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ABSTRACT

The traditional formulation of the linear-quadratic inventory model with unit roots pre-
dicts cointegration between inventories and sales. That formulation implies that marginal
production costs and the marginal benefits of inventories are both going to infinity, and
the cointegrating coefficient reflects the optimal trade-off between these competing factors.
This paper suggests a reformulation of the problem in which marginal production costs and
marginal inventory benefits are both stationary and in which the cointegrating coefficient is

the same as the value that characterizes the target inventory level in the cost function.

* 1 am grateful to Valerie Ramey, Scott Schuh, and an anonymous referee for helpful

comments.



1 Introduction

The linear-quadratic model of optimal inventory accumulation developed by Holt, Modigliani,
Muth, and Simon (1960) and Hansen and Sargent (1980, 1981) has become the standard
model for empirical analysis of inventory dynamics. Examples include Blanchard (1983),
West (1986), Eichenbaum (1989), Ramey (1991), Krane and Braun (1991), Kashyap and
Wilcox (1993), Durlauf and Maccini (1995), Fuhrer, Moore, and Schuh (1995), West and
Wilcox (1994, 1996), and Humphreys, Maccini, and Schuh (2000). Excellent surveys of the
method have been provided by West (1995), Anderson, Hansen, McGrattan, and Sargent
(1996), and Ramey and West (1999).

The theoretical framework is usually developed for zero-mean, stationary variables, though
the data to which the model is applied are almost always nonstationary. One popular ap-
proach is to assume that the driving variables are characterized by deterministic trends. It
is then a perfectly valid procedure to apply the stationary theoretical model to the detrended
data, though some efficiency can be lost by ignoring restrictions that the model may impose
on the deterministic terms (West, 1989).

More care is required in accounting for stochastic trends or unit roots. The current
dominant approach, developed by Kashyap and Wilcox (1993), is to assume that the firm’s
sales have a unit root (follow an I(1) process) whereas the unobserved shock to the firm’s
productivity is stationary (or I(0)). Under these assumptions, Kashyap and Wilcox show
that the standard model implies that inventories and sales will be cointegrated. Further
discussion and evidence on this point can be found in Granger and Lee (1989), West (1995),
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and Ramey and West (1999).

This note examines an unappealing feature of this cointegration that appears not to have
been commented upon previously in this literature. The firm in this environment is seeing
its marginal production costs go to infinity, and deliberately chooses to let its inventory
management costs go to infinity so as to minimize total costs. The cointegration coefficient
relating inventories to sales is determined by the optimal balancing of these two costs and
the optimal rate of divergence of inventory management costs from their minimal value.

This note further suggests a simple cure for this problem. Rather than assume that unob-
served productivity shocks are I1(0), we propose modeling them as I(1) but cointegrated with
the firm’s sales. It is perhaps surprising that this alternative assumption about unobserved
shocks ends up implying the identical reduced-form dynamic behavior of sales and inven-
tories and the identical value for the sample likelihood function as in the Kashyap-Wilcox
framework. However, the assumptions imply a different mapping from the reduced-form
dynamic behavior into the structural parameters which would seem much more appealing
theoretically.  Specifically, in the framework suggested below, marginal production costs
and marginal benefits of inventories are stationary along the long-run growth path, and the
cointegrating relation is one and the same as the target inventory relation. The framework
is suggested as a better way to interpret cointegration between inventories and sales using a
coherent theoretical model of the firm’s decision problem.

It is helpful first to develop this point with a simple example in which a representation of

the cointegrated system and the mapping from reduced-form to structural parameters can



be examined in closed form. We then show that the same results hold in general.

