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ABSTRACT

This paper explores the properties of daily changes in the prices for near-term fed funds

futures contracts. The paper finds these contracts to be excellent predictors of the fed funds

rate, and shows that the claim of a nonzero term premium in the short-horizon contracts is

more sensitive to outliers than previous research appears to have recognized. I find some

statistically significant evidence of serial correlation in the daily changes, but this accounts

for only a tiny part of the one-day movements and there is essentially zero predictability

for horizons longer than one day. Settlement futures prices for each day appear to incor-

porate the information embodied in that day’s term structure of longer-horizon Treasury

securities. Previous employment growth makes a statistically significant contribution to

predicting futures price changes, though again this could only account for a tiny part of the

daily variance. The paper concludes that futures prices provide a very useful measure of

the daily changes in the market’s expectation of near-term changes in Fed policy.

1



1 Introduction.

The federal funds rate is of considerable interest in economics and finance, both because

it defines the shortest end of the term structure (the overnight rate being the shortest-

maturity U.S. asset traded) and because it is the rate directly targeted and controlled by the

Federal Reserve. Futures contracts based on the fed funds rate have come to be regarded

as useful indicators of what the market expects future monetary policy to be (Krueger

and Kuttner, 1996; Gürkaynak, Sack, and Swanson, 2007). Changes in futures prices hold

particular promise for trying to assess the daily economic consequences of changes in Fed

policy (Kuttner, 2001; Gürkaynak, 2005; Hamilton, 2006).

However, there are potential drawbacks to using these numbers for such purposes. A

number of researchers have documented the existence of what appear to be time-varying term

premia in longer-horizon fed funds futures contracts (Sack, 2004; Piazzesi and Swanson,

2006). To my knowledge, there is no systematic investigation of how big a contribution

such effects may make to daily changes in futures prices.1 This paper addresses this gap,

reviewing the time-series properties of daily changes in fed funds futures prices at 1- to

3-month horizons.

Section 2 begins with a description of these contracts and a review of why one might

expect daily changes in the prices of near-horizon contracts to be an approximate martingale

difference sequence whose innovations are dominated by changes in the expected value of

the fed funds rate over the contracted month. Section 3 documents that, particularly in the

most recent data, the futures prices are remarkably good predictors of what the fed funds
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rate actually turns out to be. Section 4 reviews the evidence for a nonzero term premium

in the short-horizon contracts, and finds that it is more sensitive to outliers than previous

research appears to have recognized. Section 5 looks for evidence of time-varying premia

in the form of violations of the martingale difference condition. I find some statistically

significant violations, though any predictable components appear to comprise a very small

part of the daily movements. I conclude that a martingale is a good approximation for

these data, and that it is quite reasonable to interpret daily changes in fed funds futures as

primarily signalling changes in the market’s assessment of future changes in Fed policy.

It should be noted that both the theoretical and the empirical analysis here are limited

to very short-horizon futures contracts. The strongest empirical evidence against the mar-

tingale hypothesis from previous studies using monthly data has come from longer-horizon

futures prices. Such longer-horizon contracts may also pose a particular problem for daily

policy analysis, being thinly and erratically traded in the earlier part of the sample. However,

for purposes of measuring the daily changes in the market’s expectation of very near-term

changes in Fed policy, the results of this paper suggest that futures prices are an excellent

measure.

2 Fed funds futures data.

In a typical macroeconomic study using monthly data, the measure of the fed funds rate

for month m is based on the average value of the daily effective fed funds rate over all the

calendar days of the month. In theoretical discussions, it will be convenient to measure erm
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as a fraction of unity, whereas, because the daily changes in these magnitudes are so small,

empirical results in this paper are all reported for rm measured in basis points. Thus if the

average effective fed funds rate for month m would be quoted at an annual interest rate as

5%, this will be represented in the notation of this paper as erm = 0.05 and rm = 500.
Since October 1988, the Chicago Board of Trade has hosted daily trade in futures con-

tracts with cash settlement based on what the value of erm actually turns out to be. Let

eFdm denote the implied interest rate2 for a contract based on the value erm as traded on day
d, where d denotes some banking day during or prior to month m. If erm (which will not
be known until the end of month m) turns out to be less than eFdm (which is known as of
day d), the seller of the contract has to compensate the buyer by a certain amount (namely,

$41.67 on a standard contract) for every basis point by which eFdm exceeds erm. If erm > eFdm,,
the buyer must compensate the seller.

