Unit roots in vector time series	
A. Vector autoregressions with unit roots	
	-
	•
Scalar autoregression	
True model:	
$\Delta y_t = \phi_1 \Delta y_{t-1} + \phi_2 \Delta y_{t-2} + \dots + \phi_p \Delta y_{t-p} + \varepsilon_t$	
Estimated model:	
$\Delta y_t = c + \eta y_{t-1} + \phi_1 \Delta y_{t-1} + \phi_2 \Delta y_{t-2} + \cdots$	
$+\phi_p\Delta y_{t-p}+\varepsilon_t$	-
$\psi p \rightharpoonup y_{l-p} + o_{l}$	
	I
	1
Results:	
$\sqrt{T} \left(\hat{\phi}_j - \phi_{j0} \right)$ is asymptotically normal	
(same distribution as if imposed	
$\eta = 0$)	
$T(\hat{\eta} - \eta_0)$ is nonstandard	
$I(\eta - \eta_0)$ is nonstantially	

If instead estimate in the form

$$y_t = c + \rho_1 y_{t-1} + \rho_2 y_{t-2} + \cdots + \rho_{p+1} y_{t-p-1} + \varepsilon_t$$

then

 $\sqrt{T} (\hat{\rho}_j - \rho_{j0})$ is asymptotically normal (same distribution as if imposed $\rho_1 + \rho_2 + \cdots + \rho_{p+1} = 1$)

	/	4 \
vector y ,	$= (n \times$	1)

True model:

$$\Delta \mathbf{y}_{t} = \mathbf{\phi}_{1} \Delta \mathbf{y}_{t-1} + \mathbf{\phi}_{2} \Delta \mathbf{y}_{t-2} + \cdots + \mathbf{\phi}_{p} \Delta \mathbf{y}_{t-p} + \mathbf{\varepsilon}_{t}$$

Estimated model:

$$\Delta \mathbf{y}_{t} = \mathbf{c} + \eta \mathbf{y}_{t-1} + \phi_{1} \Delta \mathbf{y}_{t-1} + \phi_{2} \Delta \mathbf{y}_{t-2} + \cdots + \phi_{p} \Delta \mathbf{y}_{t-p} + \varepsilon_{t}$$

$$\eta = (n \times n)$$
 matrix (true $\eta = 0$)

Results:

 \sqrt{T} times elements ϕ_{ij} asymptotically normal (same distribution as if imposed $\eta = 0$)

T times elements $\hat{\eta}_{ij}$ nonstandard

If we instead estimate VAR in levels: $\begin{aligned} \mathbf{y}_t &= \mathbf{c} + \boldsymbol{\rho}_1 \mathbf{y}_{t-1} + \boldsymbol{\rho}_2 \mathbf{y}_{t-1} + \dots + \boldsymbol{\rho}_{p+1} \mathbf{y}_{t-p-1} + \boldsymbol{\epsilon}_t \\ \boldsymbol{\rho}_1 &= \mathbf{I}_n + \boldsymbol{\eta} + \boldsymbol{\Phi}_1 \\ \boldsymbol{\rho}_2 &= \boldsymbol{\Phi}_2 - \boldsymbol{\Phi}_1 \\ &\vdots \\ \boldsymbol{\rho}_p &= \boldsymbol{\Phi}_p - \boldsymbol{\Phi}_{p-1} \\ \boldsymbol{\rho}_{p+1} &= -\boldsymbol{\Phi}_p \end{aligned}$

Examples of statistics with standard distributions

Any individual element of $\hat{\mathbf{p}}$ converges at \sqrt{T} to Normal Any t test on individual element is asymptotically N(0,1) $H_0: \mathbf{p}_{p+1} = \mathbf{0}$ (i.e., p lags sufficient) identical to test of $H_0: \Phi_p = \mathbf{0}$ and is asymptotically valid

Examples of statistics with nonstandard distributions

(1) Hypothesis involving sum of coefficient	icients:
---	----------

$$\hat{\boldsymbol{\rho}}_1 + \hat{\boldsymbol{\rho}}_2 + \cdots \hat{\boldsymbol{\rho}}_{p+1} = \mathbf{I}_n + \hat{\boldsymbol{\eta}}$$

(2) Hypothesis that variable 2 does not Granger-cause variable 1

$$\begin{split} H_0: \, \rho_1^{(2,1)} &= \rho_2^{(2,1)} = \cdots = \rho_{p+1}^{(2,1)} = 0 \\ \Leftrightarrow \eta^{(2,1)} &= \phi_1^{(2,1)} = \phi_2^{(2,1)} = \cdots = \phi_p^{(2,1)} = 0 \end{split}$$

Conclusion: if true model should be a VAR in differences (impose $\eta = 0$) and you instead estimate as VAR in levels, it is not a capital crime.	
Problems will be • loss of efficiency if don't impose a true restriction • certain hypothesis tests have nonstandard distribution	
Unit roots in vector time series A. Vector autoregressions with unit roots B. Spurious regressions	