2 The linear-quadratic inventory model

Consider the following decision problem, similar to that in Ramey and West (1999) :

max  Fj {gﬂt(ast — Ct)} (1)

{Qe,Hi}2,
subject to:
Cr = (1/2) {a0(AQ0)* + a1 [(Q¢ = Uet)? + az(Hy1 — ag — a35:)° ]} (2)
Qr=5+H,—H, (3)
where
P, = price of good
S; = unit sales
C; = cost of production
Q); = quantity produced
H; = inventories
U.s = shock to marginal cost of production

L This is slightly different notation from that used by Ramey and West. Here production costs are
given by (1/2)a1Q? —a1Q:Ue + (1/2)a1UZ, whereas Ramey and West specify (1/2)a1Q7 + Q:UZ,. The term
(1/2)UZ is from the point of view of the firm a constant which has no effect on any first-order conditions, and
—a1U = U}, is a renormalization of the shock to marginal production costs that simplifies the algebra here.
Also we specify the coefficient on inventory costs as (1/2)ajas whereas Ramey and West use (1/2)as. Again
this is only a renormalization that simplifies the algebra, though in empirical work one might want to allow
a zero coefficient on production costs and nonzero coefficient on inventory costs, which our normalization
does not allow.



(B = discount rate.

The first-order condition for cost minimization is

Eilag(AQ: — 2BAQ¢ 11 + B AQr2) + a1(Qr — Uer) (4)

—Ba1(Qer1 — Uers1) + Barag(Hy — ag — a3Ses1)] = 0.

Cost minimization must hold regardless of the relation between prices and sales. For
purposes of this note, we focus exclusively on the cost-minimization condition and treat
prices and sales as exogenous. The traditional interpretation of cointegration between
inventories and sales arising from such a model (e.g., Kashyap and Wilcox, 1993; West,
1995, Ramey and West, 1999) comes from assuming that S; has a unit root while U is
stationary. We begin by considering a special case for which the solution can be examined

in closed form.

2.1 An example of the traditional cointegrated representation

Suppose that there are no costs of adjusting production (ag = 0) and sales follow a random
walk with drift,

Sy = Si—1 + a5 + Vg, (5)

for vy white noise and U, = v, is also white noise. In this case, after dividing by a4,

equation (4) becomes
EQr — vt — BQu1 + Baz(Hy — as — azS; — azas)] = 0 (6)

since Eyvg 441 = Eyve 11 = 0. Substituting the inventory identity (3) into (6) results in
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Et[AHt + St — Vet — ﬂ(AHH_l + St + (1,5>

+ﬁa2(Ht — Q4 — agst — a3a5)] = 0.
Define
Yo = —(as/az) — as — azas
_1-p
= — Qa
71 B 3

wy = Hy + 79 + 7,5,

allowing (7) to be written
E(AH; — BAH; 1 + Basw; — ve) = 0.
Notice that equation (9) implies
AH; = Awy — v, AS;.

Substituting (11) into (10) results in

Ey(Awy — 11 AS; — BAwgr + By A1 + Baswy — ver) = 0
or, from (5),

Ey(Awy — v1a5 — 710t — BAwe1 + G105 + Baswy — ve) =0

E (1 + B+ Baz)wy — w1 — Pwiyr] = (1 — B)y1a5 + 71Vst + Var

Etﬁ [(1 — %L + ﬁ_1L2> ’th] = —ho — T

for L the lag operator, hg = (1 — )y a5 and x; = v,vg + Vet
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Equation (12) is an example of the well-known difference equation from Sargent (1987,

p. 201). The factorization

(13)

(1= Mz)(1 = Mg2) = <1_ 1tB+Pay 5 2>

3 2+ 02

has real roots 0 < A; < 1 and Ay = 1/(SA;) > 1. Recalling that z; is white noise, the

solution to (12) is known from Sargent (1987, pp. 203 and 394) to be

Ah
Wy = )\1wt_1 + ﬁ + )\11315. (14)
2

Notice that (14) is a stationary AR(1) process. It follows from (9) that H; and S; must be
cointegrated with cointegrating vector (1,7,)".
One can write the cointegrated system in traditional error-correction form by substituting

wy = AHy + (Hi—1 + 779 + 715t-1) + 7105 + 7105t and w1 = Hy_1 4+ v + 7151 into (14):