Let d∗(m) denote the first business day of monthm. Cash settlement of a contract based

on erm held to completion would take place on day d∗(m+1). Let 1− eλdm denote the pricing
kernel relating the current day d to a security paying off on d∗(m + 1). For example, with

additively separable consumer preferences based on a daily utility function U(cd),

1− eλdm = βd
∗(m+1)−dU 0(cd∗(m+1))/Pd∗(m+1)

U 0(cd)/Pd
(1)

for Pd the dollar price of a unit of consumption on day d.

If futures contracts were pure forward contracts in which no money changes hands until

this final settlement, the cost of entering into the futures contract on day d would be zero.

If you take the long side of the contract, the payoff on the first day of the month following

4



month m would be proportional to eFdm − erm. Standard finance theory would then require
the agreed-upon price eFdm to satisfy

Ed
h
(1− eλdm)( eFdm − erm)i = 0 (2)

where Ed[.] denotes an expectation formed on the basis of information available on day d.

Since eFdm is known with certainty on day d, it follows from (2) that

eFdm − eFd−1,m = Ed(erm)−Ed−1(erm) + ehdm − ehd−1,m (3)

for

ehdm = eFdmEd(eλdm)− Ed(eλdmerm).
Recall that Ed(1− eλdm) is the reciprocal of the risk-free gross interest rate between day

d and d∗(m + 1). As the length of calendar time separating these days shrinks, this gross

discount rate converges to unity and Ed(eλdm) converges to zero. For example, if the annual
interest rate is 6% and we are looking at a payoff 1 month ahead, Ed(eλdm) ' 0.005, which is
an order of magnitude smaller number than eFdm or erm. Likewise, as d and d∗(m+1) get closer
in time, the uncertainty about the future marginal utility of consumption becomes resolved

and the variance of eλdm has to go to zero as well. For example, for a diffusion process,

Ed
heλdm − Ed(eλdm)i2 = Op{[d∗(m + 1) − d]}. Hence for the very near-term contracts, the

contribution of the risk and term premium (ehdm) should be significantly smaller than the first
two variables in (3), in which case, eFdm would approximately follow a martingale, with the
innovation in this martingale corresponding to new information that market participants

receive on day d about the value of erm. The futures value eFdm would follow an exact
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martingale in the special case of risk neutrality.

Because of margin requirements and the daily marking of the contract to market, these are

not true forward contracts, and the pricing of these contracts is in theory more complicated

than the above simple formulas. However, Piazzesi and Swanson (2006) demonstrated that

adjustments to returns based on marking to market are likely to make very little difference

in practice.

The basic data used in this study are the daily changes in the prices of contracts within

a few months of settlement over the period October 3, 1988 through June 30, 2006. Specif-

ically, let f1d denote the change (in basis points) between day d − 1 and d in the implied

interest rate for the “spot-month contract,” that is, the contract that will settle at the end

of the current month,3

f1d = Fd,m∗(d) − Fd−1,m∗(d)

where m∗(d) is the month within which day d falls. Let f2d denote the change on day d of

a contract for settlement at the end of the following month,

f2d = Fd,1+m∗(d) − Fd−1,1+m∗(d)

and f3d the change for the month after next:

f3d = Fd,2+m∗(d) − Fd−1,2+m∗(d).

If daily changes in ehdm are negligible, then from (3), fid would follow a martingale difference
sequence reflecting new information that market participants receive on day d about the

likely value of rm. The following sections review the evidence on this hypothesis.
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3 Usefulness of futures for predicting fed funds rate.

As documented by Krueger and Kuttner (1996), Rudebusch (1998), Kuttner (2001), and

Gürkaynak, Sack, and Swanson (2007), one can obtain an excellent forecast of rm on the

basis of Fdm for near-term contracts. Let e1m denote the difference between the average

fed funds rate for month m and the futures rate as of the last day of the preceding month,

measured in basis points,

e1m = rm − Fd∗(m)−1,m.

Let eim denote the corresponding forecast error using the futures rate i months ahead. The

second column of Table 1 gives the average squared value of the forecast error eim based on

the futures forecast looking i = 1, 2, or 3 months ahead. For example, for a 2-month ahead

forecast the futures MSE is

(TM − 2)−1
TMX
m=3

e22m = (TM − 2)−1
TMX
m=3

h
rm − Fd∗(m−1)−1,m

i2
= 392.

