1.)

a.) Reject $\beta = 0$ since t > 2. Note $t = \hat{\beta}/\hat{\sigma}_{\hat{\beta}}$ so $\hat{\sigma}_{\hat{\beta}} = 0.8/4 = 0.2$ and t stat for $\beta = 1$ is (0.8 - 1.0)/0.2 = -1 so do not reject $\beta = 1$.

b.) $\hat{\beta}_0 = 0$, $\hat{\beta}_1 = 0.80$ and *t*-statistic for β_1 is numerically identical to that from (1).

c.) $\hat{\beta}_1 = \left(T^{-1}\sum_{t=1}^T (x_t - \overline{x})^2\right)^{-1} \left(T^{-1}\sum_{t=1}^T (x_t - \overline{x})(y_t - \overline{y}) \xrightarrow{p} \sigma_{xx}^{-1} \sigma_{xy} = \pi_1$. Note π_1 is the value of β_1 for which the following expression is minimized,

$$E(y_t - \beta_0 - \beta_1 x_t)^2,$$

that is, π_1 is the coefficient to we would multiply father's income by if we wanted to obtain the optimal linear forecast of the child's income.

d.) Regress $\hat{e}_t^2 = \alpha_0 + \alpha_1 \tilde{x}_t^2 + v_t$ and compare *T* times the R^2 of this regression with a $\chi^2(1)$ distribution, that is, if $66R^2 > 4$, reject the null of homoskedasticity.

e.) (i) Use White standard errors instead of OLS standard errors. This would result in identical estimate of β_1 (namely 0.80) but a different *t* statistic.

(ii) Use feasible GLS, e.g., regress $\hat{e}_t^2 = \alpha_0 + \alpha_1 \tilde{x}_t^2 + v_t$ and let $\hat{q}_t = \hat{\alpha}_0 + \hat{\alpha}_1 \tilde{x}_t^2$ denote fitted values. Then regress $y_t^* = \tilde{y}_t/\hat{q}_t^{1/2}$ on $x_t^* = \tilde{x}_t/\hat{q}_t^{1/2}$. This will change both the coefficient estimate $\hat{\beta}_1$ and the *t* statistic.

$$1 - R^{2} = \sum_{t=1}^{T} e_{t}^{2} / \sum_{t=1}^{T} \tilde{y}_{t}^{2} = SSR_{1} / SSR_{0}$$

$$F = (T - 2) (SSR_{0} - SSR_{1}) / SSR_{1}$$

$$= (T - 2) \left(\frac{SSR_{0}}{SSR_{1}} - 1 \right)$$

$$= (T - 2) \left(\frac{1}{1 - R^{2}} - 1 \right)$$

$$= (T - 2) \left(\frac{R^{2}}{1 - R^{2}} \right)$$

But *F* is the square of the *t* statistic and T = 66, so

$$4^{2} = 64\left(\frac{R^{2}}{1-R^{2}}\right)$$
$$1-R^{2} = 4R^{2}$$
$$R^{2} = 0.2.$$

2.) a.) yes. $d_{t1} + d_{t2} + d_{t3} = 1$, but since there is no separate constant term in the regression, this is not a problem.

b.) if person *t* has high ability and motivation, then ε_t is likely high and that person likely chose to get more schooling. Hence ε_t and s_t are positively correlated, biasing β upwards.

c.) Need instrument correlated with s_t but uncorrelated with ε_t , such as person t's date of birth within the calendar year.

3.)
a.) yes
b.) no, need
$$E(\mathbf{x}_{t}\mathbf{z}_{t}')$$
 has full rank k
c.)
i.) $\boldsymbol{\theta} = \boldsymbol{\beta}$
ii.) $\mathbf{w}_{t} = (y_{t}, \mathbf{z}_{t}', \mathbf{x}_{t}')'$
iii.) $\mathbf{h}(\boldsymbol{\theta}, \mathbf{w}_{t}) = \mathbf{x}_{t}(y_{t} - \mathbf{z}_{t}'\boldsymbol{\beta})$
iv.) $\mathbf{Y}_{T} = (\mathbf{w}_{1}', \mathbf{w}_{2}', \dots, \mathbf{w}_{T}')'$
v.) $\mathbf{g}(\boldsymbol{\theta}, \mathbf{Y}_{T}) = T^{-1} \sum_{t=1}^{T} \mathbf{x}_{t}(y_{t} - \mathbf{z}_{t}'\boldsymbol{\beta})$
vi.) $\hat{\mathbf{D}}' = -T^{-1} \sum_{t=1}^{T} \mathbf{x}_{t}\mathbf{z}_{t}'$
vii.) $\mathbf{S} = \Gamma_{0} + \Gamma_{1} + \Gamma_{1}'$
viii.) $\hat{\boldsymbol{\theta}}_{GMM} = \left(\sum_{t=1}^{T} \mathbf{x}_{t}\mathbf{z}_{t}'\right)^{-1} \left(\sum_{t=1}^{T} \mathbf{x}_{t}y_{t}\right)$
ix.) $\mathbf{V} = \left\{E(\mathbf{z}_{t}\mathbf{x}_{t}')(\Gamma_{0} + \Gamma_{1} + \Gamma_{1}')^{-1}E(\mathbf{x}_{t}\mathbf{z}_{t}')\right\}^{-1}$
x.) $\hat{\mathbf{V}} = \left\{(T^{-1} \sum_{t=1}^{T} \mathbf{z}_{t}\mathbf{x}_{t}')(\Gamma_{0} + \Gamma_{1} + \Gamma_{1}')^{-1}(T^{-1} \sum_{t=1}^{T} \mathbf{x}_{t}\mathbf{z}_{t}')\right\}^{-1}$
d.)
 $T(\mathbf{R}\hat{\boldsymbol{\theta}} - \mathbf{r})'[\mathbf{R}\hat{\mathbf{V}}\mathbf{R}']^{-1}(\mathbf{R}\hat{\boldsymbol{\theta}} - \mathbf{r}) \xrightarrow{L} \chi^{2}(m)$

e.)

i.) Smallest eigenvalue of $\sum_{xz} \sum_{zx}$ is positive but near zero for $\sum_{xz} = E(\mathbf{x}_t \mathbf{z}_t')$ ii.) Estimate of $\boldsymbol{\beta}$ may be badly behaved in small samples and distribution of statistic proposed in (d) may be far from $\chi^2(m)$ in small samples iii.) Let $\tilde{y}_t = y_t - \mathbf{z}_t' \boldsymbol{\beta}_0$ and do OLS regression of $\tilde{y}_t = \mathbf{x}_t' \boldsymbol{\alpha} + v_t$:

 $\hat{\boldsymbol{\alpha}} = \left(\sum_{t=1}^{T} \mathbf{x}_t \mathbf{x}_t'\right)^{-1} \left(\sum_{t=1}^{T} \mathbf{x}_t (y_t - \mathbf{z}_t' \boldsymbol{\beta}_0)\right)$

and test $\alpha = 0$ using appropriate variance matrix:

$$T\hat{\boldsymbol{\alpha}}'\Big[\left(T^{-1}\sum_{t=1}^{T}\mathbf{x}_{t}\mathbf{x}_{t}'\right)\left(\boldsymbol{\Gamma}_{0}+\boldsymbol{\Gamma}_{1}+\boldsymbol{\Gamma}_{1}'\right)^{-1}\left(T^{-1}\sum_{t=1}^{T}\mathbf{x}_{t}\mathbf{x}_{t}'\right)\Big]\hat{\boldsymbol{\alpha}}\overset{L}{\rightarrow}\chi^{2}(k)$$