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1 Introduction.

Structural interpretation of vector autoregressions has typically involved an all-or-nothing

approach to the use of prior information, treating some features of the underlying structure

as if known with certainty (often regarded as identifying assumptions) while claiming to be

completely ignorant about other features. In this paper we argue that both aspects of the

traditional approach can be improved on. Researchers need to acknowledge openly that

there are significant doubts about the restrictions that are typically viewed as identifying

assumptions. But we can make up for this in part by drawing on all available information

about the structure, while acknowledging that this information, too, is imperfect. Under

our approach, error bands incorporate not just uncertainty that is a result of having a finite

sample of data but also reflect our doubts about the structure itself.

We illustrate these ideas by revisiting the role of supply and demand in generating historical

fluctuations in the price of oil. As examples of confidence about certain features of the

underlying structural model that we propose to relax, we revisit Kilian’s (2009) assumption

that we know with certainty that there is no short-run response of oil supply to the price

and Kilian and Murphy’s (2012) assumption that the short-run price elasticity of oil supply is

known to be less than 0.0258. On the other hand, those studies made no use of information

about the oil demand elasticity, and indeed their estimates imply implausibly large demand

elasticities. We use this setting to illustrate how one can relax the strong assumptions about

supply but supplement it with imperfect information about demand and other features of

the economic structure to answer the kinds of questions researchers have studied with earlier

methods.

Our paper makes a number of other methodological contributions. First, we show how to

use prior information about both elasticities and the equilibrium impacts of structural shocks.

Second, we show how to generalize structural vector autoregressions to allow for measurement

error. Third, we show how one can downweight earlier data if the researcher has doubts about

structural stability over time.

Among the new insights that emerge from our analysis is an estimate of the short-run

oil supply elasticity of 0.15, consistent with the conclusion of Caldara, Cavallo and Iacoviello

(2017) but considerably larger than the upper bound assumed in Kilian and Murphy (2012,

2014). We are also led to conclude that supply shocks were more important in accounting

for historical oil price movements than was found in studies that assumed very precise prior

information about the size of the supply elasticity. We attribute the run-up in oil prices in

2007-2008 to strong demand confronting stagnating supply. Our results suggest that weak

demand and strong supply were both important in the oil price collapse in 2014-2016, while

attributing most of the rebound in oil prices in 2016 to stronger demand. Our analysis further

suggests that there is considerable error in measuring world inventories of oil. Once we allow
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for this measurement error, we find little evidence for a contribution of speculation or changes

in inventory demand to most historical oil price movements, in contrast for example to the

conclusion of Juvenal and Petrella (2015).

The plan of the paper is as follows. Section 2 summarizes the Bayesian approach for a

model that may be incompletely identified. Section 3 uses this framework to revisit earlier

studies on the role of oil supply and demand shocks. Section 4 shows how we can incorporate

a role for inventories while acknowledging the possibility of considerable error in estimates of

global oil inventories. Section 5 summarizes the prior information we rely on and describes

the conclusions that follow. Section 6 investigates how results change when we relax reliance

on individual sources of prior information, while Section 7 concludes.

2 Bayesian inference for structural vector autoregres-

sions.

Our interest is in dynamic structural models of the form

Ayt = Bxt−1 + ut (1)

for yt an (n×1) vector of observed variables, A an (n×n) matrix summarizing their contem-
poraneous structural relations, xt−1 a (k× 1) vector (with k = mn+1) containing a constant

and m lags of y (x′t−1 = (y
′

t−1,y
′
t−2, ...,y

′
t−m, 1)

′), and ut an (n × 1) vector of structural dis-

turbances. We take the variance matrix of ut (denoted D) to be diagonal. To obtain a

formal Bayesian solution we treat ut as Gaussian, though Baumeister and Hamilton (2015)

showed that the resulting Bayesian posterior distribution can more generally be interpreted

as inference about population second moments even if the true innovations are not Gaussian.

2.1 Representing prior information.

From a Bayesian perspective, a researcher’s prior information about A would be represented

in the form of a density p(A), where values of A that are regarded as more plausible a priori

are associated with a larger value for p(A), while p(A) = 0 for any values of A that are

completely ruled out. Information may pertain to individual elements of A or to nonlinear

combinations such as specified elements of A−1, the equilibrium effects of structural shocks.

Our applications in this paper draw on both sources of prior information. Implementation of

our procedure requires only that p(A) be a proper density that integrates to unity.1

1Actually our algorithm can be implemented even if one does not know the constant of integration, so the
practical requirement is simply that p(A) is everywhere nonnegative and when integrated over the set of all
allowable A produces a finite positive number.
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While our approach can be used with any distribution representing prior information about

A, to reduce computational demands we assume that prior information about the other para-

meters can be represented by particular families of parametric distributions that allow many

features of the Bayesian posterior distribution to be calculated with closed-form analytic ex-

pressions. Specifically, we assume that prior information about D conditional on A can be

represented using Γ(κi, τi) distributions for d
−1
ii ,

p(D|A) =
�n

i=1p(dii|A) (2)

p(d−1ii |A) =

�
τ
κi
i

Γ(κi)
(d−1ii )κi−1 exp(−τid−1ii ) for d−1ii ≥ 0

0 otherwise
,

where dii denotes the row i, column i element of D. Thus κi/τi denotes the analyst’s expected

value of d−1ii before seeing the data, while κi/τ
2
i is the variance of this prior distribution. If

we have a lot of confidence in this prior information, we would choose κi and τi to be large

numbers to get a prior distribution tightly centered around κi/τi. In the formulas below we

allow τi to depend on A but assume that κi does not. Appendix A offers some suggestions

for how to choose the values for κi and τi.

Prior information about the lagged structural coefficients B is represented with conditional

Gaussian distributions, bi|A,D ∼ N(mi, diiMi):

p(B|D,A) =
�n

i=1p(bi|D,A) (3)

p(bi|D,A) =
1

(2π)k/2|diiMi|1/2
exp[−(1/2)(bi −mi)

′(diiMi)
−1(bi −mi)]. (4)

The vector mi denotes our best guess before seeing the data as to the value of bi, where b
′
i

denotes row i of B, that is, bi contains the lagged coefficients for the ith structural equation.

The matrixMi characterizes our confidence in this prior information. A large variance would

represent much uncertainty, while having no useful prior information could be regarded as the

limiting case whenM−1
i goes to zero. The applications in this paper allow mi to depend on

A but assume thatMi does not. Appendix A offers suggestions for specifying mi andMi.

2.2 Sampling from the posterior distribution.

The Bayesian begins with prior information about parameters p(A,D,B) represented by the

product of p(A) with (2) and (3). The objective is to see how observation of the data YT =

(y′1,y
′
2, ...,y

′
T )
′ causes us to revise these beliefs. If the prior for d−1ii given A is Γ(κi, τi(A)),

then the posterior for d−1ii given A and the data YT turns out to be Γ(κ
∗
i , τ

∗
i (A)) where

κ∗i = κi + T/2 (5)
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τ ∗i (A) = τi(A) + (1/2)ζ∗i (A). (6)

The value of ζ∗i (A) can be calculated from the sum of squared residuals of a regression of

Ỹi(A) on X̃i:

ζ∗i (A) =
�
Ỹ′

i(A)Ỹi(A)
�
−
�
Ỹ′

i(A)X̃i

��
X̃′

iX̃i

�−1 �
X̃′

iỸi(A)
�

(7)

Ỹi(A)
[(T+k)×1]

=
�
a′iy1 · · · a′iyT mi(A)′Pi

�′
(8)

X̃i
[(T+k)×k]

=
�
x0 · · · x′T−1 Pi

�′
(9)

for Pi the Cholesky factor ofM
−1
i = PiP

′
i.

Likewise with a N(mi(A), diiMi) prior for bi|A,D, the posterior for bi given A, D, and

the data YT turns out to be N(m∗
i (A), diiM

∗
i ) with

m∗
i (A) =

�
X̃′

iX̃i

�−1 �
X̃′

iỸi(A)
�

(10)

M∗
i =

�
X̃′

iX̃i

�−1
. (11)

Baumeister and Hamilton (2015) showed that the posterior marginal distribution for A is

given by

p(A|YT ) =
kTp(A)[det(AΩ̂TA

′)]T/2

�n
i=1[(2/T )τ

∗
i (A)]κ

∗

i

�n
i=1τi(A)κi . (12)

Here p(A) denotes the original prior density for A, Ω̂T is the sample variance matrix for the

reduced-form VAR residuals,

Ω̂T = T−1
�
�T

t=1yty
′
t −
��T

t=1ytx
′
t−1

���T
t=1xt−1x

′
t−1

�−1 ��T
t=1xt−1x

′
t−1

�	
, (13)

and kT is a function of the data and prior parameters (but not dependent on A, D, or B)

such that the posterior density integrates to unity over the set of allowable values for A. The

value of kT does not need to be calculated in order to form posterior inference.

The posterior distribution

p(A,D,B|YT ) = p(A|YT )p(D|A,YT )p(B|A,D,YT ) (14)

summarizes the researcher’s uncertainty about parameters conditional on having observed

the sample YT . If the model is under-identified, some uncertainty will remain even if the

sample size T is infinite, as discussed in detail in Baumeister and Hamilton (2015). Appendix

B describes an algorithm that can be used to generate N different draws from this joint
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posterior distribution:

{A(ℓ),D(ℓ),B(ℓ)}Nℓ=1.

Our applications in this paper all set N equal to one million.

2.3 Impulse-response functions.

The structural model (1) has the reduced-form representation

yt = Φxt−1 + ǫt (15)

= Φ1yt−1 +Φ2yt−2 + · · ·+Φmyt−m + c+ǫt

Φ = A−1B (16)

ǫt = A
−1ut. (17)

The (n× n) nonorthogonalized impulse-response matrix at horizon s,

Ψs =
∂yt+s

∂ǫ′t
, (18)

is then found from the first n rows and columns of Fs, where F is given by

F
(nm×nm)

=






Φ1 Φ2 · · · Φm−1 Φm

In 0 · · · 0 0

0 In · · · 0 0
...

... · · · ...
...

0 0 · · · In 0






.

The dynamic effects of the structural shocks at horizon s are given by

Hs =
∂yt+s

∂u′t
= ΨsA

−1; (19)

see for example Hamilton (1994, pages 260 and 331). We report the pointwise median value

of draws of these magnitudes; see Baumeister and Hamilton (forthcoming) for a discussion of

the optimality properties of these estimates.
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3 Bayesian interpretation of traditional approaches to

structural inference.