One natural basis for comparison is provided by a random walk, in which the predicted funds

rate for month m + s is the value obtaining in month m. This no-change forecast is often

extremely hard to beat out-of-sample for financial data. These baseline MSEs are reported

in the first column in Table 1. For example, forecasting 2 months ahead with a random

walk model would result in a mean squared forecast error over the full sample of

(TM − 2)−1
TMX
m=3

(rm − rm−2)2 = 1248,

or a root mean squared error of 35 basis points. Thus the futures prices represent a 69%

improvement over the no-change forecast in terms of the 2-month-ahead MSE. Similar
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improvements in forecasts are obtained at 1-month and 3-month horizons.

There has been a substantial improvement over time in the accuracy of the predictions

embodied in fed funds futures, as noted by Poole and Rasche (2000), Poole, Rasche and

Thornton (2002), Lang, Sack and Whitesell (2003), Carlson, et. al. (2006), and Swanson

(2006), among others. In part this reflects the fact that fed funds changes themselves have

become more modest (see the bottom panel, first column of Table 1). Even so, the quality

of futures forecasts have improved far more than proportionally (column 2). Over the last

3-1/2 years, even looking 3 months ahead, the fed funds futures have an astonishing root

MSE of 6.9 bp and an average absolute error of only 5.4 bp, this for predicting a series rm

whose average absolute 3-month change is 36 bp.4

Of particular interest is how futures prices have responded to the news of changes in

the target for the fed funds rate as announced in periodic news releases from the FOMC.

Hamilton (2006) noted that on each of the 15 most recent occasions that the Federal Reserve

changed its target for the fed funds rate, the fed funds futures price for that month changed

by less than half a basis point. In other words, over the last 3 years, the market has known

with virtual certainty what the Fed was going to do well before the Fed actually changed

the rate.

4 The possible bias in fed funds futures prices.

Several studies including Sack (2004) and Piazzesi and Swanson (2006) have noted a sys-

tematic tendency of the fed funds futures to overestimate the value of rm, with the bias
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increasing with the forecast horizon. The first three columns of Table 2 reproduce this

result, finding an average value for fid between negative one- and two-tenths of a basis point

per day over the full sample. The usual t-test suggests that this bias is highly statistically

significant.

Figure 1 displays the sample histogram for f1d, drawn for comparison with the Normal

distribution. Forty-six percent of the observations are exactly zero, while 25 observations

exceed 5 standard deviations. If fid were an i.i.d. Gaussian time series, one would not

expect to see even one 5-standard-deviation outlier. Often these outliers occur on days

that Gürkaynak, Sack, and Swanson (2005) associated with significant monetary policy

announcements.

Figure 2 plots the actual time series for f1d. In addition to the extreme outliers, one sees

in this graph that the variance has a very clear declining trend over time, and that there is

also serial correlation in the variance suggestive of strong GARCH effects. One can also see

a trend in the variance within each month: given the nature of the discovery process, rm is

largely known by the last day of the month, and the first few days of each month are often

characterized by a bigger variance for fid.

The theory sketched in Section 2 suggests that fid should follow a martingale difference

sequence, but this does not mean the data must be Normal or even i.i.d. I was interested

to see how the inference about the mean might change if one allows for predictability of

the variance and departures from the Normal distribution. I modeled the distribution as a

mixture in which some fraction p of the values are exactly zero, and the remaining (1 − p)
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are drawn from a Student t distribution with scale parameter ht and ν degrees of freedom.5

Specifically, for yt corresponding to fid and Yt−1 = (yt−1, yt−2, ..., y1)0 the set of observations

through date t− 1, the conditional likelihood of the tth observation is taken to be

f(yt|Yt−1;θ) = pδyt=0 + (1− p)(1− δyt=0)g(yt;ht,θ)

δyt=0 =


1 if yt = 0

0 otherwise

g(yt;ht,θ) =
µ
k1v/

q
ht

¶
[1 + (u2t/ν)]

−(ν+1)/2 (4)

k1v = Γ[(ν + 1)/2]/[Γ(ν/2)
√
νπ]

ut = (yt − µ)/
q
ht. (5)

The maximum likelihood estimate of p will then be equal to the fraction of observations

that are equal to zero, while a low value for ν, the degrees of freedom for the Student t

distribution, could allow for the tendency for big outliers.

