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Abstract. The issue of normalization arises whenever two different values for a

vector of unknown parameters imply the identical economic model. A normaliza-

tion implies not just a rule for selecting which among equivalent points to call the

maximum likelihood estimate (MLE), but also governs the topography of the set of

points that go into a small-sample confidence interval associated with that MLE.

A poor normalization can lead to multimodal distributions, disjoint confidence in-

tervals, and very misleading characterizations of the true statistical uncertainty.

This paper introduces an identification principle as a framework upon which a nor-

malization should be imposed, according to which the boundaries of the allowable

parameter space should correspond to loci along which the model is locally unidenti-

fied. We illustrate these issues with examples taken from mixture models, structural

vector autoregressions, and cointegration models.
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1. Introduction

An econometric model is said to be unidentified if two or more values for a vector of

unknown parameters imply the identical probability law. In traditional discussions of

the identification problem (Koopmans, 1953, for example), these different parameters

could have very different economic implications. A good deal of effort is accordingly

devoted to ensuring the validity of the identifying restrictions that led to selecting

one parameter value over the others.

On the other hand, when two or more parameter values are observationally equiva-

lent and furthermore have the identical economic implications, we say that the model

simply requires a normalization. One’s first thought might be that if “normalization”

is defined as an identification restriction that has no implications for statements we

would make about economic behavior, it should not make any difference how one

deals with it. However, a host of counterexamples discussed in this paper show that

in fact it can matter a great deal.

The fact that normalization can materially affect the conclusions one draws with

likelihood-based methods is not widely recognized. Here the normalization problem

arises when the likelihood f(y; θ1) = f(y; θ2) for all possible values of y. Since

θ1 and θ2 imply the identical observed behavior and since the maximum likelihood

estimates (MLEs) themselves are invariant with respect to a reparameterization, many

scholars (Anderson, 2005, e.g.) have assumed that the question of normalization was

irrelevant as long as parameters are estimated by the full information maximum

likelihood (FIML) or limited information maximum likelihood (LIML) method. If

one were interested in reporting only the MLE and the probability law that it implies

for y, this would indeed be the case. The problem arises when one wishes to go

further and make a statement about a region of the parameter space around θ1, for

example, in constructing confidence sets. In this case, normalization is not just a

rule for selecting θ1 over θ2 but in fact becomes a rule for selecting a whole region

of points {θ∗1 : θ∗1 ∈ Ω(θ1)} to associate with θ1. Our paper shows that a poor

normalization can have the consequence that two nearly observationally equivalent

probability laws (f(y; θ1) arbitrarily close to f(y; θ∗1)) are associated with widely

different points in the parameter space (θ1 arbitrarily far from θ∗1). The result can
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be a multimodal distribution for the MLE θ̂ that is grossly misrepresented by a simple

mean and variance. More fundamentally, the economic interpretation one places on

the region Ω(θ1) is inherently problematic in such a case.

This problem has previously been recognized in a variety of individual settings, but

to our knowledge with no unifying treatment of the general nature of the problem and

its solution. The contribution of the present paper is to articulate the general statis-

tical principles underlying the problems heretofore raised in isolated literatures. We

propose a general solution to the normalization problem, following an “identification

principle.” We contrast our work with previous research dealing with identification

problems.

The conventional way of implementing normalization is by means of a priori re-

strictions to restrict the parameter space in certain ways. One could also implement

normalization as part of the Bayesian prior, as we will show in Section 3. Such a prior

is likely to be nonstandard and may have material consequences on the marginal like-

lihood that complicate the model comparison. Our purpose is to show that contrary

to the common belief, normalization affects inferential conclusions for quantifying the

uncertainty about the MLEs, no matter whether normalization is implemented by a

priori restrictions or Bayesian prior probability density functions (pdfs).

We find it helpful to introduce the key issues in Section 2 with a simple example,

namely estimating the parameter σ for an i.i.d. sample of N(0, σ2) variables. Sec-

tion 3 illustrates how the general principles proposed in Section 2 apply in mixture

models. Section 4 discusses structural vector autoregressions (VARs), while Section

5 investigates cointegration. A number of other important econometric models could

also be used to illustrate these principles, but are not discussed in detail in this paper.

These include binary response models, where one needs to normalize coefficients in a

latent process or in expressions that only appear as ratios (Hauck Jr. and Donner,

1977; Manski, 1988, e.g.), dynamic factor models, where the question is whether a

given feature of the data is mapped into a parameter of factor i or factor j (Otrok

and Whiteman, 1998, e.g.); and neural networks, where the possibility arises of hid-

den unit weight interchanges and sign flips (Chen, minn Lu, and Hecht-Nielsen, 1993;
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Rüger and Ossen, 1996, e.g). Section 6 summarizes our practical recommendations

for applied research in any setting requiring normalization.

2. Normalization and an identification principle

2.1. Motivation. We can illustrate the key issues associated with normalization

through the following example. Suppose yt = σεt where εt ∼ i.i.d. N(0, 1). Denote

the likelihood function with the sample size T by f(y; σ), where y = {y1, ..., yT}. It

follows that the log likelihood function is

log f(y; σ) = −(T/2) log(2π)− (T/2) log(σ2)−
T∑

t=1

y2
t /(2σ

2).

The likelihood function is of course a symmetric function of σ, with positive and

negative values of σ implying identical probabilities for observed values of y. One

needs to restrict σ further than just σ ∈ <1 in order to infer the value of σ from

observation of y. The obvious (and, we will argue, correct) normalization is to impose

the restriction σ > 0. But consider the consequences of using some alternative rule for

normalization, such as σ ∈ A = {(−2, 0)∪ [2,∞)}. This also would technically solve

the normalization problem, in that distinct elements of A imply different probability

laws for yt. But inference about σ that relies on this normalization runs into three

potential pitfalls.

First, the Bayesian posterior distribution π(σ|y) is bimodal and classical confidence

regions are disjoint. This might not be a problem as long as one accurately reported

the complete distribution. However, if we had generated draws numerically from

π(σ|y) and simply summarized this distribution by its mean and standard deviation

(as is often done in more complicated, multidimensional problems), we would have

a grossly misleading inference about the nature of the information contained in the

sample about σ.

Second, the economic interpretation one places on σ is fundamentally different over

different regions of A, separated by the point σ = 0 as which the log likelihood is

−∞. In the positive region, higher values of σ imply more variability of yt, whereas

in the negative region, higher values of σ imply less variability of yt. If one had

adopted the σ ∈ A normalization, the question of whether σ is large or small would
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not be of fundamental interest, and why a researcher would even want to calculate

the posterior mean and standard deviation of σ is not at all clear.

Third, the economic interpretation one places on the interaction between variables

is fundamentally different over different regions of A. In VAR analysis, a common

goal is to estimate the effect of shocks on the variables in the system. For this

example, the impulse response function is simply

∂yt+j/∂εt =





σ j = 0

0 j = 1, 2, ...
.