In this section we show how previous approaches can be given a Bayesian interpretation,

using a 3-variable description of the global oil market for illustration. The first element of the

observed vector yt is the quantity of oil produced, the second is a measure of real economic

activity, and the third captures the real price of oil: yt = (qt, yt, pt)
′. For this section we use

the data sets from Kilian (2009) and Kilian and Murphy (2012), in which qt is the growth

rate of monthly world crude oil production, yt is a cost of international shipping deflated by

the U.S. CPI and then reported in deviations from a linear trend, and pt is the log difference

between the refiner acquisition cost of crude oil imports and the U.S. CPI. For details on the

various data sets used in this paper see Appendix C.

The structural model of interest consists of the following three equations:

qt = αqyyt + αqppt + b
′
1xt−1 + u1t (20)

yt = αyqqt + αyppt + b
′
2xt−1 + u2t (21)

pt = αpqqt + αpyyt + b
′
3xt−1 + u3t. (22)

Equation (20) is the oil supply curve, in which αqp is the short-run price elasticity of supply

and αqy allows for the possibility that economic activity could enter into the supply decision for

reasons other than its effect on price. Oil supply is also presumed to be influenced by lagged

values of all the variables over the preceding 2 years, with xt−1 = (y′t−1,y
′
t−2, ...,y

′
t−24, 1)

′.

Equation (21) models the determinants of economic activity, with the contemporaneous effects

of oil production and oil prices given by αyq and αyp, respectively. Equation (22) governs

oil demand, written here in inverse form so that αpq is the reciprocal of the short-run price

elasticity of demand. One of the goals of the investigation is to distinguish between the

consequences of shocks to oil supply u1t and shocks to oil demand u3t.

3.1 A Bayesian interpretation of Cholesky identification.

As our first example we consider the analysis by Kilian (2009), who used a familiar recursive

interpretation of the structural system with variables ordered as (qt, yt, pt). From a Bayesian

perspective, this amounts to assuming that we know with certainty that production has no

contemporaneous response to either price or economic activity, so that αqy = αqp = 0, and

further that there is no contemporaneous effect of oil prices on economic activity (αyp = 0).

In contrast to this certainty, the researcher acts as though he or she knows nothing at all

about how oil production might affect economic activity (αyq) or the demand parameters (αpq

or αpy).
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We could represent this from a Bayesian perspective using extremely flat priors for the last

3 parameters. For this purpose we used independent Student t distributions with location

parameter c = 0, scale parameter σ = 100, and ν = 3 degrees of freedom:

p(αyq) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πνσ

�

1 +
1

ν

�
αyq − c

σ

�2�− ν+1
2

.

The specification is then a special case of the model described in Section 2 with

A =






1 0 0

−αyq 1 0

−αpq −αpy 1




 (23)

p(A) = p(αyq)p(αpq)p(αpy).

We also set κi = 0.5, selected τi as described in Appendix A, and put a very weak weight on

the Doan, Litterman and Sims (1984) random walk prior for the lagged coefficients (λ0 = 109)

to represent essentially no useful prior information about D and B.

We calculated impulse-response functions for the above model in two ways, first using the

traditional Cholesky decomposition of Kilian (2009), with point estimates shown as dotted

red curves in Figure 1. We also show the posterior median (solid blue) calculated using the

Bayesian algorithm described in Appendix B using the above prior distributions. The two

inferences are identical.

Is there any benefit to giving a Bayesian interpretation to this familiar method? One

interesting detail is the implied posterior distributions for αyq, αpq, and αpy which are shown

in Figure 2. Of particular interest are the prior (shown as a red curve) and posterior (blue

histogram) for αpq which is the reciprocal of the short-run price elasticity of demand (see the

upper right panel of Figure 2). The prior distribution is essentially a flat line when viewed on

this scale, while the posterior has most of its mass between −0.6 and +0.2, implying a short-

run price elasticity of demand that is concentrated within (−∞,−1.67)∪ (+5,∞). The latter

distribution is plotted in the last panel of Figure 2. One is thus forced by this identification

scheme to conclude that the demand curve is extremely elastic in the short run or possibly

even upward sloping.

The claim that we know for certain that supply has no response to price at all within a

month, and yet have no reason to doubt that the response of demand could easily be ±∞
is hardly the place we would have started if we had catalogued from first principles what we

expected to find and how surprised we would be at various outcomes. The only reason that

thousands of previous researchers have done exactly this kind of thing is that the traditional

approach required us to choose some parameters whose values we treat as if known for certain

while acting as if we know nothing at all about plausible values for others. Scholars have
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unfortunately been trained to believe that such an all-or-nothing approach is the only way

that one could study these questions scientifically.

The key feature in the data that forces us to impute such unlikely values for the demand

elasticity is the very low correlation between the reduced-form residuals for qt and pt. If we

assume that innovations in qt represent pure supply shifts, the lack of response of price would

force us to conclude that the demand curve is extremely flat.

3.2 A Bayesian interpretation of sign-restricted VARs.

Many researchers have recognized some of these unappealing aspects of the traditional ap-

proach to identification, and as a result have opted instead to use assumptions such as sign

restrictions to try to draw a structural inference in VARs. Examples include Baumeister and

Peersman (2013a) and Kilian and Murphy (2012), who began with the primitive assumptions

that (1) a favorable supply shock (increase in u1t) leads to an increase in oil production, in-

crease in economic activity, and decrease in oil price; (2) an increase in aggregate demand

or productivity (increase in u2t) leads to higher oil production, higher economic activity, and

higher oil price; and (3) an increase in oil-specific demand leads to higher oil production, lower

economic activity, and higher oil price. The assumption is thus that the signs of the elements

of H = A−1 are characterized by 




+ + +

+ + −
− + +




 . (24)

This is more than an assumption about the signs of all the elements in A in that it fur-

ther imposes some complicated constraints on their joint magnitudes, requiring that feedback

effects arising from a possible direct response of oil production to economic activity (αqy) or

economic activity to oil production (αyq) must be small. One simple way to guarantee the

sign restrictions is to set these two parameters to zero:

A =






1 0 −αqp

0 1 −αyp

−αpq −αpy 1




 . (25)

Note that although we have imposed two zero restrictions, the model is still unidentified—

there is an infinite number of values for {αqp, αyp, αpq, αpy} that all can achieve the identical
maximum value for the likelihood function of the observed data. We can also see that with
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these two zero restrictions, the impact matrix would be

A−1 =
1

1− αqpαpq − αpyαyp






1− αpyαyp αqpαpy αqp

αypαpq 1− αqpαpq αyp

αpq αpy 1




 . (26)

If we believed that the supply curve slopes up (αqp > 0), an oil price increase depresses

economic activity (αyp < 0), the demand curve slopes down (αpq < 0), and that higher income

boosts oil demand (αpy > 0), the elements in (26) will always satisfy (24). The under-

identified system (25) with these sign restrictions is thus one way of describing the class of

models considered by earlier authors.

One of Kilian and Murphy’s contributions was to demonstrate that sign restrictions alone

are not enough to pin down the magnitudes of interest. They argued that the supply elasticity,

although likely not literally zero as assumed in (23), is nevertheless known to be small, which

they represented with the bounds αqp ∈ [0, 0.0258]. However, they used no other information

about the supply elasticity, only imposing that it must fall within this interval. This will be

recognized as an essentially Bayesian idea in which the prior density is the uniform distribution

p(αqp) =

�
(0.0258)−1 if αqp ∈ [0, 0.0258]

0 otherwise
.

This density is plotted as the red curve in the upper left panel of Figure 3.

Kilian and Murphy also explored the benefits of using prior information about the (2,3)

element of (26), αyp/ det(A), which corresponds to the equilibrium effect on economic activity

of a shock to demand u3t. They imposed that the effect of a one-standard-deviation shock

was restricted to fall in [−1.5, 0]. This prior is plotted in the bottom left panel of Figure 3.2

By contrast, Kilian and Murphy did not use any prior information at all about the other

parameters other than the sign restrictions mentioned above. We again represent this with

the very uninformative Student t priors used in Section 3.1 now truncated by sign restrictions.

We used the algorithm described in Appendix B to form posterior inference resulting from the

prior

p(A) ∝
�
p(αyp)p(αpq)p(αpy) if αqp ∈ [0, 0.0258] and

√
d33αyp/det(A) ∈ [−1.5, 0]

0 otherwise

for p(αyp) and p(αpq) Student t (0,100,3) densities truncated to be negative and p(αpy) a

Student t (0,100,3) density truncated to be positive. The resulting posterior medians for the

impulse-response functions are shown in blue in Figure 4, and coincide almost exactly with the

2Specifically, we imposed −1.5 < h23 < 0 for h23 =
√
d33αyp/ det(A) and

√
d33 = 5.44, the standard

deviation of the error of the reduced-form forecast of pt.
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inference reported in Kilian and Murphy’s article calculated using their original methodology,

which is reproduced as the dotted red lines in Figure 4.3

Kilian and Murphy’s approach, like the more traditional approach to identification dis-

cussed in Section 3.1, can thus again be given a Bayesian interpretation. But as in the

previous example, once we do so, we see prior information being used in some unappealing

ways. Why should we regard a supply elasticity of 0.0257 as perfectly plausible while main-

taining that an elasticity of 0.0259 is completely impossible? A more natural representation of

prior information would allow at least some possibility of larger values and would not involve

a sharp drop-off in the probability at any fixed value. And how could we claim to have such

precise information about the supply elasticity but know nothing at all about the demand

elasticity? Posterior distributions for the elements of A are plotted as blue histograms in

Figure 3, with the bottom right panel displaying the implied posterior distribution for the

short-run price elasticity of oil demand. The underlying model would lead the researcher

to conclude that monthly demand is extremely sensitive to the current price, with a 60%

posterior probability that a 10% increase in price leads to more than a 20% drop in quantity

demanded within a single month.

In the following sections we review the literature on what we actually know and what we

don’t know about supply and demand elasticities.

3.3 Do we really know for certain that the oil supply elasticity is

less than 0.0258?

The online appendix to Kilian and Murphy (2012) justifies their 0.0258 bound on the supply

elasticity from the following reasoning. When Iraq invaded Kuwait in August of 1990 oil

production from both countries fell dramatically and the price went up 45.3%. But production

outside of Iraq and Kuwait increased 1.17% in August, suggesting a short-run supply elasticity

of 1.17/45.3 = 0.0258. Kilian and Murphy regarded this as an upper bound on what we might

expect in normal times due to excess capacity in 1990 and because “there was rare unanimity

among oil producers in 1990 that it was essential to offset market fears about a wider war in

the Middle East.”