The conditional scale factor ht is modeled as following Nelson’s (1991) EGARCH(1,1)

specification,

log ht − γ 0zt = δ(log ht−1 − γ 0zt−1) + α(|ut−1|− k2ν),

where k2ν denotes the expected absolute value for a standard Student t variable with ν

degrees of freedom, which can be shown to be given by

k2ν = E|ut| = 2
√
νΓ[(ν + 1)/2]

(ν − 1)√πΓ(ν/2) .

The vector zt contains deterministic calendar variables that influence the variance. These

consisted of a constant, a scaled time trend (d/1000 for daily data), and a dummy that
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is equal to unity if d is one of the first two days of the month. The scaling on the time

trend was used to make the numerical maximization a little better behaved (so that values

of different parameters were not of starkly different orders of magnitudes)6.

The parameter vector θ = (µ, γ1, γ2, γ3, δ,α, p, ν)
0 was then found by numerically maxi-

mizing the sample log likelihood,

TX
t=1

log f(yt|Yt−1;θ). (6)

Maximum likelihood estimates for yt corresponding to f1d, f2d, and f3d are given in columns

4-6 of Table 2, respectively. Asymptotic standard errors (based on second derivatives of (6)

as in Hamilton 1994, equation [5.8.3]) are given in parentheses.

The addition of 6 parameters (γ2, γ3, δ,α, p, ν)
0 relative to an i.i.d. Gaussian specification

increases the log likelihood by about 1,500; (a difference of only 12 would be enough to

establish statistical significance at the 0.001 level). The t statistic on each of the individual

new parameters is typically around 10, indicating that there is overwhelming evidence in the

data for all of these effects.

These estimates imply that, other things equal, an observation f1d at the beginning of

the sample would be 10 times more variable than an observation at the end of the sample

(exp[(0.52568)(4454)/1000] = 10.4, and the first two days of each month nearly twice that of

others (exp[(0.63570)] = 1.89). The EGARCH effects are highly persistent, with autoregres-

sive parameter of 0.83, and the innovations are quite fat-tailed, with the estimated degrees

of freedom for the Student t distribution around 4.

Of particular interest is the fact that, with this more involved specification of the distrib-
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ution and variance, the maximum likelihood estimate of the mean of each fid becomes much

smaller in absolute value or even positive, and would be judged in every case to be far from

statistically significant. In other words, the negative sample means for fid are dominated by

the fact that the outliers are more likely to be negative than positive, and an estimation

method such as MLE that downweights the outliers would no longer see evidence of any

negative bias. The sample medians of f1d, f2d, and f3d are all zero as well.

The maximum likelihood estimates in Table 2 downweight the outliers because of the

low degrees of freedom on the Student t distribution. One can also try to model some

of these outliers directly. The most important single factor in my data set appear to be

monetary policy announcements.7 Gürkaynak, Sack, and Swanson (2005) identified 139 days

between 1990 and 2005 on which the Federal Reserve made a significant monetary policy

announcement. Let z4d = 1 if a monetary policy announcement was reported by the these

authors for day d and is zero otherwise. Note that this variable is allowed to influence the

variance ht but is not presumed to have any effect on the mean µ. The first three columns

of Table 3 report the result when monetary policy announcements are included as a factor

shifting the variance. The contribution to the variance is highly statistically significant, and

increases the estimated degrees of freedom for the Student t distribution. But recognizing

the influence of outliers of this form does not change the finding that the estimated means

µ are still statistically insignificant.

The last three columns of Table 3 add to the description of the variance the variable z5d,

which is unity if an employment report was released on day d and zero otherwise. Again the
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estimated degrees of freedom increase when one allows for this factor shifting the variance

as well. If we added enough such determinants of the conditional variance, presumably we

would eventually be left with a residual that is closer to a Normal distribution. However,

the inference about the mean µ remains the same. Hence, whether outliers are taken into

account through a Student t distribution with low degrees of freedom or as calendar factors

that change the conditional variance, the conclusion is that, when outliers are allowed for in

one way or the other, one does not find statistically significant evidence of a nonzero mean

for fid.

Some might argue that we shouldn’t want to downweight outliers at all, since monetary

policy announcements do not represent contaminated data but are instead the heart of what

we are interested in investigating here. But once one recognizes that we are then talking

about the mean not of a few thousand observations but rather of a much smaller sample of

those days on which the markets received a major monetary policy announcement, then even

if one were to maintain that this smaller sample did indeed have a negative population mean,

this might still be consistent with perfectly rational, risk-neutral pricing of Fdm insofar as

there was a learning process throughout the sample, in which market participants could not

foresee perfectly in 1988 the average change in policy stance that turned out to characterize

the sample.