Thus the consequences of a one unit increase in εt are different over different regions

of the parameter space. In the positive region, a positive shock to εt is interpreted

as something that increases yt, whereas over the negative region, a positive shock to

εt is interpreted as something that decreases yt. Again, if this is the normalization

one had imposed, it is not clear why one would ever want to calculate an object such

as ∂yt+j/∂εt.

In this example, these issues are sufficiently transparent that no researcher would

ever choose such a poor normalization or fall into these pitfalls. However, we will

show below that it is very easy to make similar kinds of mistakes in a variety of more

complicated econometric contexts. Before doing so, we outline the general principles

that we propose as a guideline for the normalization question in any setting.

2.2. General principles. Our starting point is the observation that the normaliza-

tion problem is fundamentally a question of identification. Let θ ∈ <k denote the

parameter vector of interest and f(y; θ) the likelihood function. Following Rothen-

berg (1971), two parameter points θ1 and θ2 are said to be observationally equivalent

if f(y; θ1) = f(y; θ2) for all values of y. The structure is said to be globally identi-

fied at the point θ0 if there is no other allowable value for θ that is observationally

equivalent to θ0. The structure is said to be locally identified at θ0 if there exists an

open neighborhood around θ0 containing no other value of θ that is observationally

equivalent to θ0.

In the absence of a normalization condition, the structure would typically be glob-

ally unidentified but locally identified. The two points implying identical observed



NORMALIZATION 5

behavior (θ1 and θ2) are typically separated in <k. However, usually there will be

loci in <k along which the structure is locally unidentified or the log likelihood di-

verges to −∞. These loci characterize the boundaries across which the interpretation

of parameters necessarily changes. In the example presented in Section 2.1, since

k = 1, the locus is simply a point in <1, namely, σ = 0. The two points σ1 = 3 and

σ2 = −3, for instance, are separated in <1 and have the same likelihood value but

with different economic interpretations in terms of impulse responses.

The normalization problem is to restrict θ to a subset A of <k. Our proposal is

that the boundaries of A should correspond to the loci along which the structure

is locally unidentified or the log likelihood is −∞. We describe this as choosing a

normalization according to an identification principle. In the previous simple example,

using this locus as the boundary for A means defining A by the condition σ > 0 –

the common-sense normalization for this transparent case.

One easy way to check whether a proposed normalization set A conforms to this

identification principle is to make sure that the model is locally identified at all interior

points of A. If it is not, then the normalization does not satisfy the identification

principle. The following sections illustrate these ideas in a number of different settings

with more complicated examples.

3. Mixture models

One class of models for which the normalization problem arises is when the observed

data come from a mixture of different distributions or regimes, as in the Markov-

switching models proposed by Hamilton (1989). Consider for illustration the simplest

i.i.d. mixture model, in which yt is drawn from a N(µ1, 1) distribution with probability

p and a N(µ2, 1) distribution with probability 1− p, so that its density is

f(yt; µ1, µ2, p) =
p√
2π

exp

[−(yt − µ1)
2

2

]
+

1− p√
2π

exp

[−(yt − µ2)
2

2

]
. (1)

The model is unidentified in the sense that, if one switches the labels for regime 1

and regime 2, the value of the likelihood function is unchanged: f(yt; µ1, µ2, p) =

f(yt; µ2, µ1, 1− p). Before we can make any inference about the value of θ = (µ1, µ2,

p)′ we need a resolution of this “label-switching” problem. Treatments of this problem
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include Celeux, Hurn, and Robert (2000), Stephens (2000), and Frühwirth-Schnatter

(2001).

How we choose to resolve the problem depends in part on why we are interested in

the parameters in the first place. One possibility is that (1) is simply proposed as a

flexible representation of the density of yt. Here one has no interest in the value of

θ itself, but only in the shape of the distribution f(.). If this is one’s goal, the best

approach may be to simulate the posterior distribution of θ without imposing any

normalization at all while making sure that the full range of permutations gets sam-

pled, and checking to make sure that the inferred distribution is exactly multimodally

symmetric (e.g., Celeux, Hurn, and Robert, 2000). This can be more difficult to im-

plement than it sounds, particularly if one tries to apply it to higher-dimensional

problems. However, once the unrestricted multimodal distribution is successfully

obtained, as long as one is careful to use this distribution only for purposes of making

calculations about f(.), the multimodality of the distribution and ambiguity about

the nature of θ need not introduce any problems.

A second reason one might be interested in this model is as a structural description

of a particular economic process for which the parameters θ have clear and distinct

economic interpretations. For example, yt might be the value of GDP growth in

year t, µ1 the growth rate in expansions, µ2 the growth rate in recessions, and p the

probability of an expansion. In this case, the structural interpretation dictates the

normalization rule that should be adopted, namely µ1 > µ2. A nice illustration and

extension of this idea is provided by Smith and Summers (2003).

A third case is where the researcher believes that there is an underlying structural

mechanism behind the mixture distribution, but its nature is not currently under-

stood. For example, yt might be an interest rate. The two means might be revealed

in later research to be related to economic expansions and contractions, or to changes

in policy, but the nature of regimes is not known a priori. For this case, the researcher

believes that there exists a unique true value of θ0. The goal is to describe the nature

of the two regimes, e.g., one regime is characterized by 4% higher interest rates on

average, for which purposes point estimates and standard errors for θ are desired.
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One needs to restrict the space of allowed values of θ to an identified subspace in

order to be able to do that.

One way one might choose to restrict the space would be to specify p > 0.5, as in

Aitkin and Rubin (1985) or Lenk and DeSarbo (2000). However, according to the

identification principle discussed in Section 2, this is not a satisfactory solution to the

normalization problem. This is because even if one restricts p > 0.5, the structure

is still locally unidentified at any point at which µ1 = µ2, for at any such point the

likelihood function does not depend on the value of p.

To illustrate what difference the choice of normalization makes for this example, we

calculated the log likelihood for a sample of 50 observations from the above distribu-

tion with µ1 = 1, µ2 = −1, and p = 0.8. Figure 1 plots contours of the log likelihood

as a function of µ1 and µ2 for alternative values of p. The maximum value for the log

likelihood (-79) is achieved near the true values, as shown in the upper left panel. The

lower right panel is its exact mirror image, with a second maximum occurring near

µ1 = −1, µ2 = 1, and p = 0.2. In the middle right panel (p = 0.5), points above the

45o line are the mirror image of those below. The proposed normalization (p > 0.5)

restricts the space to the first three panels. This solves the normalization problem in

the sense that there is now a unique global maximum to the likelihood function, and

any distinct values of θ within the allowable space imply different probability laws for

yt. However, by continuity of the likelihood surface, each of these panels has a near

symmetry across the 45o line that is an echo of the exact symmetry of the p = 0.5

panel. Conditional on any value of p, the normalization p > 0.5 therefore results

in one mass of probability centered at µ1 = 1, µ2 = −1, and a second smaller mass

centered at µ1 = −1, µ2 = 1. Hence, although restricting p > 0.5 can technically

solve the normalization problem, it does so in an unsatisfactory way. The problem

arises because points interior to the normalized region include the axis µ1 = µ2, along

which the labelling of regimes could not be theoretically defined, and across which

the substantive meaning of the regimes switches.1

1This observation that simply restricting θ to an identified subspace is not a satisfactory solution

to the label-switching problem has also been forcefully made by Celeux, Hurn and Rober (2000),

Stephens (2000), and Frühwirth-Schnatter (2001), though none of them interpret this problem in

terms of the identification principle articulated here. Frühwirth-Schnatter suggested plotting the
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An alternative normalization would set µ1 > µ2, defining the allowable parameter

space by the upper left triangle of all panels, choosing the locus along which the model

is locally unidentified (µ1 = µ2) as the boundary for the parameter space. Note that

over this region, the global likelihood surface is much better behaved.