Just prior to the invasion, on July 17 Iraq’s President Saddam Hussein had threatened

to use military force on Arab nations that did not curb oil production. Caldara, Cavallo,

and Iacoviello (2017) noted that the New York Times reported this threat with the headline,

“Iraq Threatens Emirates and Kuwait on Oil Glut.” Within a week, the United Arab Emi-

rates announced they would implement a significant cut in production, and indeed U.A.E.

production in August was 19.5% lower than in July. Oil production outside of Iraq, Kuwait,

3The dotted red lines were produced using the exact methodology of their paper, which is not the posterior
median from their model.
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and U.A.E. actually increased 1.95% in August, which would imply an elasticity of 1.95/45.3

= 0.043, almost twice the Kilian-Murphy estimate, once we acknowledge the effect of the

implicit military threat on U.A.E. production.

Caldara, Cavallo and Iacoviello further noted that August 1990 was but one of dozens of

historical episodes like this that could have been used for such calculations. Other examples

include strikes by Norwegian oil workers in 1986, attacks on Libyan oil fields in 2011, and

hurricanes disrupting Mexican production in 1995 and U.S. production in 2005 and 2008.

Estimating an average monthly supply elasticity for countries excluded from each episode

using instrumental variables, the authors came up with a short-run supply elasticity of 0.077

(three times the Kilian-Murphy upper bound) with a standard error of 0.037.

Figure 5 plots monthly production from Saudi Arabia in which one clearly sees high-

frequency adjustments to changing market conditions. In response to weaker demand during

the recession of 1981-82, the kingdom reduced production by 6 million barrels per day, im-

plementing by itself an 11% drop in total global production. The Saudis initiated another

production decrease of 1.6 mb/d in December 2000 (a few months before the U.S. recession

started in March of 2001) and only started to increase production in March of 2002 (four

months after the recession had ended). The 1.6 mb/d drop in Saudi production between

June 2008 and February 2009 was another clear response to market conditions in an effort

to stabilize prices. Equally dramatic in the graph are the rapid increases in Saudi produc-

tion beginning in August 1990 and January 2003 which were intended to offset some of the

anticipated lost production from Iraq associated with the two Gulf Wars.

Bjørnland, Nordvik and Rohrer (2017) analyzed monthly crude oil production from 15,000

individual wells in North Dakota over 1986 to 2015. They found producers varied both the

timing of completion of new wells as well as production flows from existing wells in response

to monthly changes in spot and futures prices, consistent with a short-run supply elasticity as

high as 0.2 for some shale producers.

3.4 Do we really know nothing about the elasticity of demand?

Hundreds of studies have looked at the price elasticity of oil demand using all kinds of different

data sources and methods. Studies using cross-section data include Hausman and Newey’s

(1995) estimate from a cross-section of U.S. households of a long-run price elasticity of gasoline

demand of −0.81 and Yatchew and No’s (2001) estimate of −0.9 from a cross-section of

Canadian households. Figure 6 displays some cross-country evidence, comparing petroleum

use per dollar of GDP with the price of gasoline for 23 OECD countries.4 The relative price of

4Data for the price of gasoline and real GDP are from worldbank.org and data for petroleum consumption
are from the EIA’s Monthly Energy Review (Table 11.2). Countries included are Australia, Austria, Belgium,
Canada, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Japan, the Netherlands, New
Zealand, Norway, Portugal, South Korea, Spain, Sweden, Switzerland, the United Kingdom and the United
States.

11



gasoline differs substantially across countries primarily due to differences in taxes. Residents

in countries with higher taxes use petroleum less, a finding that is well documented in the

literature.5 The regression line in the first panel of Figure 6 implies an absolute value for the

demand elasticity of 0.51 with a standard error of 0.23, statistically significantly greater than

zero and less than one. Since tax differentials tend to be stable over time, this coefficient is

usually interpreted as a long-run demand elasticity. For example, one obtains virtually the

same regression if 2004 consumption is regressed on 2000 prices, as seen in the second panel

of Figure 6.

Dahl and Sterner (1991) surveyed 296 different estimates of the long-run price elasticity

of gasoline demand based on cross-section, time-series, and panel data, and found an average

value of −0.86. Espey’s (1998) literature review came up with −0.58; Graham and Glaister

(2004) settled on −0.77, while Brons et al. (2008) proposed −0.84. Insofar as taxes and

refining costs are a significant component of the user cost for refined products, a 10% increase

in the price of crude petroleum should result in a less than 10% increase in the retail price of

gasoline, meaning that the price elasticity of demand for crude oil should be less than that for

gasoline.

And there is no doubt that the short-run elasticity is significantly less than the long run.

For example, it takes more than a decade for the stock of automobiles to turn over. Dahl and

Sterner’s (1991) survey found an average short-run elasticity of −0.26. Hughes, Knittel and
Sperling (2008) used exogenous petroleum supply disruptions as an instrument to conclude

that the short-run gasoline price elasticity was below 0.08 in absolute value for U.S. data over

2001-2006. Gelman et al. (2017) estimated a short-run elasticity of −0.22 with a standard
error of 0.05 from observations on individual financial transactions of a half million consumers,

while Coglianese et al. (2017) used state tax changes as an instrument to arrive at an estimate

of −0.37 with a standard error of 0.24.
We conclude that short-run oil demand elasticities above two in absolute value, such as

were implied by the bottom right panels in Figures 2 and 3, are highly implausible.

4 Inventories and measurement error.

Kilian and Murphy (2014) noted that another important factor in interpreting short-run co-

movements of quantities and prices is the behavior of inventories. Increased oil production

in month t does not have to be consumed that month but might instead go into inventories:

QS
t −QD

t = ∆I∗t .

5See for example Darmstadter, Dunkerly, and Alterman (1977), Drollas (1984), and Davis (2014).
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Here QD
t is the quantity of oil demanded globally in month t, QS

t is the quantity produced,

and ∆I∗t is the true change in global inventories. We append a * to the latter magnitude

in recognition of the fact that we have only imperfect observations on this quantity, the

implications of which we will discuss below.

Let qt = 100 ln(Qt/Qt−1) denote the observed monthly growth rate of production. We can

then approximate the growth in consumption demand as qt−∆i∗t for ∆i
∗
t = 100∆I∗t /Qt−1.We

are thus led to consider the following generalization of the system considered in Section 3.2:

qt = αqppt + b
′
1xt−1 + u∗1t (27)

yt = αyppt + b
′
2xt−1 + u∗2t (28)

qt = βqyyt + βqppt +∆i∗t + b
′
3xt−1 + u∗3t (29)

∆i∗t = ψ∗1qt + ψ∗2yt + ψ∗3pt + b
∗′
4 xt−1 + u∗4t. (30)

Here u∗1t, u
∗
2t, and u∗3t as before represent shocks to oil supply, economic activity, and oil-

specific demand, with the modification to equation (29) acknowledging that oil produced but

not consumed in the current period goes into inventories. The shock u∗4t in (30) represents

a separate shock to inventory demand, which has sometimes been described as a “speculative

demand shock” in the literature.6

As noted above, we do not have good data on global oil inventories. We can construct an

estimate of crude oil inventories for OECD countries as in Kilian and Murphy (2014, footnote

6); for details see Appendix C. There are multiple sources of error in this estimate: (1) there

are no data on OECD crude oil inventories, and so the series is extrapolated from OECD

petroleum product inventories; (2) there are no data even for OECD product inventories

before 1988, requiring numbers for this earlier period to be further extrapolated from the

growth rate of U.S. petroleum product inventories; (3) OECD petroleum product consumption

only accounts for 60% of world petroleum product consumption on average over 1992-2015,

so even if we had an accurate measure of OECD crude inventories, it likely represents little

more than half of the world total. We represent the fact that these numbers are an imperfect

estimate of the true magnitude through a measurement-error equation

∆it = χ∆i∗t + et (31)

where ∆it denotes our estimate of the change in OECD crude-oil inventories as a percent

of the previous month’s world production, χ < 1 is a parameter representing the fact that

OECD inventories are only part of the world total, and et reflects measurement error which

6Our specification assumes that inventories only matter for production through their effect on price. In
practice, production and inventory decisions are typically made by different agents, the former being crude oil
producers and the latter oil refiners.
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we assume to be serially uncorrelated and uncorrelated with u∗t .
7 Although the problem of

having imperfect measurements on key variables is endemic in macroeconomics, it has been

virtually ignored in most of the large literature on structural vector autoregressions because

it was not clear how to allow for it using traditional methods.8 However, it is straightforward

to incorporate measurement error in our Bayesian framework, as we now demonstrate.

We can use (31) to rewrite (29) and (30) in terms of observables:

qt = βqyyt + βqppt + χ−1∆it + b
′
3xt−1 + u∗3t − χ−1et (32)

∆it = ψ1qt + ψ2yt + ψ3pt + b
′
4xt−1 + χu∗4t + et (33)

where ψj = χψ∗j for j = 1, 2, 3. Equations (27), (28), (32), and (33) will be recognized as a

system of the form

Ãyt = B̃xt−1 + ũt (34)

yt = (qt, yt, pt,∆it)
′

Ã =






1 0 −αqp 0

0 1 −αyp 0

1 −βqy −βqp −χ−1
−ψ1 −ψ2 −ψ3 1






(35)

ũt =






u∗1t
u∗2t

u∗3t − χ−1et

χu∗4t + et





. (36)

Note that although we have explicitly modeled the role of measurement error in con-

tributing to contemporaneous correlations among the variables, we have greatly simplified the

analysis by specifying the lagged dynamics of the structural system directly in terms of the

observed variables. That is, we are defining xt−1 in (27)-(30) to be based on lags of ∆it−j

rather than ∆i∗t−j .

The residuals ũ3t and ũ4t in (34) are contemporaneously correlated. We show in Appendix

D that by premultiplying (34) by the matrix Γ in expression (48), we can transform it into a

representation of the form of (1), in which the shocks are uncorrelated. The matrix Γ is a

7One could consider further generalizing this specification to allow for serial correlation in the measurement
error.

8Notable exceptions are Cogley and Sargent (2015) who allowed for measurement error using a state-space
model and Amir-Ahmadi, Matthes, and Wang (2017) who identified measurement error from the difference
between preliminary and revised data.
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function of ρ, the negative of a coefficient from a regression of ũ4t on ũ3t:

ρ =
χ−1σ2e

d∗33 + χ−2σ2e
. (37)

For the transformed system we can generate draws for the parameters A,D,B in (1) using

the algorithm described in Appendix B.

From these we can then go back and calculate the values of Ã, D̃, B̃ for the parameters in

(34) to make structural inference. To calculate structural impulse-response functions, note

that premultiplying (34) by Ã−1 puts the system in the reduced form (15) with ǫt = Ã−1ũt.