Mh
AH; + (He1 + 79+ 715t-1) + 7105 + Y10e = A (Hi—1 + v +715i-1) + 1 1)\0_1 + Ay
— Ay
or
as(A; — 1
AH, = (A — 1) (Hyy + 79 +7151) + %15(—;5) e+ (M — Dyve. (15)
- A1

Equations (5) and (15) constitute the vector error-correction representation for the cointe-
grated VAR for (S;, H;)" with cointegrating relation (9). In terms of the original parameters
of the structural model defined by the optimization problem in (1)-(3), the discount rate (3 is
unidentified on the basis of observations of (S;, H;)" and would have to be imposed a priori.
The parameter a; is also unidentified and would have to be normalized (say, a; = 1). The
value of v, is inferred from the cointegrating relation between S; and H;, and the value of
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A1 is then identified from the response of inventory investment to the lagged cointegrating
residual w;_; or to the current shock to sales vy;. The framework is overidentified in that
both the contemporaneous correlation between the VAR residuals in (5) and (15) and the
response of AH; to the lagged error-correction term w;_; are governed by the single param-
eter A;. Given A\, and 3, the value of ay can then be found from (13). Knowing (3, as, and
71, one can then infer az from (8).

A surprising feature of this solution, which has been noted by Kashyap and Wilcox
(1993), West (1995), and Ramey and West (1999), is that the cointegrating vector (1,7,)
is not the value (1, —a3)" that one might have expected on the basis of the underlying cost

function. Indeed, from (8) and (9),

1-p
Bay 5

Ht—l — agSt = —AHt + Wy — Yo — (16)

which, since AH; and w; are 1(0), must be I(1). As such, the variance of H; ; — a3gS; is
O(t), meaning the probability that |H;_; — a3S;| exceeds any finite bound goes to unity as ¢
goes to infinity. In other words, the marginal cost of managing inventories necessarily goes
to infinity under the traditional formulation.

This results in general from the fact that if U, is stationary and production @ is I(1),
then the marginal cost of production a;(Q; — Uy) must go to infinity. Cost minimization
calls for continually cutting back inventories relative to the target value a4+ a3.S; so that the
infinite marginal benefit of putting another unit into inventory is equated with the infinite
marginal cost of producing the good. Specifically, the marginal benefit of adding another
unit to inventory (which is the negative of the marginal cost of increasing H;) is given by
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—BayasEy(Hy — ay — a3Siy1). From (16) this marginal benefit is asymptotically dominated
by the term Bajas(1 — 3)/(Bas)S; = a1(1 — (3)S;. The marginal cost of producing another
unit @; for inventory (and using the additional inventory, say, to produce one less unit next
period Q:+1) has a marginal cost of Eia1[Qt — Uet — B(Qt4+1 — Ue141)], which is asymptotically
dominated by the term a;(1 — 3)S;. The asymptotic marginal cost equals the asymptotic
marginal benefit. Hence the cointegration coefficient 7, results from the firm’s desire to drive
inventory management costs to infinity at the optimal rate given that marginal production
costs are also going to infinity. Of course, this optimal plan is also causing profits to go to
negative infinity, and if shutting down the plant is an option, that is obviously superior to
the solution implied by the first-order conditions.

All of this would seem to be a most unappealing theoretical framework with which to
account for the trends and comovement in inventories, production, and sales. The problem,
moreover, is rather fundamental to the above framework. Whenever there is a unit root
in sales but none in marginal production costs U, then physical production costs must go
to infinity and inventory management costs will also go to infinity under a cost-minimizing
strategy. On the other hand, if one tries to fix this by assuming that U, has a unit root,
if this is unrelated to the unit root in sales, then inventories and sales would no longer be

cointegrated.