To investigate this in further detail, we calculated the Bayesian posterior distribu-

tions. For a Bayesian prior we specified µi ∼ N(0, 5) (with µ1 independent of µ2) and

used a uniform prior for p. We will comment further on the role of these priors below.

Appendix A describes the specifics of the Gibbs sampler used to simulate draws from

the posterior distribution of θ. For each draw of θ(i), we kept θ(i) if p(i) > 0.5, but

used (µ
(i)
2 , µ

(i)
1 , 1− p(i))′ otherwise. We ran the Gibbs sampler for 5500 iterations on

each sample, with parameter values initialized from the prior, discarded the first 500

iterations, and interpreted the last 5000 iterations as draws from the posterior dis-

tribution of parameters for that sample.2 We repeated this process on 1000 different

samples of size T = 10, 20, 50, and 100. For the nth generated sample, we calculated

the difference between the posterior mean E(θ|y(n)) and true value θ = (1,−1, 0.8)′.

The mean squared errors across samples n are plotted as a function of the sample

size T in the first row of Figure 2. The µ1 > µ2 normalization produces lower mean

squared errors for any sample size for either of the mean parameters, substantially so

for µ2.

Another key question is whether the posterior distributions accurately summarize

the degree of objective uncertainty about the parameters. For each sample, we

calculated a 90% confidence region for each parameter as implied by the Bayesian

posterior distribution. We then checked whether the true parameter value indeed

fell within this region, and calculated the fraction of samples for which this condition

was satisfied. The second row in Figure 2 reports these 90% coverage probabilities

for the two normalizations. The µ1 > µ2 normalization produces the most accurately

sized test of the hypotheses µ1 = µ10 or µ2 = µ20 for samples with T ≥ 50.

posterior distributions under alternative normalizations to try to find one that best respects the

geometry of the posterior. Celeux, Hurn and Robert (2000) and Stephens (2000) proposed a

decision-theoretic framework.
2Given the nature of i.i.d. draws, this number of iterations is more than sufficient for obtaining

the accurate posterior mean.
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The p > 0.5 normalization does achieve a significanly better MSE for purposes of

estimating p (upper right panel of Figure 2). However, this appears to be primarily

a consequence of the prior forcing the estimate to be in the vicinity of its true value.

The MSE for p for the p > 0.5 normalization actually deteriorates as the sample

size T increases, and the coverage probabilities are quite poor (middle right panel of

Figure 2).

On the other hand, the normalization µ1 > µ2 can also interact with the original

symmetric prior for µ to substantially improve the accuracy of the prior information.3

If the original symmetric prior is

 µ1

µ2


 ∼ N





 0

0


 ,


 ς2 0

0 ς2





 , (2)

then E(µ∗1 = max{µ1, µ2}) = ς/
√

π. 4 For the prior used in the above calculations,

ς =
√

5. Hence the prior expectation of µ∗1 is 1.26, and likewise E(µ∗2) = −1.26, both

close to the true values of ±1. To see how the prior can adversely interact with

normalization, suppose instead we had set ς2 = 100. In the absence of normalization,

this would be an attractive uninformative prior. With the normalization µ1 > µ2,

however, it implies a prior expectation E(µ∗1) = 5.64 and a nearly even chance that

µ∗1 would exceed this value, even though in 100,000 observations on yt, one would

not be likely to observe a single value as large as this magnitude that is proposed as

the mean of one of the subpopulations.5 Likewise the prior is also assigning a 50%

probability that µ2 < −5, when the event yt < −5 is also virtually impossible.

The third row in Figure 2 compares mean squared errors that would result from

the µ1 > µ2 normalization under different priors. Results for the N(0, 5) prior are

represented by the solid lines. This solid line in the left panel of the third row in

Figure 2 is identical to the solid line in the left panel of of the first row in Figure 2,

but the scale is different in order to try to convey the huge mean squared errors for µ1

that result under the N(0, 100) prior (the latter represented by the dashed line in the

3By symmetric we mean the prior pdf is the same or symmetric for both µ1 and µ2.
4See Ruben (1954, Table 2).
5The probability that a variable drawn from the distribution with the larger mean (N(1, 1))

exceeds 5.5 is 0.00000340.
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third row of Figure 2). Under the N(0, 100) prior, the µ1 > µ2 normalization does a

substantially worse job at estimating µ1 or p than would the p > 0.5 normalization for

sample sizes below 50. Surprisingly, it does a better job at estimating µ2 for moderate

sample sizes precisely because the strong bias introduced by the prior offsets the bias

of the original estimates.

It is clear from this discussion that we need to be aware not only of how the

normalization conforms to the topography of the likelihood function, but also with

how it interacts with any prior that we might use in Bayesian analysis. Given

the normalization µ1 > µ2, rather than the prior (2), it seems better to employ a

truncated Gaussian prior, where µ1 ∼ N(µ1, ς
2
1) and

π(µ2|µ1) =





1
Φ[(µ1−µ2)/ς2]

√
2πς2

exp
(
−(µ2−µ2)2

2ς22

)
if µ2 ≤ µ1

0 otherwise
(3)

for Φ(z) = Prob(Z ≤ z) for Z ∼ N(0, 1). Here µ2 and ς2
2 denote the mean and vari-

ance of the distribution that is truncated by the condition µ2 < µ1. One drawback of

this truncated Gaussian prior is that it is no longer a natural conjugate for the like-

lihood, and so the Gibbs sampler must be adapted to include a Metropolis-Hastings

step rather than a simple draw from a normal distribution, as detailed in Appendix

A.

We redid the above analysis using this truncated Gaussian prior with µ1 = µ2 = 0

and ς2
1 = ς2

2 = 5. When µ1 = 0, for example, this prior implies an expected

value for µ2 of µ2 + ς2M2 = −1.78 where M2 = −φ(c2)/Φ(c2) = −0.7979 with

c2 = (µ1 − µ2)/ς2 = 0 and a variance for µ2 of ς2
2[1 −M2(M2 − c2)] = 1.82.6 Mean

squared errors resulting from this truncated Gaussian prior are reported in the dotted

lines in the third row of Figure 2. These uniformly dominate those for the simple

N(0, 5) prior.