Thus
∂yt+s

∂ũ′t
=
∂yt+s

∂ǫ′t

∂ǫt
∂ũ′t

= ΨsÃ
−1 (38)

for Ψs the nonorthogonalized impulse-response function in (18). From (36) we further know

that

∂ũt

∂u∗′t
=






1 0 0 0 0

0 1 0 0 0

0 0 1 0 −χ−1
0 0 0 χ 1





= Ξ

∂yt+s

∂u∗′t
= ΨsÃ

−1Ξ = H∗
s (39)

for u∗t = (u∗1t, u
∗
2t, u

∗
3t, u

∗
4t, et)

′.

For purposes of calculating a historical decomposition, conditional on a draw of the pa-

rameters, ũt can be uncovered from (34) as ũt = Ãyt − B̃xt−1. However, observation of

the four elements of ũt is not enough to know the value of the five shocks u
∗
1t, u

∗
2t, u

∗
3t, u

∗
4t, et.

Nevertheless, we can form an optimal estimate of those 5 magnitudes for each historical date

t. This gives us an estimate of the contribution of each of the five shocks to the observed

historical values for YT . Again see Appendix D for details.

5 Bayesian analysis of the shocks to oil supply and de-

mand.

In addition to making use of the prior information about price elasticities reviewed in Sections

3.3 and 3.4, we propose to use prior information about coefficients involving the economic

activity measure yt. For this purpose it is very helpful to use a more conventional measure of

economic activity in place of the proxy based on shipping costs that was used in Kilian (2009)

and Kilian and Murphy (2012, 2014). Among other benefits this allows us to draw directly

on information about income elasticities from previous studies. We developed an extended

version of the OECD’s index of monthly industrial production in the OECD and 6 major other
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countries as described in Appendix C. The countries included in our index account for 79%

of world petroleum product consumption and 75% of the IMF WEO estimate of global GDP.

Of course, even more important than having good prior information is having more data.

Kilian (2009) and Kilian and Murphy (2012, 2014) used the refiner acquisition cost as the

measure of crude oil prices. Their series begins in January 1973. Taking differences and

including 24 lags means that the first value for the dependent variable in their regressions is

February 1975. Thus their analysis makes no use of the important economic responses in

1973 and 1974 to the large oil price increases at the time, nor any earlier observations.

Kilian and Vigfusson (2011) argued that use of the older data is inappropriate since struc-

tural relations may have changed over time, suggesting that this is a reason to ignore the

earlier data altogether. Moreover, their preferred oil price measure (U.S. refiner acquisition

cost, or RAC) is not available before 1974, which might seem to make use of earlier data

infeasible. Here again the Bayesian approach offers a compelling advantage, in that we can

use results obtained from estimating the model using earlier data for the price of West Texas

Intermediate (WTI) as a prior for the analysis of the subsequent RAC data, putting as much

or as little weight as desired on the earlier data set. We describe how this can be done below.

5.1 Informative priors for structural parameters.

This section discusses the prior information used in our structural analysis.

5.1.1 Priors for A.

The discussion in Sections 3.3 and 3.4 leads us to conclude that the absolute values of the

short-run demand elasticity βqp and the short-run supply elasticity αqp are unlikely to be much

bigger than 0.5. We represent this with a prior for βqp that is a Student t(c
β
qp, σ

β
qp, ν

β
qp) with

mode at cβqp = −0.1, scale parameter σβ
qp = 0.2, νβqp = 3 degrees of freedom, and truncated to

be negative. This allows a 10% probability that βqp < −0.5. Our prior for αqp is Student

t(cαqp, σ
α
qp, ν

α
qp) with mode at c

α
qp = 0.1, scale parameter σα

qp = 0.2, ναqp = 3 degrees of freedom,

and truncated to be positive. These along with our other priors are summarized in Table 1

and displayed as the red curves in Figure 7. Appendix F provides additional demonstration

that these are relatively weak priors that are perfectly consistent with values for the supply

elasticity as low as those maintained by Kilian and Murphy (2012, 2014), but also allow the

possibility of a supply elasticity greater than 0.0258.

Because we use a conventional measure of industrial production we are able to make use

of other evidence about the income elasticity of oil demand. Gately and Huntington (2002)

reported a nearly linear relationship between log income and log oil demand in developing

countries with elasticities ranging between 0.7 and 1, but smaller income elasticities in indus-

trialized countries with values between 0.4 and 0.5. For oil-exporting countries they found
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an income elasticity closer to 1. Csereklyei, Rubio, and Stern (2016) found that the income

elasticity of energy demand is remarkably stable across countries and across time at a value of

around 0.7. For our prior for βqy we use a Student t density with mode at 0.7, scale parameter

0.2, 3 degrees of freedom, and truncated to be positive.

We expect the effect of oil prices on economic activity αyp to be small given the small

dollar share of crude oil expenditures compared to total GDP (see for example the discussion

in Hamilton, 2013). We represent this with a Student t distribution with mode −0.05, scale
0.1, 3 degrees of freedom, and truncated to be negative.

The parameter χ reflects the fraction of total world inventories that are held in OECD

countries. Since OECD countries account for around 60% of world petroleum consumption

on average over our sample period, a natural expectation is that they also account for about

60% of global inventory. Since χ is necessarily a fraction between 0 and 1, we use a Beta

distribution with parameters αχ = 15 and βχ = 10, which has mean 0.6 and standard deviation

of about 0.1.

For the parameters of the inventory equation, we assume that inventories depend on income

only through the effects of income on quantity or price. This allows us to set ψ2 = 0 to help

with identification. We use relatively uninformative priors for the other coefficients, taking

both ψ1 and ψ3 to be unrestricted Student t centered at 0 with scale parameter 0.5, and 3

degrees of freedom.

The parameter ρ in (37) captures the importance of inventory measurement error and is

between 0 and χ by construction.9 We accordingly use a prior for ρ conditional on χ that is

χ times a Beta-distributed variable with parameters αρ = 3 and βρ = 9, which has a mean of

0.25χ and standard deviation of 0.12χ.

We can also make use of prior information about the likely equilibrium impacts of various

shocks, which amount to prior beliefs about how the various elements of A may be related.

From (38) and (35) the equilibrium impacts of structural shocks are given by the matrix

∂yt

∂ũ′t
= Ã−1 =

1

det(Ã)
C

C =






−ψ3χ−1 − αypβqy − βqp αqpβqy αqp αqpχ
−1

αyp(ψ1χ
−1 − 1) χ−1(−αqpψ1 − ψ3) + (αqp − βqp) αyp αypχ

−1

ψ1χ
−1 − 1 βqy 1 χ−1

−ψ1(αypβqy + βqp)− ψ3 βqy(αqpψ1 + ψ3) αqpψ1 + ψ3 αqp − αypβqy − βqp






(40)

det(Ã) =χ−1(−αqpψ1 − ψ3) + (αqp − αypβqy − βqp).

9To see this, divide (37) by χ to verify that ρ/χ = χ−2σ2e/(d
∗

33 + χ
−2σ2e) < 1.
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Unless the determinant is restricted to be positive, all shocks could have either positive

or negative effects on any variable. We could put as much or as little weight as we like

on the prior belief that h1 = det(Ã) > 0 using the asymmetric t distribution introduced by

Baumeister and Hamilton (forthcoming):

p(h1) = k1σ
−1
1 φ̃v1((h1 − µ1)/σ1)Φ(λ1h1/σ1). (41)

Here φ̃v1(x) denotes the probability density function of a standard Student t variable with ν1

degrees of freedom evaluated at the point x, Φ(x) is the cumulative distribution function for a

standard N(0, 1) variable, and k1 is a constant to make the density integrate to unity
10. The

parameter λ1 governs how strongly the distribution of h1 is skewed to be positive. When

λ1 = 0 the density (41) is a symmetric Student t(µ1, σ1, ν1) distribution, while when λ1 →∞
it becomes a Student t distribution truncated to be positive. To determine the location

parameter µ1, we generated 50,000 draws for θA = (αqp, αyp, βqy, βqp, χ, ψ1, ψ3, ρ)
′ from the

densities described in Table 1 and used the average value across these draws to obtain µ1 = 0.6.

We set σ1 = 1.6, the standard deviation of det(Ã) across these draws. Setting λ1 = 2 and

ν1 = 3 associates a 91.2% prior probability to det(Ã) > 0. This prior distribution for h1 is

plotted in red in the (2,4) panel in Figure 7.

Even if det(Ã) > 0 and the other restrictions we have used are all imposed, the signs of

some elements of the impact matrix Ã−1 are still ambiguous:

Ã−1 =






? + + +

? ? − −
? + + +

? ? ? +





.

These ambiguities arise from equilibrium feedback effects. For example, from (40) the (2,2)

element of Ã−1 can be written as

h2 =
det(Ã)+αypβqy

det(Ã)
.

If oil demand increases sufficiently much in response to higher economic activity (βqy large)

and higher oil prices depress economic activity sufficiently much (αyp a big negative number),

it is possible in principle for h2 to be a negative number. We can represent a belief that these

feedback effects are modest with a prior for h2 that is a symmetric Student t distribution with

µ2 = 0.8, σ2 = 0.2, and ν2 = 3, which imply a 98.6% prior probability that h2 > 0.

10We don’t need to know the value of k1 for purposes of the algorithm described in Appendix B.
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We thus use the prior

p(θA) ∝ p(αqp)p(αyp)p(βqy)p(βqp)p(χ)p(ψ1)p(ψ3)p(ρ|χ)p(h1(θA))p(h2(θA)) (42)

which gives the numerical value for p(A) used in the numerator of (12) that is associated with

any proposed value for θA. Odd-numbered columns of Table 2 report the prior probabilities

implied by (42) that the equilibrium impact of any given shock on any given variable is positive.

Our priors also imply probable signs for the effects s periods after a given shock based on

the dynamics incorporated in the prior p(B|A,D) described below. More persistence in B

implies more persistence in the effects of shocks.

5.1.2 Priors for D given A.

Our priors for the reciprocals of the structural variances are independent Gamma distributions,

d−1ii |A ∼ Γ(κi, τi(A)), that reflect the scale of the data as measured by the standard deviation

of 12th-order univariate autoregressions fit to the 4 elements of yt over t = 1, ..., T1 for T1

the number of observations in the earlier sample. Letting Ŝ denote the estimated variance-

covariance matrix of these univariate residuals, we set κi = 2 (which give the priors a weight

of about 4 observations in the first subsample) and τi(A) = κia
′
iŜai where a

′
i denotes the ith

row of A.