2.2 A more appealing cointegrated representation

The obvious solution, if one wants to account for cointegration between inventories and sales

using the model (1) through (3), is to assume that U, and S; both have unit roots, but that



they are themselves cointegrated. Such an assumption might be defended on the grounds
that it may be technological advance (an upward trend in U.) that generates the upward
trend in sales; the appendix provides a general equilibrium example of how this would occur.
Consider, for example, the consequences if we set U, = S; + v for v, white noise but leave

the other details exactly as in Section 2.1. In this case, equations (6) and (7) would become

E(Qr — St — ver) — B(Qus1 — Sip1 — Veut1) + Bag(Hy — ag — agSy — azas)] =0

Et [AHt — Vet — ﬂAHt—&—l + ﬂa,g(Ht — ag — agSt - a3a5)] =0. (17)

If we now define

’70 = —Q4 — Q305
Y1 = —as (18)
Wy = Hy + 79 + 715t (19)
expression (17) can be written
Ey(AH; — BAH 11 + Bagy — ver) = 0. (20)

Equation (20) will be recognized as identical to (10). Hence the same analysis used in
equations (12) through (14) can be used to establish that @, is stationary, meaning that
(H:, S;)' is again cointegrated, though the cointegrating vector is now (1,%;) = (1, —as)’.
Note that in this solution, the deviation of inventories from target and marginal production

costs are both stationary.



2.3 On the consequences of using a different representation

The assumption U, = v was seen in Section 2.1 to imply the vector error-correction model

Sy =Si-1+ a5+ vs (21)

via5(A — 1)

AHt = (/\1 — 1)(Ht_1 +’70 ""71575_1) + 1 Alﬂ

+ Mvet + (A1 — 1)7104, (22)

whereas the assumption U, = S; + v, implies the system

Sy =Si-1+ a5+ vs (23)

71%(/\1 — 1)

AHy = (A1 — 1)(Hi—1 + 50 + 718-1) + 1—\§B

v+ (A — DA (24)

The observable implications of the first model for data on {Hy, S;} are completely described
by (21) and (22), whereas the observable implications of the second model are completely
described by (23) and (24). One can think of maximum likelihood estimation as first
choosing parameters (as, \1,%, V1,02, 02,) on the basis of the representation in (21) and
(22) and then mapping these back into the structural parameters (as, as, ay,az, o2, 02,) as
described at the end of Section 2.1. It is clear that representation (21)-(22) would imply
the numerically identical value for the likelihood function as (23)-(24) and the numerically
identical observed behavior for {H;, S;}. The key difference is the interpretation given to
the estimated cointegrating coefficient v;. In the second model, the cointegrating relation is
interpreted as directly identifying the long-run target relation between inventories and sales,

H; = a4 + a3S;, whereas in the first model, the cointegrating relation is interpreted as the

outcome of balancing infinite inventory management costs against infinite production costs.
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The two models thus predict exactly the same behavior for { Hy, S;}, but only the first
model predicts profits go to negative infinity and has the unpalatable interpretation of the
long-run comovement between these two variables. It would seem clear that the second
model is the better one to use for purposes of interpreting the dynamic behavior of sales
and inventories, that is, one should use the structural parameter values that result from
interpreting the cointegrating coefficients as 7, and 7, rather than as v, and 7.

One objection that might be raised about the framework proposed here is that the firm is
asymptotically operating around the point Q); = U, + k for some constant k& implied by the
other parameters. It is possible for k£ to be sufficiently small that the firm is predicted often
to be operating in a region with decreasing marginal cost. This, however, is simple to change
by replacing the assumption U, = S; + vy with Uy = S; 4+ ag + v The new parameter
ag can not be identified separately from the constant a4 in the inventory management costs.
However, if in the data Q¢ — S; is stationary (as either the Kashyap-Wilcox model or the
one here imply), then there exists a value of ag for which marginal production costs are
virtually always positive, and given this value for ag, a value for a4 can then be found for
which the model is consistent with the data. Indeed, it is precisely because our model has
the feature that QQ; — U, is stationary that it is possible to interpret the data as all falling in
a reasonable region of the cost function. Hence, rather than a drawback of our framework,
concerns about negative or infinite marginal production costs are a key reason one might
prefer to base inference on the assumptions proposed here.