Of course, much of the inference in the previous literature about bias was based not on the

series fid used here, but instead was based on monthly data, where the detailed corrections

for announcement days, day-of-the-month effects, and observations that are exactly zero
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are all unnecessary. The first column of Table 4 looks at the sample mean of monthly

observations on u1m, the difference between what the monthly fed funds rate actually turned

out to be (rm) and the value for that month’s fed funds contract as of the last day of the

preceding month. The sample mean of u1m is of course based on the identical summary

statistic as the first column of Table 2, namely
PTD
d=1 f1d, except that whereas the first column

of Table 2 estimate of the mean divides this sum by the number of days TD, the first column

of Table 4 divides by the number of months TM . The standard errors for the first row of

these respective columns involve different calculations, but the statistical significance with

monthly data remains.

Letting now yt in equation (5) correspond to the monthly series u1m, I repeated the above

EGARCH estimation using monthly data with zm = (1,m/1000)0 and p ≡ 0. Maximum

likelihood estimates are reported in the fourth column of Table 4. Once again a model

that allows for EGARCH with Student t innovations and a time trend for the variance is a

vastly better description of the data, improving the log likelihood by 80. And once again

with these corrections one arrives at a statistically insignificant, and positive rather than

negative, estimate for the mean.

I found similar results for u2m the monthly accumulations of f2d, and u3m, the monthly

accumulations of f3d:

uim = Fd∗(m),m+i−1 − Fd∗(m−1),m+i−1.

These results are also reported in Table 4, and confirm that the finding of a statistically

significant mean for uim is not reproduced in a model that allows for GARCH effects and
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outliers.

5 Possible time-varying predictability of futures prices.

Consider next the serial correlation of fid, as measured by OLS regression of fid on a constant

and five of its own lags. The estimated OLS coefficients and 95% confidence intervals

are plotted in Figure 3. Coefficients on the first lag range from 0.14 to 0.16 and are

highly statistically significant. All other lagged coefficients are less than 0.03 in absolute

value, with only the coefficient relating f3d to f3,d−5 statistically significant at the 0.05 level

(p = 0.017). Unlike the findings for the constant term, the estimated coefficient on fi,d−1 and

its statistical significance do not change much if one relies on maximum likelihood estimation

of an EGARCH specification.8

Although this serial correlation is statistically significant, it is hard to claim that it has

much economic significance. The predictability for a one-day-ahead forecast of fid is quite

limited, with the R2 for all 3 regressions below 0.03. Moreover, the predictability two days

ahead implied by these coefficients is essentially zero. Such very limited, very short-run serial

correlation seems more likely to be attributed to measurement problems such as resolving

bid-ask effects into settlement prices rather than to some fundamental predictability of the

risk premium hdm. In the remainder of this section, however, I include a single lag of fid,

partly to ensure correct calculation of standard errors.

Piazzesi and Swanson (2006) established using monthly data that eim can be predicted

using a number of macroeconomic and financial variables, particularly for longer horizons
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i. Table 5 investigates several of the Piazzesi-Swanson indicators as possible predictors of

the daily series fid. I find no statistically significant contribution of the previous day’s

spread between Treasury yields of any maturity and the value of fid. Noting that since the

average forecast horizon of the farthest-forward daily series used here, f3d, is 2.5 months,

this finding is broadly consistent with that of Piazzesi and Swanson, who generally reported

very little predictability of eim for i ≤ 2 months. The spread between Baa-corporate9 and

10-year-Treasury yields is only marginally statistically significant for f3d, with a t-statistic

of -1.958.

Piazzesi and Swanson also found that the 12-month change in nonfarm payrolls can be

used to predict monthly eim. Let nm denote the seasonally unadjusted total quantity of non-

farm payroll employment in monthm. The next-to-last row of Table 5 replicates Piazzesi and

Swanson’s result with daily data, for which the regressor xd−1 used was 100 log(nm∗(d−1)−1/

nm∗(d−1)−13). This makes a highly statistically significant contribution to predicting f2d and

f3d, with faster employment growth over the preceding year signalling that the funds rate is

likely to be higher than predicted by the futures market.