5.1.3 Priors for B given A and D.

Our priors for the lagged coefficients in the ith structural equation are independent Normals,

bi|A,D ∼ N(mi, diiM). Our prior expectation is that changes in oil production, economic

activity, oil prices, and inventories are all hard to forecast, meaning our prior expected value

for most coefficients is mi = 0 for i = 1, ..., 4. We allow for the possibility that the 1-period-

lag response of supply or demand to a price increase could be similar to the contemporaneous

magnitudes, and for this reason set the third element of m1 to +0.1 and the third element of

m3 to −0.1; this gives us a little more information to try to distinguish supply and demand
shocks. All other elements ofm1, ...,m4 are set to zero. ForM, which governs the variances

of these priors, we follow Doan, Litterman and Sims (1984) in having more confidence that

coefficients on higher lags are zero. We implement this by setting diagonal elements ofM to

the values specified in equation (44) and other elements ofM to zero, as detailed in Appendix

A. For our baseline analysis, we use a value of λ0 = 0.5 to control the overall informativeness

of these priors on lagged coefficients, which amounts to weighting the prior on the lag-one

coefficients equal to about 2 observations.
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5.1.4 Using observations from an earlier sample to further inform the prior.

We propose to use observations over 1958:M1 to 1975:M1 to further inform our prior. One

reason to do this is the response of the world economy to the OAPEC oil embargo imposed in

October 1973 is surely useful information for purposes of estimating the economic consequences

of oil supply disruptions. And even if one knew for certain that structural parameters changed

at some known date, it typically is optimal nonetheless to use down-weighted pre-break data

for inference about the post-break parameters; see for example Pesaran and Timmermann

(2007) and Pesaran, Pick and Pranovich (2013).

The observation vector yt for date t in this first sample consists of the growth rate of world

oil production, growth rate of OECD+6 industrial production, growth rate of WTI, and change

in estimated OECD inventories as a percent of the previous month’s oil production. We have

T1 observations in the first sample for this (n× 1) vector {yt}T1t=1 and associated (nm+1× 1)

vector {xt−1}T1t=1 containing m = 12 lagged values of y and the constant term. For the

second sample (1975:M2 to 2016:M12) we use the percent change in the refiner acquisition

cost (RAC) for the third element of yt for which we have observations {yt,xt−1}T1+T2
t=T1+1

. Denote

the observations for the first sample byY(1) and those for the second sample byY(2) and collect

all the unknown elements of A, D, and B in a vector λ.

If we regarded both samples as equally informative about λ we could simply collect all the

data in a single sample YT = {Y(1),Y(2)} and apply our method directly to find p(λ|YT ).

This would be numerically identical to using our method to find the posterior distribution from

the first sample alone p(λ|Y(1)) and then using this distribution as the prior for analyzing the

second sample (see Appendix E for demonstration of this and subsequent claims). We propose

instead to use as a prior for the second sample an inference that downweights the influence

of the first-sample data Y(1) by a factor 0 ≤ µ ≤ 1. When µ = 1 the observations in the

first sample are regarded as equally important as those in the second, while when µ = 0 the

first sample is completely discarded. Our baseline analysis below sets µ = 0.5, which regards

observations in the first sample as only half as informative as those in the second.

Implementing this procedure requires a simple modification of the procedure described in

Section 2.2. We replace equations (8), (9) and (5) with

Ỹi(A)
(T1+T2+k)×1

= (
√
µy′1ai, ...,

√
µy′T1ai,y

′
T1+1

ai, ...,y
′
T1+T2

ai,mi
′P)′

X̃
(T1+T2+k)×k

=
� √

µx0 · · · √
µxT1−1 xT1 · · · x′T1+T2−1

P

�′

κ∗i = κi + (µT1 + T2)/2

for P the matrix whose diagonal elements are reciprocals of the square roots of (44). We then
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calculate τ ∗i (A) and ζ∗i (A) using expressions (6) and (7) and replace (12) and (13) with

p(A|YT ) =
kTp(A)[det(AΩ̃TA

′)](µT1+T2)/2

�n
i=1[2τ

∗
i (A)/(µT1 + T2)]κ

∗

i

�n
i=1τi(A)κi

Ω̃T = (µT1 + T2)
−1(µζ(1) + ζ(2))

ζ(1) =
�T1

t=1yty
′
t −
��T1

t=1ytx
′
t−1

���T1
t=1xt−1x

′
t−1

�−1 ��T1
t=1xt−1y

′
t

�

ζ(2) =
�T2

t=T1+1
yty

′
t −
��T2

t=T1+1
ytx

′
t−1

���T2
t=T1+1

xt−1x
′
t−1

�−1 ��T2
t=T1+1

xt−1y
′
t

�
.

For example, if we put zero weight on the Minnesota prior for the lagged structural coef-

ficients (P = 0) this would amount to using as a prior for the second sample

bi|A,D ∼ N(a′iΦ̂
(1), µ−1diiM

(1))

Φ̂(1) =
��T1

t=1ytx
′
t−1

���T1
t=1xt−1x

′
t−1

�−1

M(1) =
��T1

t=1xt−1x
′
t−1

�−1
.

Thus the mean for the prior used to analyze the second sample (a′iΦ̂
(1)) would be the coefficient

from an OLS regression on the first sample. When µ = 1 our confidence in this prior comes

from the variance of the OLS regression estimate (diiM
(1)), but the variance increases as µ

decreases. As µ approaches 0 the variance of the prior goes to infinity and the information

in the first sample would be completely ignored.

Likewise with no information about the structural variances other than the estimates from

the first sample (κ = τ = 0), the prior for the structural variances that we would use for the

second sample would be

d−1ii |A ∼ Γ(µT1, µ(a
′
iζ
(1)ai)).

Again the mean of this distribution is the first-sample OLS estimate (T1/(a
′
iζ
(1)ai)) but the

variance goes to infinity as µ→ 0.

5.2 Empirical results.

The solid red curves in Figure 7 denote different components of the prior information about the

contemporaneous coefficients in A on which our analysis draws. The posterior distributions

with pre-1975 observations downweighted by µ = 0.5 are reported as blue histograms.11

The posterior median of the short-run price elasticity of oil supply, αqp, is 0.15, a little

above Caldara, Cavallo and Iacoviello’s (2017) estimate of 0.11. Values less than 0.05 or

11Data and code to replicate these results are available at https://sites.google.com/site/cjsbaumeister/
BH2_code_web.zip.
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greater than 0.5 are substantially less plausible after seeing the data than anticipated by our

prior. The posterior median of the short-run price elasticity of oil demand, βqp, is −0.35,
significantly more elastic than anticipated by our prior. Values for these and several other

magnitudes of interest are reported in column 1 of Table 3.

Posterior structural impulse-response functions are plotted in Figure 8.12 An oil supply

shock (first row) lowers oil production and raises oil price on impact, whereas a shock to oil

consumption demand (third row) raises production and raises price. An oil supply shock

also leads to a decline in economic activity. The effect on impact is practically zero (see the

(1,2) panel of Figure 7), but accumulates over time (the (1,2) panel of Figure 8), a conclusion

consistent with a large number of studies going back to Hamilton (1983). Our estimates imply

that a reduction in oil production that raises the oil price by 10% would lower world economic

activity by 0.5% after a year. By contrast, if oil prices rise as a consequence of a shock to

consumption demand, there seems to be no effect on subsequent economic activity. A similar

conclusion was reached by Kilian (2009) and Kilian and Murphy (2012, 2014), though it is

a little harder to interpret the finding in their exercise due to the indirect nature of their

proxy for world economic activity. An increase in oil prices that results from an increase

in inventory demand alone, which has sometimes been described as a speculative demand

shock, seems to have a persistent effect on both inventories and prices and a negative effect

on economic activity as well.

Figure 9 shows the historical decomposition of oil price movements along with 95% credi-

bility regions.13 Column 3 of Table 4 summarizes the contribution of supply shocks to several

historical episodes of interest. Whereas Kilian (2009) and Kilian and Murphy (2012) con-

cluded that the supply disruptions associated with the First Persian Gulf War played little

direct role in the price increase, we find supply and demand shocks to have been equally

important in this episode; a similar conclusion was reached by Kilian and Murphy (2014).14

We also find that accumulated supply shocks over 2007-2008 (showing up as an unexpected

stagnation in global oil production) also accounted for much of the oil price run-up over that

period, consistent with the analysis in Hamilton (2009), but in contrast to the conclusion in

Kilian and Murphy (2012, 2014). We find supply shocks were less than half the story behind

the oil price collapse in 2014-2016. That finding differs from that of Baffes et al. (2015) but

is consistent with the conclusions of Hamilton (2015) and Baumeister and Kilian (2016). Our

estimates attribute most of the oil price rebound in 2016 to strong demand.

The results in the last panel of Figure 9 suggest that inventory demand shocks have played

12Note following standard practice these are accumulated impulse-response functions, plotting elements of
(H∗

0 +H
∗

1 + · · ·+H∗

s) as a function of s where H
∗

s is given in (39). For example, panel (1,3) shows the effect
on the level of oil prices s periods after an oil supply shock.
13The figure plots the contribution of the current and s = 100 previous structural shocks to the value of yt

for each date t plotted.
14For further discussion of the similarities and differences between our methods and conclusions from those

in Kilian and Murphy (2014), see Baumeister and Hamilton (2017).
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a much smaller role in price fluctuations than implied by the analysis in Kilian and Murphy

(2012, 2014) and Juvenal and Petrella (2014). One reason we reach a different conclusion

from these earlier researchers is our allowance for the possibility that the measure of world

inventories contains a lot of error. The posterior median of σ2e is 0.99,
15 which is a sizeable

fraction of the total variance of the reduced-form VAR forecast of observed inventory changes

(ω̂44 = 1.06).16

Our overall conclusion is that speculation is less important, and shocks to fundamentals, in

particular, shocks to supply, were more important, than was found in several previous studies.

6 Sensitivity analysis.

The above results achieved partial identification by drawing on a large number of different

sources of information. One benefit of using multiple sources is that we can examine the

effects of putting less weight on any particular components of the prior to see how it affects

the results.

Table 3 presents the posterior median and posterior 68% credibility sets for some of the

magnitudes of interest when we weaken different components of the prior. The first column

presents results from the baseline specification that were just summarized. Panels A and B

report inference about the short-run supply elasticity αqp and demand elasticity βqp. Panel

C looks at the response of economic activity 12 months after a supply shock, panel D the

response to an oil consumption demand shock, and panel E the response to an inventory

demand shock, with each shock normalized for purposes of the table as an event that leads to

a 10% increase in the real oil price at time 0. Note that this is a different normalization from

that used in Figure 8, where the effect plotted was that of a one-unit change in the structural

shock ∂yi,t+s/∂u
∗
jt.

