ to maximize likelihood.

(3) since this $\boldsymbol{\theta}$ implies $\mathbf{y}_{t}|\Omega_{t-1}, \mathbf{x}_{t}; \boldsymbol{\theta} \sim N(\widehat{\mathbf{y}}_{t|t-1}(\boldsymbol{\theta}), \mathbf{C}_{t|t-1}(\boldsymbol{\theta})),$ choose $\widehat{\boldsymbol{\theta}}$ so as to maximize log likelihood: $\mathcal{L}(\boldsymbol{\theta}) = -\frac{Tn}{2}\log 2\pi - \frac{1}{2}\sum_{t=1}^{T}\log |\mathbf{C}_{t|t-1}(\boldsymbol{\theta})| - \frac{1}{2}\sum_{t=1}^{T}[\mathbf{y}_{t} - \widehat{\mathbf{y}}_{t|t-1}(\boldsymbol{\theta})]'[\mathbf{C}_{t|t-1}(\boldsymbol{\theta})]^{-1}[\mathbf{y}_{t} - \widehat{\mathbf{y}}_{t|t-1}(\boldsymbol{\theta})]$ by numerical search

(given guess θ_j , find a θ_{j+1} associated with bigger value for $\mathcal{L}(\theta)$)

Caution: the DSGE is often simultaneously (1) overidentified, (2) underidentified, and (3) weakly identified.

(1) Overidentification: The DSGE implies a state-space model $\boldsymbol{\xi}_{t+1} = \mathbf{F}(\boldsymbol{\theta})\boldsymbol{\xi}_t + \mathbf{v}_{t+1}$ $\mathbf{y}_t = \mathbf{a}(\boldsymbol{\theta}) + \mathbf{H}(\boldsymbol{\theta})'\boldsymbol{\xi}_t + \mathbf{w}_t$ where $\mathbf{F}, \mathbf{a}, \mathbf{H}$ satisfy complicated nonlinear restrictions. A specification with less restrictive $\mathbf{F}, \mathbf{a}, \mathbf{H}$ may fit data much better.

Empirical applications typically have much richer dynamics than simple theoretical models.

Example: Smets and Wouters,
Journal of European Economic Association, 2003.

inst	tan	taneo	us I	utili	ty 1	func	tion	1:
------	-----	-------	------	-------	------	------	------	----

$$U_t = a_t^b \left[\frac{1}{1-\lambda_c} (C_t - hC_{t-1})^{1-\lambda_c} - \frac{a_t^L}{1+\lambda_\ell} (\ell_t)^{1+\lambda_\ell} \right]$$

 $h > 0 \Rightarrow \text{habit persistence}$

$$a_t^b = \rho_b a_{t-1}^b + \eta_t^b \quad \eta_t^b \sim \text{i.i.d. } N(0, \sigma_b^2)$$

 \Rightarrow shock to intertemporal subs

$$a_t^L = \rho_L a_{t-1}^L + \eta_t^L$$

 \Rightarrow shock to intratemporal subs

Let \widehat{C}_t denote deviation of $\log(C_t)$ from its steady-state value

(1)
$$\widehat{C}_{t} = \left(\frac{h}{1+h}\right) \widehat{C}_{t-1} + \left(\frac{1}{1+h}\right) E_{t} \widehat{C}_{t+1}$$
$$-\frac{(1-h)}{(1+h)\lambda_{c}} \left(\widehat{R}_{t} - E_{t} \widehat{\pi}_{t+1}\right)$$
$$+\frac{(1-h)}{(1+h)\lambda_{c}} \left(\widehat{a}_{t}^{b} - E_{t} \widehat{a}_{t+1}^{b}\right)$$

capital evolution:

$$K_t = K_{t-1}(1-\delta) + [1 - S(a_t^I I_t / I_{t-1})]I_t$$

S(.) = adjustment costs

$$a_t^I = \rho_I a_{t-1}^I + \eta_t^I$$

(2)
$$\hat{K}_{t} = (1 - \delta)\hat{K}_{t-1} + \delta\hat{I}_{t-1}$$

(3) $\hat{I}_{t} = \left(\frac{1}{1+\beta}\right)\hat{I}_{t-1} + \left(\frac{\beta}{1+\beta}\right)E_{t}\hat{I}_{t+1} + \frac{\varphi}{1+\beta}\hat{Q}_{t} - \frac{\beta E_{t}\hat{a}_{t+1}^{I} - \hat{a}_{t}^{I}}{1+\beta}$
 $\varphi = 1/S''$

