1a.) $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{y}\right)$
$\hat{\sigma}^{2}=(T-k)^{-1}(\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}})^{\prime} \mathbf{V}^{-1}(\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}})$
$\tau=\hat{\beta}_{1} / \sqrt{\hat{\sigma}^{2} \mathbf{e}_{1}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{e}_{1}}$ for \mathbf{e}_{1} first column of \mathbf{I}_{k}
τ has an exact small-sample Student t distribution with $T-k$ degrees of freedom under the stated assumptions

1b.) $h=[\mathbf{g}(\hat{\boldsymbol{\beta}})]^{\prime}\left[\hat{\sigma}^{2} \mathbf{H}\left(\boldsymbol{\beta}_{0}\right)\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{H}\left(\boldsymbol{\beta}_{0}\right)^{\prime}\right]^{-1} \mathbf{g}(\hat{\boldsymbol{\beta}})$
$\mathbf{H}\left(\boldsymbol{\beta}_{0}\right)=\left.\frac{\partial \mathbf{g}}{\partial \boldsymbol{\beta}^{\prime}}\right|_{\beta=\beta_{0}}$
Treat h as approximately $\chi^{2}(2)$; this is only asymptotic approximation
1c.) (1) White does not do anything with off-diagonal elements of \mathbf{V} but above procedure does; (2) White adjustment to diagonal terms is inefficiently estimated and only approximate; (3) White uses OLS estimate \mathbf{b} which is inefficient.
2.) $\operatorname{plim} b=\left[E\left(x_{t}^{2}\right)\right]^{-1}\left[E\left(x_{t} y_{t}\right)\right]$ where

$$
E\left(x_{t} y_{t}\right)=E\left[x_{t}\left(g\left(x_{t}\right)+u_{t}\right)\right]=E\left[x_{t} g\left(x_{t}\right)\right]
$$

3a.) need $r=2$ since we want to estimate both β_{0} and β_{1}. The first element of the (2×1) vector \mathbf{x}_{t} would usually be a constant term

3b.) Assuming that a constant term is first element of \mathbf{x}_{t}, regress z_{t} on \mathbf{x}_{t}. Do OLS F-test that coefficients other than constant term are all zero (we don't want to test that all coefficients are zero, since this is basically just testing whether z_{t} and x_{t} have mean zero). If F-statistic is less than 10 , instruments might be weak.

4a.) $\frac{\partial 0}{\partial p}=\frac{\sum_{p} x_{t}}{p}-\frac{\sum\left(n-x_{t}\right)}{1-p}=\frac{\left.\left[(1-p) \sum x_{t}\right]\right]\left[p \sum\left(n-x_{t}\right)\right]}{p(1-p)}=\frac{\left[\sum x_{t}\right]-p T_{n}}{p(1-p)}$.
Setting this to zero gives $\hat{p}_{M L E}=(T n)^{-1} \sum x_{t}$
4 b .) Notice $\hat{p}_{M L E}$ is n^{-1} times the sample mean of T i.i.d. variables, each with variance $n p(1-p)$. Thus

$$
\sqrt{T}\left(\hat{p}-p_{0}\right) \xrightarrow{L} n^{-1} N(0, n p(1-p)) \sim N(0, p(1-p) / n) .
$$

No additional assumptions needed.
4c.) $h\left(p, x_{t}\right)=\frac{\partial \partial_{t}}{\partial p}=\frac{x_{t}}{p}-\frac{\left(n-x_{t}\right)}{(1-p)}$
$E\left[h\left(p, x_{t}\right)\right]=\frac{n p_{0}}{p}-\frac{\left(n-n p_{0}\right)}{(1-p)}=\frac{(1-p) n p_{0}-p n\left(1-p_{0}\right)}{p(1-p)}=\frac{n\left(p_{0}-p\right)}{p(1-p)}$ which equals 0 at $p=p_{0}$ and not
zero at all other p
4di) Since $r=a=1, \hat{p}_{G M M}$ satisfies

$$
T^{-1} \sum h\left(\hat{p}, x_{t}\right)=0 \text { or } \frac{T^{-1} \sum x_{t}}{\hat{p}}-\frac{T^{-1} \sum\left(n-x_{t}\right)}{T^{1-\hat{p}}}=0 \text {, same FOC as MLE. Thus } \hat{p}_{M L E}=\hat{p}_{G M M} .
$$

4dii) $\hat{\mathbf{D}}^{\prime}=\left.T^{-1} \frac{\sum \partial h\left(p, x_{t}\right)}{\partial p}\right|_{p=\hat{p}}=T^{-1}\left[-\frac{\sum x_{t}}{\hat{p}^{2}}-\frac{\sum\left(n-x_{t}\right)}{(1-\hat{p})^{2}}\right]=-\frac{n \hat{p}}{\hat{p}^{2}}-\frac{n(1-\hat{p})}{(1-\hat{p})^{2}}=-\frac{n}{\hat{p}}-\frac{n}{(1-\hat{p})}$
4diii) $\hat{\mathbf{D}}^{\prime} \xrightarrow{p}-\frac{n}{p_{0}}-\frac{n}{\left(1-p_{0}\right)}=-\frac{n}{p_{0}\left(1-p_{0}\right)}$
4div) $\hat{\mathbf{S}}=T^{-1} \sum\left[h\left(\hat{p}, x_{t}\right)^{2}=T^{-1} \sum\left[\frac{x_{t}}{\hat{p}}-\frac{\left(n-x_{t}\right)}{(1-\hat{p})}\right]^{2}=\frac{T^{-1}}{\hat{p}^{2}(1-\hat{p})^{2}} \sum\left(x_{t}-n \hat{p}\right)^{2}\right.$