Table 4 reports a few summary statistics for the historical decomposition. Column 2

reports the actual cumulative magnitude of the oil price change (as measured by the refiner

acquisition cost) in four important episodes in the sample. Column 3 reports the posterior

median and 68% credibility sets for the predicted change over that interval if the only structural

shocks had come from the oil supply equation as inferred using the baseline prior.17

We next explored the consequences of using a much weaker prior for the short-run supply

and demand elasticities, replacing the scale parameters σα
qp = σβ

qp = 0.2 that were used in the

baseline analysis with the alternative values σα
qp = σβ

qp = 1.0. This change gives the prior

15We used equations (55) and (50) to calculate the value of σ2e = ρχd33 associated with each draw of θA.
16Nor is it the case that our implied measurement error is imputed to have any significant effects. The

share of the 4 price movements in Table 4 attributed to measurement error shocks from equation (61) is 4.7%,
1.4%, 3.1%, and 1.7%, respectively.
17Let pt denote the 100 times the change in log oil price in month t (the dotted line in the top panel of Figure

9) and p̂t1 the value of the solid line for that date. The number reported in column 2 is pt0 + pt0+1+ · · ·+ pt1
for t0 = July 1990 and t1 = October 1990. The number reported in column 3 is p̂t0,1 + p̂t0+1,1 + · · ·+ p̂t1,1.
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for these two parameters a variance that is 25 times larger than in the baseline specification,

with the result that prior information about these parameters is allowed to have very little

influence on any of our conclusions. The implications of these changes for inference about

key magnitudes are reported in column 2 of Table 3. If we had very little prior information

about the elasticities themselves, we would tend to infer a slightly smaller short-run supply

elasticity (panel A) and more elastic demand (panel B). Our core conclusions about impulse

responses (panels C-E) do not change.

We also considered a prior that puts a heavy weight on the view of Kilian and Murphy

(2012, 2014) that the short-run supply elasticity should be less than 0.0258, using the following

prior for αqp:

p(αqp) =






θk
0.0258

+ (1−θk)φ̃3((αqp−0.1)/0.2)

1−Φ̃3(0−.1/0.2)
if αqp ≤ 0.0258

(1−θk)φ̃3((αqp−0.1)/0.2)

1−Φ̃3(−0.1/0.2)
if αqp > 0.0258

for φ̃3(.) and Φ̃3(.) the probability density and cumulative probability, respectively, for a

standard Student t distribution with 3 degrees of freedom. This would correspond to the

prior beliefs of someone who thought there was a probability θk that the Kilian-Murphy prior

was the correct one to use and a probability 1− θk that our baseline prior was the correct one
to use. Column 3 of Table 3 and column 5 of Table 4 report the results when θk = 0.8, that

is, a prior belief that heavily favors the Kilian-Murphy specification. We obtain results that

are very similar to those in our baseline case.

Our prior beliefs about the role of measurement error were represented by the Beta(αχ, βχ)

distribution for χ (which summarizes the ratio of OECD inventories to world total) and χ times

a Beta(αρ, βρ) variable for ρ (which summarizes the component of the correlation between price

and inventory changes that is attributed to measurement error). Our baseline specification

used αχ = 15, βχ = 10, αρ = 3, βρ = 9, which imply standard deviations for the priors of 0.1

and 0.12χ, respectively. In our less informative alternative specification we take αχ = 1.5,

βχ = 1, αρ = 1, βρ = 3, whose standard deviations are 0.26 and 0.19χ, respectively. The

implications of this weaker prior about the role of measurement error are reported in column

4 of Table 3 and column 6 of Table 4. These results are virtually identical to those for our

baseline specification.

Next we examined the consequences of paying less attention to data prior to 1975. Our

baseline specification set µ = 0.5, which gives pre-1975 data half the weight of the more recent

data. Our less informative alternative uses µ = 0.25, thus regarding the earlier data as only

1/4 as important as the more recent numbers. The inferences differ only slightly from those

under our baseline specification.

The role of prior information about lagged structural coefficients bi is summarized by the

value of λ0 in (44). An increase in λ0 increases the variance on all the priors involving the

lagged coefficients. Our baseline specification took λ0 = 0.5, whereas the weaker value of
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λ0 = 1 (which implies a variance 4 times as large) was used in column 5 of Table 3 and column

7 of Table 4. This has only a modest effect on any of the inferences.

Finally, in making use of the historical data we relied on WTI prices prior to 1975, since

the refiner acquisition cost is unavailable. But our baseline analysis nevertheless used RAC as

the oil price measure since 1975. An alternative is to use WTI for both samples. Column 9

of Table 4 reports the measured size of the oil price change recorded by WTI in four episodes

of interest. The two oil prices can give quite different answers for the size of the move in any

given month. Nevertheless, the inference about key model parameters (column 7 of Table 3)

is the same regardless of which measure we use.

7 Conclusion.

Prior information has played a key role in any structural analysis of vector autoregressions.

Typically prior information has been treated as “all or nothing,” which from a Bayesian per-

spective would be described as either dogmatic priors (details that the analyst claims to know

with certainty before seeing the data) or completely uninformative priors. In this paper we

noted that there is vast middle ground between these two extremes. We advocate that analysts

should both relax the dogmatic priors, acknowledging that we have some uncertainty about

the identifying assumptions themselves, and strengthen the uninformative priors, drawing on

whatever information may be known outside of the data set being analyzed.

We illustrated these concepts by revisiting the role of supply and demand shocks in the oil

market. We demonstrated how previous studies can be viewed as a special case of Bayesian

inference and proposed a generalization that draws on a rich set of information beyond the

data being analyzed while simultaneously relaxing some of the dogmatic priors implicit in

traditional identification. Notwithstanding, we end up confirming some of the core conclusions

of earlier studies. A key difference from earlier analyses is that supply shocks appear to be

more important and speculative demand shocks less important than found by some earlier

researchers. We find that oil price increases that result from supply shocks lead to a reduction

in economic activity after a significant lag, whereas price increases that result from increases

in oil consumption demand do not have a significant effect on economic activity. We also

examined the sensitivity of our results to the priors used, and found that many of the key

conclusions change very little when substantially less weight is placed on various components

of the prior information.
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Appendix

A. Reference priors for D and B.
Prior for D|A. Prior beliefs about structural variances should reflect in part the scale of

the underlying data. Let êit denote the residual of an mth-order univariate autoregression fit

to series i and Ŝ the sample variance matrix of these univariate residuals (sij = T−1
�T

t=1êitêjt).

Baumeister and Hamilton (2015) proposed setting κi/τi (the prior mean for d
−1
ii ) equal to the

reciprocal of the ith diagonal element of AŜA
′
; in other words, τi(A) = κia

′
iŜai. Given

equation (5), the prior carries a weight equivalent to 2κi observations of data; for example,

setting κi = 2 would give the prior as much weight as 4 observations.

Prior for B|A,D. A standard prior for many data sets suggested by Doan, Litterman and
Sims (1984) is that individual series behave like random walks. Baumeister and Hamilton

(2015, equation 45) adapted Sims and Zha’s (1998) method for representing this in terms of

a particular specification for mi(A). For other data sets, such as the one analyzed in Section

5, a more natural prior is that series behave like white noise (mi = 0). For either case, we

recommend following Doan, Litterman and Sims (1984) in placing greater confidence in our

expectation that coefficients on higher lags are zero, implemented by using smaller values for

the diagonal elements forMi associated with higher lags. Define

v′1
(1×m)

=
�
1/(12λ1

�
, 1/(22λ1), ..., 1/(m2λ1)) (43)

v′2
(1×n)

= (s−111 , s
−1
22 , ..., s

−1
nn)

′
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v3 = λ20

�
v1 ⊗ v2
λ23

�

. (44)

ThenMi is taken to be a diagonal matrix whose (r, r) element is the rth element of v3:

Mi,rr = v3r. (45)

Here λ0 summarizes the overall confidence in the prior (with smaller λ0 corresponding to

greater weight given to the prior), λ1 governs how much more confident we are that higher

coefficients are zero (with a value of λ1 = 0 giving all lags equal weight), and λ3 is a separate

parameter governing the tightness of the prior for the constant term, with all λk ≥ 0.

Doan (2013) discussed possible values for these parameters. For the baseline specification

in Section 5 we set λ1 = 1 (which governs how quickly the prior for lagged coefficients tightens

to zero as the lag ℓ increases), λ3 = 100 (which makes the prior on the constant term essentially

irrelevant), and set λ0, the parameter controlling the overall tightness of the prior, to 0.5.

B. Details of Bayesian algorithm.
For any numerical value of A we can calculate ζ∗i (A) and τ ∗i (A) using equations (7) and

(6) from which we can calculate the log of the target

q(A) = log(p(A)) + (T/2) log
�
det
�
AΩ̂TA

′
��

(46)

−�n
i=1κ

∗
i log[(2/T )τ

∗
i (A)] +

�n
i=1κi log τi(A).

We can improve the efficiency of the algorithm by using information about the shape of this

function calculated as follows. Collect elements of A that are not known with certainty in an

(nα× 1) vector α, and find the value α̂ that maximizes (46) numerically. This value α̂ offers

a reasonable guess for the posterior mean of α, while the matrix of second derivatives (again

obtained numerically) gives an idea of the curvature of the posterior distribution:

Λ̂ = −∂
2q(A(α))

∂α∂α′

����
α=α̂

.

We then use this guess to inform a random-walk Metropolis Hastings algorithm to generate

candidate draws of α from the posterior distribution, as follows. As a result of step ℓ we have

generated a value of α(ℓ). For step ℓ+ 1 we generate

α̃(ℓ+1) = α(ℓ) + ξ
�
Q̂−1

�′
vt

for vt an (nα × 1) vector of Student t variables with 2 degrees of freedom, Q̂ the Cholesky

factor of Λ̂ (namely Q̂Q̂
′
= Λ̂ with Q̂ lower triangular), and ξ a tuning scalar to be de-

scribed shortly. If q(A(α̃(ℓ+1))) < q(A(α(ℓ))), we set α(ℓ+1) = α(ℓ) with probability 1 −
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exp
�
q(A(α̃(ℓ+1)))− q(A(α(ℓ)))

�
; otherwise, we set α(ℓ+1) = α̃(ℓ+1). The parameter ξ is chosen

so that about 30% of the newly generated α̃(ℓ+1) get retained. The algorithm can be started by

setting α(1) = α̂, and the values after the first D burn-in draws {α(D+1),α(D+2), ...,α(D+N)}
represent a sample of size N drawn from the posterior distribution p(α|YT ); in our applica-

tions we have used D = N = 106.