 Q_t = value of capital stock

(4)
$$\hat{Q}_{t} = -\left(\hat{R}_{t} - \hat{\pi}_{t+1}\right) + \frac{1-\delta}{1-\delta+\overline{r}_{k}} E_{t} \hat{Q}_{t+1} + \frac{\overline{r}_{k}}{1-\delta+\overline{r}_{k}} E_{t} \hat{r}_{K,t+1} + \eta_{t}^{Q}$$

 r_{Kt} = rate of return to capital

$$\eta_t^Q = \text{tacked on}$$

output from producer of intermediate good of type j $y_t^j = a_t^a K_{t-1}(j)^{\alpha} L_t(j)^{1-\alpha} - \Phi$

 $a_t^a = \text{productivity shock}$

$$a_t^a = \rho_a a_{t-1}^a + \eta_t^a$$

 $\Phi = \text{fixed cost}$

 $L_t(j) = ext{aggregate of labor}$ hired from each household au $L_t(j) = \left\{ \int_0^1 \left[\ell_t(au) \right]^{1/(1+\lambda_{w,t})} d au \right\}^{1+\lambda_{w,t}}$ $\lambda_{w,t} = \lambda_w + \eta_t^w$ $\eta_t^w = ext{shock to workers' market}$ power

wage stickiness:

a fraction ξ_w of workers are not allowed to change their wage but instead have their wage increase from the previous value by $(P_{t-1}/P_{t-2})^{\gamma_w}$

 $\gamma_w =$ degree of indexing

(5)
$$\hat{w}_{t} = \frac{\beta}{1+\beta} E \hat{w}_{t+1} + \frac{1}{1+\beta} \hat{w}_{t-1}$$

$$+ \frac{\beta}{1+\beta} E_{t} \hat{\pi}_{t+1} - \frac{1+\beta\gamma_{w}}{1+\beta} \hat{\pi}_{t} + \frac{\gamma_{w}}{1+\beta} \hat{\pi}_{t-1}$$

$$-h_{w} \left[\hat{w}_{t} - \lambda_{L} \hat{L}_{t} - \frac{\lambda_{c}}{1-h} (\hat{C}_{t} - h \hat{C}_{t-1}) \right]$$

$$-\hat{a}_{t}^{L} - \hat{\eta}_{t}^{w}$$

$$h_{w} = \frac{1}{1+\beta} \frac{(1-\beta\xi_{w})(1-\xi_{w})}{[1+(1+\lambda_{w})\lambda_{L}/\lambda_{w}]\xi_{w}}$$

labor demand

$$\frac{W_t L_t(j)}{r_{K,t} z_t K_{t-1}(j)} = \frac{1-\alpha}{\alpha}$$

 $z_t = capital utilization$

(6)
$$\hat{L}_t = -\hat{w}_t + (1 + \psi)\hat{r}_{K,t} + \hat{K}_{t-1}$$

 ψ = parameter based on cost of utilizing capital

intermediate goods sold to final goods producer with market power of firm *j* governed by

$$\lambda_{p,t} = \lambda_p + \eta_t^p$$

 ξ_p = fraction allowed to adjust prices

 γ_p = indexing parameter

(7)
$$\hat{\pi}_{t} = \frac{\beta}{1+\beta\gamma_{p}} E_{t} \hat{\pi}_{t+1} + \frac{\gamma_{p}}{1+\beta\gamma_{p}} \hat{\pi}_{t-1} + h_{p} \left[\alpha \hat{r}_{K,t} + (1-\alpha) \hat{w}_{t} - \hat{a}_{t}^{a} + \eta_{t}^{p} \right]$$

$$h_{p} = \frac{1}{1+\beta\gamma_{p}} \frac{(1-\beta\xi_{p})(1-\xi_{p})}{\xi_{p}}$$

goods market equilibrium

(8)
$$\hat{Y}_t = [1 - \delta(\overline{K}/\overline{Y}) - (\overline{G}/\overline{Y})]\hat{C}_t + \delta(\overline{K}/\overline{Y})\hat{I}_t + (\overline{G}/\overline{Y})\hat{a}_t^G$$
 production function then determines $r_{K,t}$