As did Piazzesi and Swanson, I also constructed a monthly data set for the annual growth

rate of seasonally adjusted nonfarm employment 100 log(ñm−2/ñm−14) as it would actually

have been reported and known to market participants as of the beginning of month m, using

the real-time data archive described by Croushore and Stark (2001) and maintained by the

Federal Reserve Bank of Philadelphia. Estimates are reported in the last row of Table 5, and

are quite similar to the results using revised data. I also obtained essentially the identical
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coefficient and standard error with EGARCH MLE (results not shown).

Again, although these coefficients are statistically significant, it would be a mistake to

view them as of great economic importance. Even with both a lagged dependent variable

and employment growth, the R2 in these regressions is barely over 2%. Moreover, although

nonfarm payrolls turn out to be a variable that helped to forecast the fed funds rate rm

over this sample period, that does not prove that the same variable will help predict it in

the future. Viewing nonfarm payroll employment growth as a factor that turned out to be

correlated with rm within the observed sample but that markets overlooked, rather than as

a factor that determines the risk premium hdm, seems to me the most natural interpretation.

6 Conclusions.

While one can find some statistical evidence of predictability of price changes for near-term

fed funds futures contracts, any daily fluctuations in the implicit risk premium hdm account

for at most a very small part of the variance of fid for i ≤ 3. Daily changes in the near-term

fed funds futures contracts primarily reflect changes in market participants’ assessments of

where the federal funds rate is likely to be over the next few months.

Although these conclusions might appear to differ from those by Piazzesi and Swanson, I

believe the results are broadly consistent. First, their strongest results came from contracts

with horizons greater than or equal to 3 months; by contrast, the average duration of f3d,

the longest contract studied here, is 2-1/2 months. Second, Piazzesi and Swanson observe

that
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“risk premia seem to change primarily at business-cycle frequencies, which

suggests that we may be able to “difference them out” by looking at one-day

changes in near-dated federal funds futures on the day of a monetary policy

announcement. Indeed, our results confirm that differencing improves these

policy measures.”

The present study confirms that daily changes in near-term futures prices are indeed an

excellent indicator of changes in market expectations of near-term Fed policy. Moreover, in

recent years, these expectations have proven remarkably accurate. Daily changes in futures

prices appear to offer us a useful tool for measuring the effects that anticipated near-term

policy changes may have on the economy.
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Footnotes

lPiazzesi and Swanson (2006) studied changes on those days on which major monetary

policy announcements occurred, and arrived at a similar conclusion to that uncovered here

using all days.

2Data were purchased from the Chicago Board of Trade, with the settlement price at the

end of day d used to calculate Fdm. Letting Pdm denote the quoted settlement price for day

d, Fdm was constructed as 100× [100− Pdm].
3For example, the interest rate implied by the May 2006 contract traded on Tuesday,

May 30, 2006 was 4.945%. Because Monday was a holiday, the previous banking day was

Friday, May 26, on which the implied May interest rate was 4.95%. Hence the value for f1d

for d = May 30, 2006 was f1d = −0.5.
4The studies cited attributed this improvement in part to better communication by the

Fed of its intentions. For example, Swanson noted that private sector forecasts of GDP and

inflation do not exhibit the post-2000 reduction in mean squared error and dispersion across

individual forecasters that is observed for forecasts of the fed funds rate.

5An earlier version of this paper treated the data as all discretely valued (due to number of

significant digits reported) rather than a continuous-discrete mixture as here. The former

requires specifying the bin width for which data are reported. Most observations are in

multiples of 0.5 basis points, though there are 17 observations reported in multiples of 0.1

basis points, so an exact characterization of the nature of the discretization in the data

would be rather involved. Results reported in the original paper are very similar to those
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presented here.

6The numerical search was also kept robust with respect to wild numerical guesses (e.g.,

Hamilton, 1994, p. 146) by parameterizing p = λ2p/(1+λ2p), δ = λ2δ/(1+λ2δ), and ν = 1+λ2ν ;

none of the inequality constraints implicit in these parameterizations ended up being binding.

7Poole and Rasche (2000) examined days with large changes in the spot-month contract

over 1989-1999 and concluded that economic news was more often the most important factor.

8That is, with µ in equation (5) replaced with k + φyt−1. These MLE results are not

reported separately.