For each of these N final values for α(ℓ) we further generate δ
(ℓ)
ii ∼ Γ(κ∗i , τ

∗
i (A(α(ℓ)))) for

i = 1, ..., n and take D(ℓ) to be a diagonal matrix whose row i, column i element is given by

1/δ
(ℓ)
ii . From these we also generate b

(ℓ)
i ∼ N(m∗

i (A(α(ℓ))), d
(ℓ)
ii M

∗
i ) for i = 1, ..., n and take

B(ℓ) the matrix whose ith row is given by b
(ℓ)′
i . The triple {A(α(ℓ)),D(ℓ),B(ℓ)}D+N

ℓ=D+1 then

represents a sample of size N drawn from the posterior distribution p(A,D,B|YT ).

C. Data sources.
The data sets used in the original studies by Kilian (2009) and Kilian and Murphy (2012)

are available from the public data archives of the Journal of the European Economic Associa-

tion (http://onlinelibrary.wiley.com/doi/10.1111/j.1542-4774.2012.01080.x/suppinfo) and we

used these exact same data for the statistical analysis reported in Sections 3.1 and 3.2. We

also reconstructed these data sets from the original sources ourselves as part of the process of

assembling extended time series as described below.

Monthly world oil production data measured in thousands of barrels of oil per day were

obtained from the U.S. Energy Information Administration’s (EIA) Monthly Energy Review

for the period January 1973 to December 2014. Monthly data for global production of crude

oil for the period 1958:M1 to 1972:M12 were collected from the weekly Oil and Gas Journal

(issue of the first week of each month) as in Baumeister and Peersman (2013b).

The nominal spot oil price for West Texas Intermediate (WTI) was retrieved from the Fed-

eral Reserve Economic Data (FRED) database maintained by the St. Louis FED (OILPRICE).

Prior to 1982 this equals the posted price. This series was discontinued in July 2013. From

August 2013 onwards data are obtained from the EIA website (http://www.eia.gov/dnav/

pet/hist/LeafHandler.ashx?n=pet&s=rwtc&f=m). To deflate the nominal spot oil price, we

use the U.S. consumer price index (CPIAUCSL: consumer price index for all urban consumers:

all items, index 1982-1984 = 100) which was taken from the FRED database.

For the extended data set our measure for global economic activity is the industrial pro-

duction index for OECD countries and six major non-member economies (Brazil, China, In-

dia, Indonesia, the Russian Federation and South Africa) obtained from the OECD Main

Economic Indicators (MEI) database in 2011. The index covers the period 1958:M1 to

2011:M10 and was subsequently discontinued. To extend the data set after October 2011,

we applied the same methodology used by the OCED. Specifically, we use OECD indus-

trial production and industrial production for the individual non-member countries which

are available in the MEI database and apply the weights reported by the OECD to ag-

gregate those series into a single index. The source of the weights data is the Interna-
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tional Monetary Fund’s World Economic Outlook (WEO) database. The weights are up-

dated on a yearly basis and a link to a document containing the weights can be found at

http://www.oecd.org/std/compositeleadingindicatorsclifrequentlyaskedquestionsfaqs.htm#11.

Monthly U.S. crude oil stocks in millions of barrels (which include the Stragegic Petro-

leum Reserve) are available from EIA for the entire period 1958:M1-2016:M12. We obtain an

estimate for global stocks as in Kilian and Murphy (2012) by multiplying the U.S. crude oil

inventories by the ratio of OECD inventories of crude petroleum and petroleum products to

U.S. inventories of petroleum and petroleum products. Given that OECD petroleum inven-

tories only start in January 1988, we assume that the ratio before January 1988 is the same

as in January 1988. To calculate our proxy for ∆it, the change in OECD inventories as a

fraction of last period’s oil production, we convert the production data into millions of barrels

per month by multiplying the million barrels of crude oil produced per day by 30.

D. Adapting the algorithms in Baumeister and Hamilton (2015)
to allow for measurement error.

Rewriting (34) in the form of (1). The variance matrix for the structural shocks in

(34) is given by

D̃ =E(ũtũ
′
t) =






d∗11 0 0 0

0 d∗22 0 0

0 0 d∗33 + χ−2σ2e −χ−1σ2e
0 0 −χ−1σ2e χ2d∗44 + σ2e





. (47)

It’s not hard to see that ΓD̃Γ
′
= D is diagonal for

Γ =






1 0 0 0

0 1 0 0

0 0 1 0

0 0 ρ 1






(48)

with ρ given by (37). Thus if we premultiply (34) by Γ we arrive at a system in the form of

(1) for which A = ΓÃ, B = ΓB̃, and

ut = Γũt =






u∗1t
u∗2t

u∗3t − χ−1et

χu∗4t + ρu∗3t + (1− ρ/χ)et






(49)

whose variance matrix we denoteD = diag(d11, d22, d33, d44). This is exactly in the form of the

general class of models discussed in Section 2 with the elements of the matrix A determined

by θA = (αqp, αyp, βqy, βqp, χ, ψ1, ψ3, ρ)
′. Given a prior distribution for these parameters, we
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can then draw from the posterior distribution p(θA,D,B|YT ) as described in Appendix B.

Given a draw from p(θA,D,B|YT ) we immediately have a draw for Ã = Γ
−1
A, B̃ = Γ

−1
B,

and D̃ = Γ
−1
D(Γ−1)′. The lower-right (2× 2) block of the last equation is

�
d̃33 d̃34

d̃43 d̃44

�

=

�
1 0

−ρ 1

��
d33 0

0 d44

��
1 −ρ
0 1

�

=

�
d33 −ρd33
−ρd33 d44 + ρ2d33

�

. (50)

Historical decompositions. Recall ǫt = Ã−1ũt for ũt defined in (36). Taking expecta-

tions of both sides conditional on the data and on a draw of the parameters, the following

equation holds exactly for every t,

ǫt = Ã
−1






u∗1t
u∗2t

E(u∗3t|ũt,θA,D)− χ−1E(et|ũt,θA,D)

χE(u∗4t|ũt,θA,D)+E(et|ũt,θA,D)





, (51)

where





E(u∗3t|ũt,θA,D)

E(u∗4t|ũt,θA,D)

E(et|ũt,θA,D)




 =





E(u∗3t|ũ3t, ũ4t,θA,D)

E(u∗4t|ũ3t, ũ4t,θA,D)

E(et|ũ3t, ũ4t,θA,D)






= E










u∗3tũ3t u∗3tũ4t

u∗4tũ3t u∗4tũ4t

etũ3t etũ4t






�������
θA,D






�

E

 �
ũ23t ũ3tũ4t

ũ4tũ3t ũ24t

������
θA,D

!"−1 �
ũ3t

ũ4t

�

. (52)

The second matrix in (52) is known from (50) while the first matrix can be calculated from

the equations

ũ3t = u∗3t − χ−1et

ũ4t = χu∗4t + et

and the fact that the three disturbances u∗3t, u
∗
4t, and et are mutually uncorrelated:

E(ũ3tu
∗
4t) = E(ũ4tu

∗
3t) = 0 (53)

E(ũ3tet) = −χ−1σ2e = E(ũ3tũ4t) (54)

E(ũ4tet) = σ2e = −χE(ũ3tũ4t) (55)

E(ũ3tu
∗
3t) = E(ũ3t)(ũ3t + χ−1et) = E(ũ23t) + χ−1E(ũ3tũ4t) (56)

χE(ũ4tu
∗
4t) = E(ũ4t)(ũ4t − et) = E(ũ24t) + χE(ũ3tũ4t). (57)
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Collecting (53)-(57) into a matrix equation,

E










u∗3tũ3t u∗3tũ4t

u∗4tũ3t u∗4tũ4t

etũ3t etũ4t






�������
θA,D




 =





d̃33 + χ−1d̃34 0

0 (d̃44 + χd̃34)/χ

d̃34 −χd̃34






=





d33(1− ρ/χ) 0

0 d44+ρ(ρ−χ)d33
χ

−ρd33 ρχd33




 (58)

where the last equation follows from (50). Substituting (50) and (58) into (52),





E(u∗3t|ũt,θA,D)

E(u∗4t|ũt,θA,D)

E(et|ũt,θA,D)




 =





d33(1− ρ

χ
) 0

0 d44+ρ(ρ−χ)d33
χ

−ρd33 ρχd33






�
d33 −ρd33
−ρd33 d44 + ρ2d33

�−1 �
ũ3t

ũ4t

�

=





h33 h34

h43 h44

he3 he4






�
ũ3t

ũ4t

�

(59)

Historical decompositions can thus be calculated as follows. The value of yt can be written

as the r-period-ahead forecast plus a known function of the forecast errors between t− r and
t:

yt = ŷt|t−r +
�r−1

s=0Ψsǫt−s. (60)

We have inferred values for ũt for each date from ũt = Ãyt − B̃xt−1. Hence

yt = ŷt|t−r +
�r−1

s=0ΨsÃ
−1






u∗1,t−s

u∗2,t−s

û∗3,t−s − χ−1êt−s

χû∗4,t−s+êt−s






where (u∗1t, u
∗
2t)

′ = (ũ1t, ũ2t)
′ and the vector (û∗3t, û

∗
4t, êt)

′ is calculated from (59). With this

expression we can calculate the contribution of each of the shocks (u∗1, u
∗
2, u

∗
3, u

∗
4, e) to the

historical value of yt. For example, the historical contribution of inventory demand shocks

(u∗4t) to yt is found from
�r−1

s=0ΨsÃ
−1h4∗t−s for h

4∗
t = (0, 0, 0, χ(h43ũ3t + h44ũ4t))

′,while the

contribution of measurement error is

�r−1
s=0ΨsÃ

−1he
t−s (61)

for he
t = (0, 0,−χ−1(he3ũ3t + he4ũ4t), he3ũ3t + he4ũ4t)

′.
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E. Using downweighted observations from an earlier sample.
Let Y(1) denote observations from the first sample, Y(2) observations from the second and

λ the vector of parameters about which we wish to form an inference. If both samples are

regarded as equally informative about λ, the posterior would be calculated as

p(λ|Y(1),Y(2)) =
p(Y(2)|Y(1),λ)p(Y(1)|λ)p(λ)#
p(Y(2)|Y(1),λ)p(Y(1)|λ)p(λ)dλ . (62)

Define p(Y(1)) =
#
p(Y(1)|λ)p(λ)dλ. Then the posterior density based on the first sample

alone would be

p(λ|Y(1)) =
p(Y(1)|λ)p(λ)

p(Y(1))
.