Note that the proposed solution only works if the cointegrating vector for (S;, Us)' is

11



(1,—1)". The general equilibrium example presented in the appendix shows why this in

general would be expected to be the case.

3 A Generalization

The issues illustrated with the two examples above are in fact quite general. Consider the
behavior of (4) when (AS;, U.)" follows an arbitrary vector I(0) process. To reproduce the
argument in Kashyap and Wilcox (1993, p. 388) and West (1995, footnote 9), from the
inventory identity (3), AQ; = AS; + A2Hy, and if one conjectures that both AS; and AH,;
are 1(0), then AQ; is also I(0) and the first-order condition (4) implies that the following

variable must be 1(0):

(Qr — Uet) — B(Qr1 — Ucpy1) + Bag(Hy — agy — azSey1)

= (AH;+ S —Uy) — B(AHyp1 + Siv1 — Ucpyr) + Pas(Hy — as — a3Siy1).  (25)

If Uy is any 1(0) process, then (25) can only be I(0) if

BasHy + (1 — B — Bagas)S; ~ 1(0),

that is, only if (Hy, S;)" are cointegrated with cointegrating vector (1,v;)" defined in (8).
Hence, as noted by these authors, this vector (1,7v,)" is the cointegrating vector when Uy is
any stationary process, not just for U, white noise as discussed in the previous section.
On the other hand, if instead U, is I(1) but S; — Uy is any I(0) process, then (25) is
stationary provided that [as(H; — a3Si+1) ~ 1(0). Hence the result that (1, —as)’ is the

cointegrating vector holds whenever S; and U, are cointegrated with cointegrating vector
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(1,—1)". Thus, the approach recommended in Section 2, of replacing the assumption that
U, is stationary with the assumption that S; — U, is stationary, is a general solution to the

problem of interpreting cointegration between inventories and sales with a model that makes

theoretical sense.
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Appendix A. General Equilibrium Example
Consider a perfectly competitive representative firm with production function
Qi =ANS O<a<l (26)

for IV; labor input (paid wage W;) and A; an exogenous technology shock. The firm’s output
is the economy’s sole consumption good which is taken to be the numeraire. Suppose that

the firm pays a cost X; for inventory management,

Xt:

% (Hi 1 —£S1)° (27)

St ’
where to obtain results parallel to those for (1)-(3), we treat this as a cost directly paid to

households who supply inventory management services according to a fee schedule specified

by (27).2  The firm’s decision problem is

{Z B'(Sy — WiN; — )} (28)

{QmHmSmNt}t 0
subject to (26), (27), and (3). Let M; denote the marginal cost of production:

Wi Ny
aQy '

M, = (29)

The first-order conditions are

H:
1= M, - (5,2 —5) (30)

2 If the firm does not make outside payments for inventory management services, then inventory manage-
ment costs would need to appear in either the production function or the inventory accumulation identity.
This would complicate the mapping between the general equilibrium example and the system (1)-(3).
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Aﬂ:ﬁﬂlng—7<H¥ ﬂ (31)

Stt1 B
Q¢ (Ht—1> (Ht - Ht—l)
— =1+ . 32
St St Ht—l ( )

To close the model, suppose that a; = log A; follows a random walk with drift,

ay = Qi1 + g + &, (33)

while population is constant:

N, = N. (34)

Households use up some of the purchased good in producing inventory management services,
earning zero profits in equilibrium. Hence household consumption is given by S; — X;. With

no private storage or capital, the household budget constraint is
St - I/VtNt + Xt + Ht (35)

for I1; the household’s share of the profits of the representative firm. Note that (34) is the
condition for labor market equilibrium and output equilibrium is then assured by Walras’
Law.