To summarize, the p > 0.5 normalization introduces substantial distortions in the

Bayesian posterior distribution that can be largely avoided with the µ1 > µ2 nor-

malization. Normalization based on the identification principle seems to produce

6See for example Maddala (1983, pp. 365-366).
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substantially superior point estimates of µ1 and µ2 for small samples and much bet-

ter coverage probabilities for larger samples. The exercises performed in this section

also show that normalization can be viewed as part of the prior pdf. An “unreason-

able” prior or normalization can distort likelihood-based inferences about the point

estimates. Although normalization can be in principle implemented via a Bayesian

prior pdf, such a prior is likely to be nonstandard and thus its small-sample statistical

properties can be sensitive to how it is designed. The following section presents this

kind of situation.

4. Structural VARs.

Let yt denote an (n×1) vector of variables observed at date t. Consider a structural

VAR of the form

B0yt = k + B1yt−1 + B2yt−2 + · · ·+ Bpyt−p + ut (4)

where ut ∼ N(0,D2) with D a diagonal matrix. A structural VAR typically

imposes both exclusion restrictions and normalization conditions on B0 in order to

be identified. To use a familiar example (e.g., Hamilton, 1994, pages 330-331), let

yt = (qt, pt, wt)
′ where qt denotes the log of the number of oranges sold in year t, pt

the log of the price, and wt the number of days with below-freezing temperatures in

Florida (a key orange-producing state) in year t. We are interested in a demand

equation of the form

qt = βpt + δ′1xt + u1t (5)

where xt = (1,y
′
t−1,y

′
t−2, . . . ,y

′
t−p)

′ and the demand elasticity β is expected to be

negative. Quantity and price are also determined by a supply equation,

qt = γpt + hwt + δ
′
2xt + u2t,

with the supply elasticity expected to be positive (γ > 0) and freezing weather to

discourage orange production (h < 0). We might also use an equation for weather of

the form wt = δ
′
3xt + u3t, where perhaps δ3 = 0. This system is an example of (4)

incorporating both exclusion restrictions (weather does not affect demand directly,
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and neither quantity nor price affect the weather) and normalization conditions (three

of the elements of B0 have been fixed at unity):

B0 =




1 −β 0

1 −γ −h

0 0 1


 . (6)

The latter seems a sensible enough normalization, in that the remaining free pa-

rameters (β, γ, and h) are magnitudes of clear economic interpretation and interest.

However, the identification principle suggests that it may present problems, in that

the structure is unidentified at some interior points in the parameter space. Specif-

ically, at h = 0, the value of the likelihood would be unchanged if β were switched

with γ. Moreover, the log likelihood approaches −∞ as β → γ.

To see the practical consequences of this, consider the following parametric exam-

ple: 


1 2 0

1 −0.5 0.5

0 0 1







qt

pt

wt


 =




0.8 1.6 0

1.2 −0.6 0.6

0 0 1.8







qt−1

pt−1

wt−1


 +




0 0 0

−0.8 0.4 −0.4

0 0 −0.9







qt−2

pt−2

wt−2


 +




udt

ust

uwt


 . (7)

In this example, the true demand elasticity β = −2 and supply elasticity γ = 0.5,

while h = −0.5 and D = I3. Demand shocks are AR(1) with exponential decay

factor 0.8 while supply and weather shocks are AR(2) with damped sinusoidal decay.

Figure 3 shows contours of the concentrated log likelihood for a sample of size

T = 50 from this system.7 Each panel displays contours of L(β, γ, h) as functions of

β and γ for selected values of h. The middle right panel illustrates both problems with

7The likelihood has been concentrated by first regressing qt and pt on yt−1 and yt−2, and regress-

ing wt on wt−1 and wt−2, to get a residual vector ût and then evaluating at the true D = I3. That

is, for B0(β, γ, h) the matrix in (6), we evaluated

L(β, γ, h) = −1.5T ln(2π) + (T/2) ln(|B0|2)− (1/2)
T∑

t=1

(B0ût)′(B0ût).
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this normalization noted above: when h = 0, the likelihood function is unchanged

when β is switched with γ. Furthermore, the log likelihood is −∞ along the locus

β = γ, which partitions this panel into the two regions that correspond to identical

values for the likelihood surface.

The global maximum for the likelihood function occurs at β = −2.09, γ = 0.28,

and h = −0.69, corresponding to the hill in the lower right triangle of the bottom

left panel in Figure 3. Although the upper left triangle is not the mirror image of

the lower right in this panel, it nevertheless is the case that, even at the true value

of h, the likelihood function is characterized by two separate concentrations of mass,

one around the true values (β = −2, γ = 0.5) and a second smaller mass around their

flipped values (β = 0.5, γ = −2). Although the likelihood values associated with the

former are much larger than the latter, the likelihood function merges continuously

into the exact mirror image case as h approaches zero, at which the masses become

identical. Because the likelihood function is relatively flat with respect to h, the result

is a rather wild posterior distribution for impulse responses under this normalization.

To describe this distribution systematically, we generated 100,000 draws from the

posterior distribution of (β, γ, h, d1, d2, d3|y1, ...,yT ) for a representative sample with

T = 50 and with a flat prior.8 The 95% confidence interval for β over these 100,000

draws is the range [−11.3, +5.5]. A particularly wild impulse response function

ψij(k) = ∂yj,t+k/∂uit is that for ψ12(k), the effect of a demand shock on price. The

mean value and 90% confidence intervals are plotted as a function of k in the left

panel of the first row in Figure 4. It is instructive (though not standard practice)

to examine the actual probability distribution underlying this familiar plot. The left

panel of the second row in Figure 4 shows the density of ψ12(0) across these 100,000

draws, which is curiously bimodal. That is, in most of the draws, a one standard

deviation shock to demand is interpreted as something that raises the price by 0.5,

though in a significant minority of the draws, a positive shock to demand is interpreted

as something that lowers the price by 0.5. This ambiguity about the fundamental

8See Appendix B for details on the algorithm used to generate these draws. For this kind of

model, this number of Markov Chain Monte Carlo draws is sufficient to guarantee convergence as

shown in Waggoner and Zha (2003a).
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question being asked (what one means by a one-unit shock to demand) interacts with

uncertainty about the other parameters to generate the huge tails for the estimated

value of ψ12(1) (the right panel of the second row in Figure 4). We would opine that,

even though the researcher’s maximum likelihood estimates correctly characterize the

true data-generating process, such empirical results could prove impossible to publish.

The identification principle suggests that the way to get around the problems re-

vealed in Figure 3 is to take the β = γ axis as a boundary for the normalized parameter

space rather than have it cut through the middle. More generally, we seek a normal-

ization for which the matrix B0 in (6) becomes noninvertible only at the boundaries

of the region. Let C denote the first two rows and columns of B0:

C =


 1 −β

1 −γ


 .

We thus seek a normalization for which C is singular only at the boundaries. One

can see what such a region looks like by assuming that C−1 exists and premultiplying

(4) by 
 C−1 0

0′ 1


 .