Dividing numerator and denominator of (62) by p(Y(1)) we see that the full-sample posterior

could equivalently be obtained by using the posterior from the first sample as the prior for

the second:

p(λ|Y(1),Y(2)) =
p(Y(2)|Y(1),λ)p(λ|Y(1))#
p(Y(2)|Y(1),λ)p(λ|Y(1))dλ

.

We propose instead to use as a prior for the second sample a distribution that downweights

the influence of the data from the first sample,

p(λ|Y(1)) ∝
$
p(Y(1)|λ)

%µ
p(λ)

for some 0 ≤ µ ≤ 1. In the present instance the likelihood for the first sample is given by

p(Y(1)|λ) =(2π)−T1n/2|det(A)|T1 |D|−T1/2
&n

i=1
exp

'
−

T1�

t=1

(a′iyt − b′ixt−1)
2

2dii

(

so the downweighted first-sample likelihood is

p(Y(1)|λ)µ=(2π)−µT1n/2|det(A)|µT1 |D|−µT1/2
&n

i=1
exp

'
−

T1�

t=1

(a′i
√
µyt − b′i

√
µxt−1)

2

2dii

(
.

Repeating the derivations in Baumeister and Hamilton (2015) for this downweighted likelihood

leads to the algorithm described in Section 5.1.4.
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F. The influence of prior information about the supply elasticity.
Our baseline prior implies a 6% probability that the supply elasticity αqp is below 0.0258.

18

This could be misinterpreted to suggest that our prior imposes a big value for the elasticity.

The reason this conclusion is wrong is that it is the variance of the prior (concentration of

mass over any fixed interval), not the probability of exceeding some specified bound, that

determines the influence of the prior. The Bayesian posterior distribution is a weighted

average of the likelihood, with weights given by the prior density. If the prior density has

a very large variance, the weights are approximately uniform over the range for which the

likelihood has nonnegligible mass, and the posterior is essentially the same as the likelihood,

with the prior exerting no influence on the posterior.

We illustrate this with a simple parametric example, in which the data mildly favor a value

of α = 0.05. Our baseline prior results in a posterior that is virtually identical to that implied

by the data (panel 3 in Figure F-1). By contrast, the Kilian-Murphy (KM) prior (insisting

that α < 0.0258) hugely distorts the data (panel 4). This is because our prior has a big

variance and the KM prior has a tiny variance. The KM prior imposes a strong prior belief,

whereas ours does not.

Details of the example that produced this figure are as follows. Suppose that the parameter

of interest α is the variance of a N(0, α) distribution; we use this as a simple example of a

parameter that has to be positive. Suppose we have observed a sample y1, ..., yT of size

T = 10 and that the average squared value of yt in the observed sample is s
2 = 0.05. Thus

the likelihood function is

f(y|α) = 1

(2πα)T/2
exp

�
−Ts

2

2α

�
(63)

and the MLE is α̂ = 0.05. The likelihood is plotted as a function of α as the solid black

curve in Figure F-1.19 Suppose first that our prior takes the form of a Student t(c, σ, ν)

distribution truncated to be positive with c = 0.1 and ν = 3. The first three panels of the

graph correspond to three different truncated Student t priors plotted as dotted red curves,

the first with a relatively small variance (σ = 0.02) the second with a somewhat bigger

variance (σ = 0.05), and the third with a still bigger variance. In fact, the third distribution

has exactly the same variance and exactly the same parameters as the prior in our baseline

parameterization (σ = 0.2). The posterior associated with each prior is plotted in dashed

18Note for c = 0.1 and σ = 0.2 that

[Φ̃3((0.0258− c)/σ)− Φ̃3(−c/σ)]
1− Φ̃3(−c/σ)

= 0.062

where Φ̃3(x) denotes the probability that a standard Student t variable with ν = 3 degrees of freedom would
be less than some value x.
19For ease of visual comparison with the prior and posterior, we divide (63) by the sum of the values over

α between 0 and 1, so that the likelihood (like the prior and posterior that will also be plotted) integrates to
unity with respect to α.
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blue.20 The prior with a small variance has significant impact on the posterior inference

about α. The prior with a bigger variance has a much smaller impact, and the prior with

the variance as in our baseline specification has zero influence on the posterior distribution in

this example. This is true even though the latter prior only assigns a 12% probability to a

value lower than 0.05. What matters for how much influence the prior has on the conclusion

depends on the variance and bounds of the prior distribution. Our prior has a relatively large

variance, and imposes no bounds, and in this example has essentially zero measurable impact

on the posterior distribution.

By contrast, the implicit prior used by Kilian and Murphy is the uniform distribution over

(0, 0.0258) plotted as the dotted red line in the fourth panel. The variance of the KM prior is

(0.0258)2

12
= 0.000005547.

In addition to having a tiny variance, this distribution dogmatically rules out any possibility

of α > 0.0258, and so by force imposes this condition on the posterior distribution. As a

result, the KM prior hugely distorts the posterior inference for this example, as seen in the

fourth panel of Figure F-1.

20If p(α) denotes the prior and f(y|α) the likelihood, this was evaluated at any point α by

p(α|y) = p(α)f(y|a)
�N

x=1p(x/N)f(y|x/N)

for N = 1000. Note this results in the numerically identical posterior p(α|y) for any value of the normalizing
constant k used in the previous footnote, since numerator and denominator both get multiplied by k.
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Table 1. Prior distributions for model parameters A, B and D. 
 

Parameter Meaning   Location Scale Degrees of 
freedom 

Skew Sign 
restriction 

 Priors affecting contemporaneous coefficients A 
                                                  Student t distribution 
    

��� Oil supply elasticity 0.1 0.2 3 -- ��� > 0 
     

��� Effect of p on  
economic activity 

-0.05 0.1 3 -- ��� < 0 
     

��� Income elasticity of oil 
demand 

0.7 0.2 3 -- ��� > 0 
     

��� Oil demand elasticity -0.1 0.2 3 -- ��� < 0 
     

	
 Effect of q on oil 
inventories 

0 0.5 3 -- none 

     

	� Effect of p on  
oil inventories 

0 0.5 3 -- none 

       

ℎ
 
Effect of economic 
activity shock on y 

0.8 0.2 3 -- none 
    

                                                  Beta distribution 
    

� Fraction of 
inventories observed 

0.6 0.1 -- -- 0 ≤ � ≤ 1 
    

� 
Importance of inventory 

measurement error 
0.25χ 0.12χ -- -- 0 ≤ � ≤ � 

    

  Asymmetric t distribution 
       

ℎ
 Determinant of �� 0.6 1.6 3 2 none 
    

 Priors for structural variances D|A 
  Gamma distribution 
       

���
�
 Reciprocal of variance 1/(��

����) 1/(√2��
����) -- -- ��� > 0 

    

 Priors for lagged structural coefficients B|A,D 
  Normal distribution 
       

 
� Lagged supply response  0.1 eq (44) -- -- none 
 �� Lagged demand response -0.1 eq (44) -- -- none 
 �! All other  0 eq (44) -- -- none 

    
 

Notes to Table 1. For Student t and Normal distributions the location parameter refers to the mode; for Beta 
and Gamma distributions the location parameter is the mean and the scale parameter is the standard 
deviation.  
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Table 2. Prior and posterior probabilities that the impact of a specified structural shock on the 
indicated variable is positive. 

 

  

 Oil supply shock Economic activity 
shock 

Oil consumption 
demand shock 

Oil inventory 
demand shock 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Prior Posterior Prior Posterior Prior Posterior  Prior Posterior 
Variable       

  

q 0.915 1.000 0.973 1.000 0.973 1.000 0.973 1.000 
y 0.859 1.000 1.000 1.000 0.027 0.000 0.027 0.000 
p 0.141 0.000 0.973 1.000 0.973 1.000 0.973 1.000 
Δi 0.696 0.200 0.234 0.165 0.234 0.165 0.973 1.000 

         

  

Table 3. Sensitivity of parameter inference when less weight is placed on various components of 
the prior. 

 

Benchmark 
Supply and 

demand 
elasticities 

Mixture 
prior for 
��� 

Measure-
ment error 

Pre-1975 
data 

Lagged 
structural 

coefficients 

Replace 
RAC with 

WTI 

(1) (2) (3) (4) (5) (6) (7) 
       

A. Short-run price elasticity of oil supply αqp 
 

0.15 0.11 0.15 0.15 0.14 0.14 0.13 
       

(0.09, 0.22) (0.06, 0.19) (0.10, 0.22) (0.09, 0.24) (0.09, 0.23) (0.10, 0.22) (0.09, 0.21) 
       

B. Short-run price elasticity of oil demand βqp 
       

-0.35 -0.47 -0.35 -0.35 -0.35 -0.35 -0.31 
       

(-0.51, -0.24) (-0.78, -0.28) (-0.49, -0.24) (-0.53, -0.23) (-0.50, -0.24) (-0.48, -0.24) (-0.45, -0.20) 
       

C. Effect of oil supply shock that raises real oil price by 10% on economic activity 12 months later 
       

-0.50 -0.62 -0.50 -0.50 -0.35 -0.52 -0.55 
       

(-0.91, -0.17) (-1.20, -0.22) (-0.89, -0.17) (-0.92, -0.16) (-0.74, -0.03) (-0.92, -0.16) (-0.91, -0.24) 
       

D. Effect of oil consumption demand shock that raises real oil price by 10% on economic activity  
12 months later 

       

0.13 0.05 0.13 0.14 0.21 0.04 0.02 
       

(-0.14, 0.44) (-0.21, 0.36) (-0.14, 0.44) (-0.14, 0.49) (-0.05, 0.51) (-0.25, 0.37) (-0.22, 0.31) 
       

E. Effect of oil inventory demand shock that raises real oil price by 10% on economic activity  
12 months later 

       

-0.36 -0.46 -0.35 -0.35 -0.14 -0.55 -0.41 
       

(-0.81, 0.07) (-1.02, -0.02) (-0.80, 0.07) (-0.92, 0.12) (-0.57, 0.28) (-1.04, -0.09) (-0.83, -0.02) 
       

Notes to Table 3. Table reports posterior median (in bold) and 68% credibility regions (in parentheses) for 
indicated magnitudes. Baseline uses priors specified in Table 1. Alternatives put less weight on indicated 
component of the prior as detailed in the text. 
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Figure 9. Actual changes in oil prices (red dotted lines) and median estimate of historical contribution of 
separate structural shocks (blue lines) with 95% posterior credibility regions (blue shaded) for baseline 4-
variable model. 
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Figure F-1. Prior and posterior distributions for three different examples of truncated Student t priors and 
for Kilian-Murphy uniform prior. 

 