(9)
$$\hat{Y}_{t} = \phi \hat{a}_{t}^{a} + \phi \alpha \hat{K}_{t-1} + \phi \alpha \psi \hat{r}_{K,t}$$

$$+ \phi (1 - \alpha) \hat{L}_{t}$$

$$\phi = 1 + \frac{\Phi}{\text{s.s. costs}}$$

monetary policy (Taylor Rule)

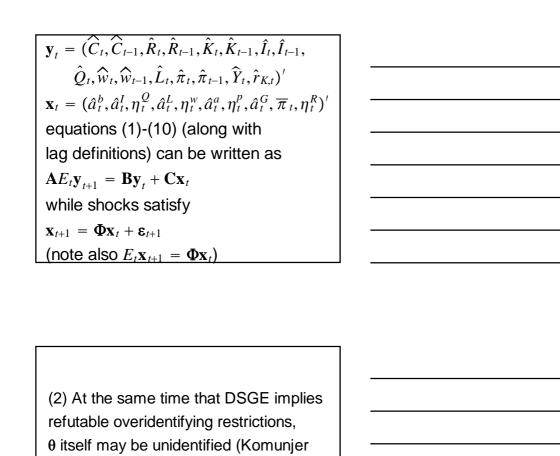
(10)
$$\hat{R}_{t} = \rho \hat{R}_{t-1} + (1-\rho) \{ \overline{\pi}_{t} + r_{\pi}(\hat{\pi}_{t-1} - \overline{\pi}_{t-1}) + r_{Y}(\hat{Y}_{t} - \hat{Y}_{t}^{P}) \} + r_{\Delta\pi}(\hat{\pi}_{t} - \hat{\pi}_{t-1}) + r_{\Delta Y} [\hat{Y}_{t} - \hat{Y}_{t}^{P} - (\hat{Y}_{t-1} - \hat{Y}_{t-1}^{P})] + \eta_{t}^{R}$$

 $\overline{\pi}_t$ = inflation target

$$\overline{\pi}_t = \rho_{\pi} \overline{\pi}_{t-1} + \eta_t^{\pi}$$

 \hat{Y}_{t}^{p} = output level if prices perfectly flexible

40



With Gaussian errors, the observable implications of the state-space representation are entirely summarized by $\mathbf{y} \sim N(\mathbf{\mu}, \mathbf{\Omega})$ for $\mathbf{y} = (\mathbf{y}_1', \dots, \mathbf{y}_T')'$ $\mathbf{\mu} = \mathbf{a}(\mathbf{\theta}) \otimes \mathbf{1}_T$ $\mathbf{\Omega} \text{ a known function of } \mathbf{\theta}$ e.g., diagonal blocks of $\mathbf{\Omega}$ given by $\mathbf{H}(\mathbf{\theta})'\mathbf{\Sigma}(\mathbf{\theta})\mathbf{H}(\mathbf{\theta}) + \mathbf{R}(\mathbf{\theta})$ $\text{vec}(\mathbf{\Sigma}(\mathbf{\theta}) = [\mathbf{I}_{r^2} - (\mathbf{F}(\mathbf{\theta}) \otimes \mathbf{F}(\mathbf{\theta}))]^{-1} \text{vec}(\mathbf{Q}(\mathbf{\theta}))$

and Ng, Econometrica, 2011).

Model is unidentified at θ_0 if there exists a $\theta_1 \neq \theta_0$ such that $ \mathbf{a}(\theta_0) = \mathbf{a}(\theta_1) $ $ \Omega(\theta_0) = \Omega(\theta_1) $ Can check this locally by numerically calculating derivatives with respect to θ	
(3) Finally, other parameters of θ may only be weakly identified $\Omega(\theta_0) \neq \Omega(\theta_1)$ but $\mathcal{L}(\theta_0) - \mathcal{L}(\theta_1)$ small for $\ \theta_0 - \theta_1\ $ large. Common approach: fix some parameters such as β using a priori information.	
Bayesian estimation with informative priors can help with some of these numerical problems.	