We then have



1 0 π1

0 1 π2

0 0 1







qt

pt

wt


 = Π1yt−1 + Π2yt−2 +




v1t

v2t

v3t


 . (8)

Figure 5 plots likelihood contours for this parameterization as a function of π1, π2,

and ρ, the correlation between v1t and v2t.
9 Although this is exactly the same

sample of data displayed in Figure 3, the likelihood function for this parameterization

is perfectly well behaved, with a unique mode near the population values of π1 =

0.4, π2 = −0.2, and ρ = −0.51. Indeed, (8) will be recognized as the reduced-

form representation for this structural model as in Hamilton (1994, p. 245). The

parameters all have clear interpretations and definitions in terms of basic observable

properties of the data. The value of π1 tells us whether the conditional expectation

9For this graph, we set E(v2
1t) = 0.68 and E(v2

2t) = 0.32, their population values.
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of qt goes up or down in response to more freezing weather, π2 does the same for

pt, and ρ tells us whether the residuals from these two regressions are positively or

negatively correlated. Ninety-five percent confidence intervals from the same 100,000

draws described above are [0.00,0.71] for π1 and [-0.42,0.04] for π2.

Although this π-normalization eliminates the egregious problems associated with

the β-normalization in (6), it cannot be used to answer all the original questions of

interest, such as finding the value of the demand elasticity or the effects of a demand

shock on price. We can nevertheless use the π-normalization to get a little more

insight into why we ran into problems with the β-normalization. One can go from

the π-normalization back to the β-normalization by premultiplying (8) by

 C 0

0′ 1




to obtain



1 −β π1 − βπ2

1 −γ π1 − γπ2

0 0 1







qt

pt

wt


 = B1yt−1 + B2yt−2 +




v1t − βv2t

v1t − γv2t

v3t


 . (9)

Comparing (9) with (7), the structural parameter β must be chosen so as to make

the (1,3) element of B0 zero, or

β = π1/π2. (10)

Given β, the parameter γ must be chosen so as to ensure E(v1t−βv2t)(v1t−γv2t) = 0,

or

γ =
σ11 − βσ12

σ12 − βσ22

for σij = E(vitvjt). The value of h is then obtained from the (2,3) element of B0 as

h = −(π1 − γπ2).

The problems with the posterior distribution for β can now be seen directly from

(10). The data allow a substantial possibility that π2 is zero or even positive, that

is, that more freezes actually result in a lower price of oranges. Assuming that more

freezes mean a lower quantity produced, if a freeze produces little change in price,

the demand curve must be quite steep, and if the price actually drops, the demand
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curve must be upward sloping. A steep demand curve thus implies either a large

positive or a large negative value for β, and when π2 = 0, we switch from calling β

an infinite positive number to calling it an infinite negative number. Clearly a point

estimate and standard error for β are a poor way to describe this inference about the

demand curve. If π2 is in the neighborhood of zero, it would be better to convey the

apparent steepness of the demand curve by reparameterizing (6) as

B0 =




−η 1 0

1 −γ −h

0 0 1


 (11)

and concluding that η may be near zero.

When we performed the analogous 100,000 draws for the η-normalization (11), the

95% confidence interval for η is [-1.88,0.45], a more convenient and accurate way to

summarize the basic fact that the demand curve is relatively steep, with elasticity

β = η−1 > −0.53 and possibly even vertical or positively sloped. The response of

price to a demand shock for this normalization is plotted in the right panel of the first

row of Figure 4. The bimodality of the distribution of ψ12(0) and enormous tails of

ψ12(1) have both disappeared (third row of Figure 4).

That such a dramatic improvement is possible from a simple renormalization may

seem surprising, since for any given value for the parameter vector θ, the impulse-

response function ∂yj,t+k/∂u∗1t for the η-normalization is simply the constant β−1

times the impulse-response function ∂yj,t+k/∂u1t for the β-normalization. Indeed,

we have utilized this fact in preparing the right panel of the first row of Figure 4,

multiplying each value of ∂y2,t+k/∂u∗1t by the constant -0.5 before plotting the figure

so as to get a value that corresponds to the identical concept and scale as the one

measured in the left panel of the first row in Figure 4. The difference between this

harmless rescaling (multiplying by the constant -0.5) and the issue of normalization

discussed in this paper is that the left panel of the first row of Figure 4 is the result

of multiplying ∂y2,t+k/∂u∗1t not by the constant -0.5 but rather by β−1, which is a

different magnitude for each of the 100,000 draws. Even though ∂y2,t+k/∂u∗1t is

reasonably well-behaved across these draws, its product with β−1 is, as we see in the

left panel of the first row of Figure 4, all over the map.
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It is instructive also to examine the likelihood contours that result from the η-

normalization which are plotted in Figure 6. The η-normalization does not satisfy the

identification principle, because interior to the parameter space are the loci η = γ−1

along which the model is locally unidentified. However, the height of the local hills

that are across the ηγ = 1 chasms relative to the global MLE is sufficiently below

the height at the MLE (located near the center of the lower left panel) that the

contribution of these problematic regions to the posterior distribution is negligible.

Although the η-normalization does not literally satisfy the identification principle, for

practical purposes it is sufficiently close (in the sense of relevant probability masses

or likelihood values) to a true identification-based normalization that the problems

associated with the β-normalization have been essentially eliminated.

This example also helps clarify the connection between the normalization issues

raised here and those studied in previous treatments of the local identification prob-

lem. The local identification problem with β = γ is in many respects similar to

that in traditional simultaneous equations analysis, where the discussion of local

non-identification can be found in Pagan and Robertson (1997), Staiger and Stock

(1997), Hahn and Hausman (2002), Hahn and Hausman (2002), Stock, Wright, and

Yogo (2002), Forchini and Hillier (2003), Yogo (2004), and Stock and Yogo (2005).

Chao and Swanson (2005) uses a classical point of view and Drèze (1976), Drèze and

Morales (1976), Drèze and Richard (1983), Kleibergen and van Dijk (1998), and Chao

and Phillips (2005) employ a Bayesian perspective.

The local identification problem in the classical analysis often relates to weak in-

struments. To see how normalization is related to this problem, suppose our goal was

to estimate the price-sensitivity of demand using the two-stage least squares (2SLS)

method, and considered the choice between estimating either (5) or the reverse re-

gression,

pt = ηqt + ψ
′
1xt + ε1t (12)

using (wt,x
′
t)
′ as instruments in either case. Specification (12) is a preferred choice

here because wt serves as a better instrument for qt in (12) than it does for pt in (5).

In other words, weak identification is less of a problem for 2SLS estimation of (12)

than for (5). Exactly the same feature is relevant for our analysis, namely, weak
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identification turns out to be a less important feature in terms of probability mass of

the likelihood surface as represented in Figure 6 than it is for the parameterization in

Figure 3. However, the issue that results from this weak identification to which we’re

calling attention is different from the one with which the 2SLS estimator was con-

cerned. The conventional focus was on how normalization can influence the parameter

estimate itself. In our case, because we are using FIML rather than 2SLS, the MLE’s

from the β-normalization are numerically identical to those for the η-normalization

(that is, β̂ is exactly equal to η̂−1). Even though weak identification does not affect

the estimate in this case, we have just seen that it does affect the topology of the

set of points that get associated with the respective MLE’s for purposes of forming a

confidence set.