Consider first the case of deterministic growth (E(e?) = 0). It follows from (26)-(35)
that along the steady-state growth path, M; is constant while the log of each element of
Z, = (W, Qq, Hy, Sy, Xy, T, Ay)' grows linearly at the rate g.

With stochastic growth (E(e?) > 0), from the standard log linearization around the
steady-state growth path we have the familiar result that each element of log Z; is individu-
ally I(1) and any two elements of log Z; are cointegrated with cointegrating vector (1, —1)';
see for example King, Plosser, Stock, and Watson (1991).
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One could also use a linear as opposed to log-linear approximation to the stochastic
growth path, for example, treating H; — H;_; rather than log(H;) — log(H;_1) as I(0). To

do so, substitute (26) into (29),

1 /Qp\ (/o)1
M ==X
t a(Bt) , (36)

where

B, = Atl/(l—a)Wt—a/(l—a).
Note that @ and B; are both O,(A;) along the stationary growth path. Taking a first-order
Taylor approximation to (36) around (Q, By)" and rearranging,

~ 1) PlIQ — (Qo/Bo) B (37)

M:%+G—1%

o
Recall that along the stationary growth path, log(Q:) and log(B;) are both I(1) while
log(Q:) — log(By) is stationary with mean log(Qo/Bp). In the linear approximation to
this path, @; and B; are regarded as I(1), and must be cointegrated with cointegrating
vector (1, —(Qo/Bo))" given the stationarity of M;. Defining a; = [(1/a) — 1]My/Qo and

Uus = (Qo/Bo) By, expression (37) can be written
Mt ~ MO + aq (Qt - Uct)- (38)

We can likewise approximate

Hy

v (S_ — ) ~ ko + araz(Hy — agSii1) (39)
t4+1

where ko = y[(Ho/S1) — &], as = v/(S1a1), and a3 = (Hp/S1). Substituting (38) and (39)
into (31),
a1 (Qt - Uct) = ﬁEt[al (Qt+1 - Uc,t+1) - a1a2(Ht — Q4 — a35t+1)] (40)
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for ay = —(Bajas) ™ [Bko + (1 — B)My]. Equation (40) will be recognized as identical to (4)
when @y = 0. Hence the solution to the linear-quadratic optimization problem (1)-(3) can
be motivated as a linear approximation to the general equilibrium stochastic growth path
implied by (28).

Recall from (38) that Q; — U, must be stationary in this equilibrium. Subtracting U
from (3) results in

Qt—Us =5 — U+ (H — Hi—1).

Since H; — H;_; is also regarded as stationary for purposes of this approximation, it follows
that (S¢, Uet)’ must be cointegrated with cointegrating vector (1, —1)".

Of course, if growth is actually exponential as the model implies (and as most economic
time series appear to exhibit), a log-linear approximation would be superior to the linear
approximation analyzed above. Viewing (36) as a function of (g, b;)" = (log(Q:),log(By))’,

the Taylor approximation would be

M, ~ M, [1 _ G _ 1) (g0 — bo)} + M, (é _ 1) (g — by). (41)

Note that (g, b;)’ must be cointegrated with cointegrating vector (1, —1)’. Similarly approx-
imating the left-hand side of (39) with a linear function of (h, si11) = (log(Hy), log(St+1))’

gives

0l (Sljl — f) ~ ~v[(Ho/S1)(1 — ho + s1) — &] + v(Ho/S1)(he — St11)- (42)

Substituting (41) and (42) into (31) and dividing both sides by My[(1/a) — 1] yields

@ — Ut = BE(qer1 — Ucpt1) — a5(he — a) — Se41)] (43)
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where u, = b;. Equation (43) will again be recognized as an expression of the form of (4)
in which the variables @)y, H;, and S; have simply been replaced by their natural logarithms.
Hence, if the goal is to fit the model using only the Euler equation (4), one might want
to use logarithms rather than levels of the variables in order to better capture exponential
as opposed to linear growth. Again obviously (s, u.)" are cointegrated with cointegrating

vector (1,—1)".
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