9Piazzesi and Swanson use the BBB- rather than Baa-corporate yield, but I was unable

to locate a daily series for the former. All daily interest rate data used in Table 5 were

obtained from the FRED database of the Federal Reserve Bank of St. Louis.
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Table 1. Mean squared errors and mean absolute errors (in basis points) of forecasts from 
futures values compared with those for random walk. 

 

Forecast horizon Random 
walk MSE 

Futures 
MSE 

Percent MSE 
improvement 

Futures 
MAE 

Full data set (1988:12-
2006:06) 

    

1 month ahead 389 128 67% 6.90 

2 months ahead 1248 392 69% 12.76 

3 months ahead 2522 914 64% 20.03 

     

Recent data (2003:01-
2006:06) 

    

1 month ahead 183 5 97% 1.50 

2 months ahead 665 19 97% 3.18 

3 months ahead 1484 48 97% 5.40 
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Table 2.  Maximum likelihood estimates for i.i.d. Gaussian and EGARCH non-Gaussian 
descriptions of daily changes in fed funds futures (4454 observations, d = Oct 5, 1988 to 
June 30, 2006, standard errors in parentheses). 
   
                                       i.i.d. Normal                                        EGARCH             
  -------------------------------------                 -------------------------------  
                               f1d              f2d                 f3d                   f1d               f2d               f3d          
---------------------------------------------------------------------------------------------------- 
mean (µ)       -0.12         -0.15            -0.18               -0.03           0.00            0.02 
                             (0.03)        (0.04)          (0.05)              (0.03)         (0.04)         (0.04)  
  
log average       1.44           2.06             2.39                2.40           3.27            3.70 
variance (γ1)      (0.02)        (0.02)           (0.03)             (0.14)        (0.17)          (0.19) 
 
log ht-1 (δ)        ----             ----               ----                0.83            0.91            0.94        
                                                                                          (0.03)         (0.02)          (0.01) 
  
| ut-1| (α)        ----             ----               ----                0.28            0.22            0.16 
                                                                                          (0.03)         (0.03)          (0.02) 
        
trend in        ----             ----               ----               -0.53           -0.35           -0.38        
variance (γ2)                                                                   (0.05)          (0.06)         (0.06)        
 
first 2 days         ----             ----               ----                0.64             0.56            0.37       
variance effect (γ3)                                                           (0.12)          (0.12)         (0.11) 
 
probability of        ----             ----               ----                0.462           0.426          0.317       
zero change (p)                                                                 (0.007)        (0.007)       (0.007)  
 
Student t                 ----             ----               ----                4.2              3.8               3.8       
degrees of                                                                   (0.3)            (0.3)            (0.2) 
freedom (υ) 
 
log likelihood    -9,528.35   -10,908.68   -11,638.62    -7,865.59    -9,160.47   -10,386.76 
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Table 3.  Maximum likelihood estimates for EGARCH non-Gaussian descriptions of 
daily changes in fed funds futures with specific allowance for effect on variance of 
monetary policy announcements and employment releases (4454 observations, d = Oct 5, 
1988 to June 30, 2006, standard errors in parentheses). 
   
                                  Policy announcements                     Policy and employment             
      -------------------------------------           -----------------------------------  
                                f1d              f2d                 f3d                   f1d               f2d               f3d          
----------------------------------------------------------------------------------------------------- 
mean (µ)        -0.04          0.01            -0.01               -0.04           0.01            0.03 
                              (0.03)       (0.04)           (0.04)              (0.03)        (0.03)         (0.04)  
  
log average        2.40           3.17             3.60                2.35           3.10            3.53 
variance (γ1)       (0.13)        (0.17)           (0.18)             (0.13)        (0.17)         (0.17) 
 
log ht-1 (δ)         0.82           0.89            0.94                0.83            0.90           0.94        
                               (0.03)        (0.02)          (0.01)             (0.03)         (0.01)         (0.01) 
  
| ut-1| (α)         0.35           0.28            0.17                0.36            0.31            0.21 
                               (0.04)        (0.03)          (0.02)             (0.04)         (0.03)          (0.02) 
        
trend in         -0.54         -0.35           -0.37              -0.53           -0.33          -0.37        
variance (γ2)        (0.05)         (0.06)         (0.06)            (0.05)          (0.06)         (0.06)        
 
first 2 days           0.62           0.59           0.38                0.54            0.54            0.28       
variance effect (γ3) (0.11)         (0.11)        (0.11)              0.11)          (0.11)         (0.10) 
 
monetary policy       2.01            2.04          1.57                1.94             1.97           1.51       
announcement (γ4)  (0.18)         (0.18)       (0.18)             (0.18)          (0.17)         (0.16) 
 
employment data      ----              ----            ----                1.03             1.42           1.64       
release  (γ5)                                                                       (0.14)           (0.13)        (0.13) 
 
probability of           0.462         0.426        0.317             0.462           0.426         0.317       
zero change (p)        (0.007)      (0.007)      (0.007)          (0.007)        (0.007)      (0.007)  
 