The Bayesian analysis of simultaneous equations models is discussed by Drèze

(1976), Drèze and Morales (1976), and Drèze and Richard (1983), among others,

and is shown to lead to ill-behaved posterior distributions when a flat prior is used.

This point is forcefully made by Kleibergen and van Dijk (1998), who suggest a prior

directly on the reduced form of a simultaneous equations model with reduced-rank

nonlinear restrictions on the parameters.10 They show how well the posterior distri-

butions behave in this alternative framework. Similarly, for structural VARs, Sims

and Zha (1994) show that a flat prior under the β-normalization leads to an im-

proper posterior while a flat prior under the π-normalization leads to a well-behaved

posterior distribution.11

Although the structural VARs studied here and the traditional simultaneous equa-

tions models have some common features, they are nonetheless different (Leeper,

Sims, and Zha, 1996). The most important difference is that the VAR analysis fo-

cuses on impulse responses to an economically interpretable shock. Even if the VAR

model is well identified and one uses the standardized informative prior (Litterman,

1986; Sims and Zha, 1998, e.g.) to work directly on the reduced form, normalization

is still needed (Sims and Zha, 1999). Sims and Zha (1999) and Waggoner and Zha

10Chao and Phillips (2005) instead use a Jeffrey’s prior.
11See Appendix B for more discussions.
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(2003b) were the first to show that how the model is normalized has material conse-

quences for the posterior distribution of impulse responses when the sample is small.

As they showed, a solution to this problem cannot be resolved by existing methods

proposed in the simultaneous equations literature.12

5. Cointegration

Yet another instance where normalization can be important is in analysis of coin-

tegrated systems. Consider

∆yt = k + BA′yt−1 + ζ1∆yt−1 + ζ2∆yt−2 + · · ·+ ζp−1∆yt−p+1 + εt

where yt is an (n×1) vector of variables, A and B are (n×h) matrices of parameters of

rank h, and h < n is the number of cointegrating relations among the variables in yt.

Such models require normalization, since the likelihood function is unchanged if one

replaces B by BH and A′ by H−1A′ for H any nonsingular (h× h) matrix. Phillips

(1994) studied the tendency (noted in a number of earlier studies cited in his article)

for Johansen’s (1988) normalization for the representation of a cointegrating vector

to produce occasional extreme outliers, and explained how other normalizations avoid

the problem by analyzing their exact small-sample distributions.

Two popular normalizations are to set the first h columns of A′ equal to Ih (the

identity matrix of dimension h) or to impose a length and orthogonality condition such

as A′A = Ih. However, both of these normalizations fail to satisfy the identification

principle, because there exists an interior point in the allowable parameter space

(namely, any point for which some column of B is the zero vector) at which the

parameters of the corresponding row of A′ become unidentified.

For illustration, consider a sample of T = 50 observations from the following model:

∆y1t = ε1t

∆y2t = y1,t−1 − y2,t−1 + ε2t (13)

12One could in principle design an informative prior directly on impulse responses to implement

normalization, but there remain in practice economic and statistical issues that are yet to be sorted

out (Sims, 2005).
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with εt ∼ N(0, I2). This is an example of the above error-correction system in which

p = 1, B = (0, b2)
′, A′ = (a1, a2), and true values of the parameters are b2 = 1, a1 = 1,

and a2 = −1. The top panel of Figure 7 shows the consequences of normalizing

a1 = 1, displaying contours of the log likelihood as functions of a2 and b2. The

global maximum occurs near the true values. However, as b2 approaches zero, an iso-

likelihood ellipse becomes infinitely wide in the a2 dimension, reflecting the fact that

a2 becomes unidentified at this point. A similar problem arises along the a1 dimension

if one normalizes on a2 = 1 (second panel). By contrast, the normalization b2 = 1

does satisfy the identification principle for this example, and likelihood contours with

respect to a1 and a2 (third panel) are well-behaved. This preferred normalization

accurately conveys both the questions about which the likelihood is highly informative

(namely, the fact that a1 is the opposite value of a2) and the questions about which

the likelihood is less informative (namely, the particular values of a1 or a2).

For this numerical example, the identification is fairly strong in the sense that,

from a classical perspective, the probability of encountering a sample for which the

maximum likelihood estimate is in the neighborhood of b2 = 0 is small, or from a

Bayesian perspective, the posterior probability that b2 is near zero is reasonably small.

In such a case, the normalization a1 = 1 or a2 = 1 might not produce significant

problems in practice. However, if the identification is weaker, the problems from

a poor normalization can be much more severe. To illustrate this, we generated

N = 10, 000 samples each of size T = 50 from this model with b2 = 0.1, a1 = 1,

and a2 = −1, choosing the values of a2 and b2 for each sample so as to maximize

the likelihood, given a1 = 1. The top panel of Figure 8 plots kernel estimates of

the small-sample distribution of the maximum likelihood estimates â2 and b̂2. The

distribution for â2 is extremely diffuse. Indeed, the MSE of â2 appears to be infinite,

with the average value of (â2 +1)2 continuing to increase as we increased the number

of Monte Carlo samples generated. The MSE is 208 when N = 10, 000, with the

smallest value generated being -665 and the biggest value 446. By contrast, if we
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normalize on b2 = 0.1, the distributions of â1 and â2 are much better behaved (see

the top panel of Figure 8), with MSE’s around 0.8.13

One can understand why the normalization that satisfies the identification principle

(b2 = 0.1) results in much better behaved estimates for this example by examining

the reduced form of the model:

∆y1t = ε1t

∆y2t = π1y1,t−1 + π2y2,t−1 + ε2t. (14)

The reduced-form coefficients π̂1 and π̂2 are obtained by OLS regression of ∆y2t on

the lags of each variable. Under the normalization a1 = 1, the MLE b̂2 is given by

π̂1 and the MLE â2 is π̂2/π̂1. Because there is a substantial probability of drawing

a value of π̂1 near zero, the small-sample distribution of â2 is very badly behaved.

By contrast, with the identification principle normalization of b2 = b0
2, the MLE’s

are â1 = π̂1/b
0
2 and â2 = π̂2/b

0
2. These accurately reflect the uncertainty of the OLS

estimates but do not introduce any new difficulties as a result of the normalization

itself.

We were able to implement the identification principle in a straightforward fashion

for this example because we assumed that we knew a priori that the true value of b1

is zero. Consider next the case where the value of b1 is also unknown:

 ∆y1t

∆y2t


 =


 b1

b2




[
a1 a2

]

 y1,t−1

y2,t−1


 +


 ε1t

ε2t


 . (15)

For this model, the normalization, b2 = b0
2 no longer satisfies the identification prin-

ciple, because the allowable parameter space includes a1 = a2 = 0, at which point b1

is unidentified.

As in the previous section, one strategy for dealing with this case is to turn to the

reduced form,

∆yt = Πyt−1 + εt (16)

13Of course, normalizing b2 = 1 (as one would presumably do in practice, not knowing the true

b0
2) would simply result in a scalar multiple of these distributions. We have normalized here on

the true value (b2 = 0.1) in order to keep the scales the same when comparing parameter estimates

under alternative normalization schemes.
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where cointegration restricts Π to have unit rank. The parameters to be estimated

in this normalization are thus not values of matrices A or B but rather the matrix

Π itself. The algorithm for such estimation is described in Appendix C. Notice

that this normalization satisfies the identification principle: the representation is

locally identified at all points in the allowable parameter space We generated 10,000

samples from the model with b1 = 0, b2 = 0.1, a1 = 1, a2 = −1 and calculated the

maximum likelihood estimate of Π for each sample subject to restriction that Π has

rank one. The resulting small-sample distributions are plotted in the bottom four

panels of Figure 8. Note that, as expected, the parameter estimates are individually

well-behaved and centered around the true values.

One suggestion is that the researcher simply report results in terms of this Π-

normalization. For example, if our data set were the first of these 10,000 samples,

then the maximum likelihood estimate of Π, with small-sample standard errors as

calculated across the 10,000 simulated samples, is

Π̂ =




0.049
(0.079)

−0.0521
(0.078)

0.140
(0.078)

−0.147
(0.085)


 .

The estimated cointegrating vector could be represented identically by either row of

this matrix; for example, the maximum likelihood estimates imply that

0.140
(0.078)

y1t − 0.147
(0.085)

y2t ∼ I(0) (17)

or that the cointegrating vector is (1,−1.05)′. Although (0.140,−0.147)′ and (1,−1.05)′

represent the identical cointegrating vector, the former is measured in units that have

an objective definition, namely, 0.140 is the amount by which one would change one’s

forecast of y2,t+1 as a result of a one-unit change of y1t, and the implied t-statistic

0.140/0.078 is a test of the null hypothesis that this forecast would not change at

all.14 By contrast, if the parameter of interest is defined to be the second coefficient

a2 in the cointegrating vector normalized as (1, a2)
′, the magnitude a2 is inherently

14Obviously these units are preferred to those that measure the effect of y1t on the forecast of

y1,t+1, which effect is in fact zero in the population for this example, and a t-test of the hypothesis

that it equals zero would produce a much smaller test statistic.
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less straightforward to estimate and a true small-sample confidence set for this num-

ber can be quite wild, even though one has some pretty good information about the

nature of the cointegrating vector itself.

There is a large literature on the Bayesian analysis of cointegration that is relevant

to our analysis discussed in Koop, Strachan, van Dijk, and Villani (forthcoming). The

a1 = 1 normalization is the standard normalization used in the literature (Geweke,

1996, e.g.). Strachan and van Dijk (2006) point out the distortion of prior beliefs

associated with this normalization, resembling the discussion in Section 3. The influ-

ence of local non-identification on the likelihood and posterior density is discussed in

Kleibergen and van Dijk (1994) and the convergence problem associated with an ab-

sorbing state in the Gibbs sampler of Geweke (1996) is pointed out by Kleibergen and

van Dijk (1998). These problems have led to the embedding approach of working on

Π via singular value decomposition (Kleibergen and van Dijk, 1998; Kleibergen and

Paap, 2002, e.g.) and the cointegration space approach proposed by Villani (2005,

forthcoming). Our Π-normalization is consistent with these new approaches.

Any statement about the cointegrating vector can be translated into a statement

about Π, the latter having the advantage that the small-sample distribution of Π̂

is much better behaved than are the distributions of transformations of Π̂ that are

used in other normalizations. For example, in an n-variable system, one would test

the null hypothesis that the first variable does not appear in the cointegrating vector

through the hypothesis π11 = π21 = · · · = πn1 = 0, for which a small-sample Wald test

could be constructed from the sample covariance matrix of the Π̂ estimates across

simulated samples. One could further use the Π-normalization to describe most

other magnitudes of interest, such as calculating forecasts E(yt+j|yt,yt−1, ...,Π) and

the fraction of the forecast MSE for any horizon attributable to shocks that are within

the null space of Π, from which we could measure the importance of transitory versus

permanent shocks at alternative forecast horizons.

6. Conclusions and recommendations for applied research.

This paper described some potential problems with the small-sample distributions

of parameters in a wide variety of econometric models where one has imposed a
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seemingly innocuous normalization. These problems are related to the way in which

a poor normalization is exacerbated by the local identification problem. The novel

contribution of our paper is to show that a similar issue applies to the way in which

normalization can determine the topography of the likelihood surface and have unde-

sirable effects on the properties of confidence sets even when parameters are estimated

by maximum likelihood. We called attention in such settings to the loci in the param-

eter space along which the model is locally unidentified or the log likelihood diverges

to −∞, across which the interpretation of parameters necessarily changes. The prob-

lems arise whenever one mixes together parameter values across these boundaries as

if they were part of a single confidence set.

Assuming that the true parameter values do not fall exactly on such a locus, this

is strictly a small-sample or weak instruments problem. Under standard fixed-

parameter-value asymptotics, the sampling distribution of the MLE in a classical

setting, or the posterior distribution of parameters in a Bayesian setting, will have

negligible probability mass on the far side of the troublesome loci. The problem

that we have highlighted in this paper could be described as the potential for a poor

normalization to confound the inference problems that arise when the sample is small

or the identification is relatively weak.

The ideal solution to this problem is to use these loci themselves to choose a

normalization, defining the boundaries of the allowable parameter space to be the loci

along which the model is locally unidentified. The practical way to check whether one

has accomplished this goal with a given normalization is to make sure that the model

is locally identified at all interior points in the parameter space. Alternatively, if one

can find a parameterization for which there is negligible probability mass associated

with those regions of the parameter space that are the opposite side of such loci from

the global MLE, the problems we’ve highlighted will be avoided as well.

For researchers who resist both of these suggestions, four other practical pieces

of advice emerge from the examples investigated here. First, if one believes that

normalization has made no difference in a given application, it can not hurt to try

several different normalizations to make sure that is indeed so. Second, it in any
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case seems good practice to plot the small-sample distributions of parameters of in-

terest rather than simply report the mean and standard deviation. Bimodal and

wide-spread distributions like those in Figure 4 or Figure 8 can be the first clue that

the researcher’s confidence regions are mixing together apples and oranges. Third,

in Bayesian analysis, one should check whether the normalization imposed alters the

information content of the prior. Finally, any researcher would do well to understand

how reduced-form parameters (which typically have none of these normalization is-

sues) are being mapped into structural parameters of interest by the normalization

imposed. Such a habit can help avoid not just the problems highlighted in this paper,

but should be beneficial in a number of other dimensions as well.
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Appendix A. Bayesian simulations for the mixture model

A.1. Benchmark simulations. Our Bayesian simulations for the i.i.d. mixture

example were based on the following prior. Let p1 = p and p2 = 1− p, for which we

adopt the Beta prior

π(p1, p2) ∝ pα1−1
1 pα2−1

2 , (A1)

defined over p1, p2 ∈ [0, 1] with p1 + p2 = 1. Our simulations set α1 = α2 = 1 (a

uniform prior for p). For µ1 and µ2 we used

π(µ1, µ2) = ϕ





µ̄1

µ̄2


 ,


ς2

1 0

0 ς2
2





 , (A2)

where ϕ(x,Ω) denotes the normal pdf with mean x and covariance matrix Ω and the

restrictions µ1 = µ2 and ς1 = ς2 are used in the text.