Student t                    5.6             4.7            4.3                  6.5               6.0              5.8 
degrees of          (0.5)          (0.39)        (0.3)               (0.7)            (0.6)            (0.5) 
freedom (υ) 
 
log likelihood    -7,789.30     -9,077.39  -10,340.02    -7,760.16    -9,010.91   -10,241.41 
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Table 4.  Maximum likelihood estimates for i.i.d. Gaussian and EGARCH non-Gaussian 
descriptions of monthly changes in fed funds futures (213 observations, m = Oct 1988 to 
June 2006, standard errors in parentheses). 
   
                                       i.i.d. Normal                                        EGARCH             
  -------------------------------------                 -------------------------------  
                               u1m             u2m               u3m                  u1m             u2m              u3m          
---------------------------------------------------------------------------------------------------- 
mean (µ)       -2.66         -3.17            -3.74                0.12           0.43            0.27 
                             (0.75)        (1.06)          (1.27)              (0.24)        (0.34)         (0.67)  
  
log average       4.79           5.47             5.83                5.73           6.47            7.01 
variance (γ1)      (0.10)        (0.10)           (0.10)             (0.42)        (0.51)          (0.54) 
 
log ht-1 (δ)        ----             ----               ----                0.63            0.74            0.84        
                                                                                          (0.16)         (0.22)          (0.11) 
  
| ut-1| (α)        ----             ----               ----                0.18            0.15            0.30 
                                                                                          (0.07)         (0.07)          (0.12) 
        
trend in        ----             ----               ----             -22.7           -23.6           -17.1        
variance (γ2)                                                                   (3.1)           (3.3)            (3.8)        
 
Student t                 ----             ----               ----                2.1              2.2               4.1       
degrees of                                                                   (0.4)            (0.4)            (1.2) 
freedom (υ) 
 
log likelihood      -812.61     -884.70      -922.80          -731.08       -793.38        -860.16 
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Table 5. OLS coefficients on xd-1 in regression of fid on constant, its own lag, and lagged 
value of indicated explanatory variable (standard errors in parentheses). 
 
Explanatory variable   Dependent variable  
-------------------------  --------------------------------------------       

xd-1          f1d          f2d         f3d   
-------------------------------------------------------------------------------- 
10-year minus 5-year   0.058  -0.036  -0.070      
     Treasury spread  (0.086)  (0.117)  (0.138) 
 
5-year minus 2-year  -0.009  -0.085  -0.126 
     Treasury spread  (0.058)  (0.079)  (0.093) 
 
2-year minus 1-year  -0.072  -0.136  -0.172 
     Treasury spread  (0.112)  (0.153)  (0.181) 
 
1-year minus 6-month   0.006   0.302   0.439 
     Treasury spread  (0.173)  (0.236)  (0.279) 
 
Baa minus 10-year  -0.035  -0.126  -0.184* 
     Treasury spread  (0.058)  (0.079)  (0.094) 
 
12-month job growth   0.017   0.089**  0.125**  
     as currently reported (0.023)  (0.031)  (0.036) 
     for period ending 
     previous month    
 
12-month job growth   0.016   0.093**  0.121** 
    as reported at the time (0.024)  (0.033)  (0.039) 
    for most recent period 
    that would have been 
    known by end of  
    previous month 
 
------------------------------------------------------------------------------------- 
* denotes statistically significant at 5% level, ** at 1% level. 
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Figure 1. Sample histogram (rectangles) of f1d  with bin-width of 0.5 basis points and 
Normal distribution (continuous curve).   Height of rectangle is fraction of observations 
falling in that 0.5-basis-point interval, while height of curve is 0.5 times the N(0,4) 
density. 
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Figure 2. Plot of f1d . 
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Figure 3. OLS coefficients and 95% confidence intervals from regressions of fid 
on a constant and five of its own lagged values. 
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