Denote

y = (y1, . . . , yT )′, θ = (µ1, µ2, p1, p2)
′, s = (s1, . . . , sT )′

Monte Carlo draws of θ from the marginal posterior distribution π(θ|y) can be ob-

tained from simulating samples of θ and s with the following two full conditional

distributions via Gibbs sampling:

π(s | y,θ), π(θ | y, s).

It follows from the i.i.d. structure that

π(s | y,θ) =
T∏

t=1

π(st | yt,θ),

where

π(st | yt, θ) =
π(yt | st,θ) π(st | θ)∑2

st=1 π(yt | st,θ) π(st | θ)
, (A3)

with

π(yt | st,θ) =
1√
2π

exp

{
−(yt − µst

)2

2

}
,

π(st | θ) =





p1 st = 1

p2 st = 2
,

p1 + p2 = 1.
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For the second conditional posterior distribution, we have

π(θ | y, s) = π(µ1, µ2 | y, s, p1, p2) π(p1, p2 | y, s).

Combining the prior specified in (A1) and (A2) with the likelihood function leads to

π(p1, p2 | y, s) = π(p1, p2 | s)

∝ π(s | p1, p2) π(p1, p2)

∝ pT1+α1−1
1 pT2+α2−1

2 ,

(A4)

π(µ1, µ2 | y, s, p1, p2) ∝ π(y | s, p1, p2, µ1, µ2) π(µ1, µ2)

= ϕ





µ̃1

µ̃2


 ,




ς21
ς21T1+1

0

0
ς22

ς22T2+1





 ,

(A5)

where Tk is the number of observations in state k for k = 1, 2 so that T1 + T2 = T

and

µ̃k =
ς2
k

∑k(Tk)
t=k(1) yt + µ̄k

ς2
kTk + 1

, sk(q) = k for q = 1, . . . , Tk, k = 1, 2.

The posterior density (A4) is of Beta form and (A5) is of Gaussian form; thus, sam-

pling from these distributions is straightforward.

A.2. Truncated Gaussian prior. The truncated Gaussian prior used in the text

has the form:

π(µ1, µ2) = π(µ1)π(µ2|µ1), (A6)

where π(µ2|µ1) is given by (3). Replacing the symmetric prior (A2) with the trun-

cated prior (A6) leads to the following posterior pdf of µ1 and µ2:

π(µ1, µ2 | y, s, p1, p2) =
1

Φ
(

µ1−µ̄2

ς2

)ϕ





µ̃1

µ̃2


 ,




ς21
ς21T1+1

0

0
ς22

ς22T2+1





 (A7)

if µ2 ≤ µ1 and zero otherwise.

Because µ̄2 6= µ̃2 and ς2 6= ς22
ς22T2+1

, the conditional posterior pdf (A7) is not of

any standard form. To sample from (A7), we use a Metropolis algorithm (Chib and

Greenberg, 1996, e.g.) with the transition pdf of µ′ conditional on the jth draw µ(j)

given by
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q(µ(j), µ′ | y, s, p1, p2) = ϕ





µ

(j)
1

µ
(j)
2


 , c




ς21
ς21T1+1

0

0
ς22

ς22T2+1





 , (A8)

where c is a scaling factor to be adjusted to maintain an optimal acceptance ratio

(e.g., between 25% to 40%). Given the previous posterior draw µ(j), the algorithm

sets µ(j+1) = µ′ with acceptance probability15

min

{
1,

π(µ′ | y, s, p1, p2)

π(µ(j) | y, s, p1, p2)

}
if µ′2 < µ′1;

otherwise, the algorithm sets µ(j+1) = µ(j). 16

Appendix B. Simulating algorithm for the VAR model

We describe our algorithm for simulating VAR distributions in terms of the follow-

ing representation, obtained by premultiplying (4) by D−1 and transposing,

y
′
tA0= c + y

′
t−1A1 + y

′
t−2A2 + . . . + y

′
t−pAp + ε

′
t (A9)

where Aj= B
′
jD

−1 for j = 0, 1, . . . , p and εt = D−1ut so that E(εtε
′
t) = In. All

simulations were done using the Gibbs sampler for structural VARs described in

Waggoner and Zha (2003a). This technique samples from the posterior distribution

associated with the specification given by (A9). A flat prior was used to obtain

draws of A0,A1, · · ·Ap and then these parameters were transformed into the other

specifications used in this paper. Because these transformations are non-linear, the

Jacobian is non-trivial and the resulting draws for the alternate specifications will

have diffuse, as opposed to flat, priors. In the case of the β and η normalizations,

the likelihood is not proper17, so the posterior will not be proper unless some sort

of prior is imposed. A direct computation reveals that the Jacobian involves only

15Note from (A8) that q(µ, µ′) = q(µ′, µ), allowing us to use the Metropolis as opposed to the

Metropolis-Hastings algorithm.
16If the random value µ∗1 = µ′1 generated from q(µ(j), µ′ | y, s, p1, p2) or µ∗1 = µ

(j)
1 results in a

numerical underflow when Φ
(

µ∗1−µ̄2
ς2

)
is calculated, we could always set µ(j+1) = µ′ as an approxi-

mation to a draw from the Metropolis algorithm. In our simulations, however, such an instance did

not occur.
17See Sims and Zha (1994) for a discussion of this result.
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the variance terms and it tends to favor smaller values for the variance. The prior

on the parameters of interest γ, h, and β or η will be flat. The likelihood for the

π-normalization is proper and so in theory one could impose the flat prior for this

case. Though the Jacobian in this case is difficult to interpret, we note that the

π-normalization is similar to the reduced form specification. The technique used in

this paper, applied to the reduced form specification, would be equivalent to using a

flat prior on the reduced form, but with the sample size increased.

Appendix C. MLE for the cointegration model

Maximum likelihood estimation of (16) can be found using the Anderson (1984)-

Johansen (1988) procedure, as described in Hamilton (1994, p. 637). Specifically,

let Σ̂vv = T−1
∑T

t=1 yt−1y
′
t−1, Σ̂uu = T−1

∑T
t=1 ∆yt∆y

′
t, Σ̂uv = T−1

∑T
t=1 ∆yty

′
t−1,

and P̂ = Σ̂
−1

vvΣ̂
′
uvΣ̂

−1
uuΣ̂uv. Find ã1, the eigenvector of P̂ associated with the biggest

eigenvalue and construct â1 = ã1/

√
ã
′
1Σ̂vvã1. The MLE is then Π̂ = Σ̂uvâ1â

′
1.
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