What about spurious regression? Example:

$$\Delta y_{1t} = \varepsilon_{1t}$$

$$\Delta y_{2t} = \varepsilon_{2t}$$

$$\mathbf{\varepsilon}_{t} \sim \text{i.i.d.} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{1}^{2} & 0 \\ 0 & \sigma_{2}^{2} \end{bmatrix} \right)$$

 $\Rightarrow y_{1t}, y_{2t}$ completely unrelated

Suppose we regress

$$y_{1t} = \alpha + \gamma y_{2t} + u_t$$

$$\begin{bmatrix} \hat{\alpha} \\ \hat{\gamma} \end{bmatrix} = \begin{bmatrix} \sum 1 & \sum y_{2t} \\ \sum y_{2t} & \sum y_{2t}^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum y_{1t} \\ \sum y_{2t}y_{1t} \end{bmatrix}$$

true $\alpha = \gamma = 0$

$$\Upsilon_T = \begin{bmatrix} T^{-1/2} & 0 \\ 0 & 1 \end{bmatrix}$$

will analyze $\Upsilon_T \hat{\beta}$

Note radical departure from usual

$$\Upsilon_T = \begin{bmatrix} T^{1/2} & 0 \\ 0 & T^{1/2} \end{bmatrix}$$

 $\hat{\gamma}$ does not converge to anything! $\hat{\alpha}$ diverges to $\pm \infty !$

$$\begin{bmatrix} T^{-1/2} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \hat{\alpha} \\ \hat{\gamma} \end{bmatrix} = \begin{bmatrix} T^{-1/2} & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} T & \sum y_{2t} \\ \sum y_{2t} & \sum y_{2t}^2 \end{bmatrix}^{-1} \begin{bmatrix} T^{-3/2} & 0 \\ 0 & T^{-2} \end{bmatrix}^{-1} \times \begin{bmatrix} T^{-3/2} & 0 \\ 0 & T^{-2} \end{bmatrix} \begin{bmatrix} \sum y_{1t} \\ \sum y_{2t}y_{1t} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & T^{-3/2} \sum y_{2t} \\ T^{-3/2} \sum y_{2t} & T^{-2} \sum y_{2t}^{2} \end{bmatrix}^{-1} \begin{bmatrix} T^{-3/2} \sum y_{1t} \\ T^{-2} \sum y_{2t} y_{1t} \end{bmatrix}$$

$$\stackrel{L}{\to} \begin{bmatrix} 1 & \sigma_{2} \int_{0}^{1} W_{2}(r) dr \\ \sigma_{2} \int_{0}^{1} W_{2}(r) dr & \sigma_{2}^{2} \int_{0}^{1} [W_{2}(r)]^{2} dr \end{bmatrix}^{-1} \times$$

$$\begin{bmatrix} \sigma_{1} \int_{0}^{1} W_{1}(r) dr \\ \sigma_{1} \sigma_{2} \int_{0}^{1} W_{1}(r) W_{2}(r) dr \end{bmatrix}$$

Can further show OLS $\hat{\sigma}_{\hat{\gamma}} \stackrel{p}{\to} 0$ \Rightarrow OLS t test of $H_0: \gamma = 0$ diverges to $\pm \infty$ even though H_0 is true!

If regress one trend on another trend with no time trend in regression: $R^2 \rightarrow 1$. If regress one random walk on another random walk with no lags in regression: $R^2 \rightarrow 1$. Recommendation: never do a spurious regression.	
Cure for spurious regression: include lags of y_1 and y_2 : $y_{1t} = c + \beta_1 y_{2t} + \beta_2 y_{2,t-1} + \beta_3 y_{1,t-1} + \varepsilon_t$ This is equivalent to estimating $\Delta y_{1t} = c + \gamma_1 \Delta y_{2t} + \gamma_2 y_{2,t-1} + \gamma_3 y_{1,t-1} + \varepsilon_t$	
$\sqrt{T}\hat{\gamma}_1$ will be asymptotically normal (and same distribution as if imposed $\gamma_2=\gamma_3=0$) $T\hat{\gamma}_2$ and $T\hat{\gamma}_3$ will be nonstandard	

$$y_{1t} = c + \beta_1 y_{2t} + \beta_2 y_{2,t-1} + \beta_3 y_{1,t-1} + \varepsilon_t$$

$$\Delta y_{1t} = c + \gamma_1 \Delta y_{2t} + \gamma_2 y_{2,t-1} + \gamma_3 y_{1,t-1} + \varepsilon_t$$

$$\hat{\beta}_1 = \hat{\gamma}_1$$

$$\sqrt{T} \hat{\beta}_1 \stackrel{L}{\to} N(0, V_1)$$

$$\hat{\beta}_2 = \hat{\gamma}_2 - \hat{\gamma}_1$$

$$\sqrt{T} \hat{\beta}_2 = \sqrt{T} (\hat{\gamma}_2 - \hat{\gamma}_1)$$

$$\stackrel{L}{\to} -\sqrt{T} \hat{\gamma}_1 \stackrel{L}{\to} N(0, V_1)$$

Conclusion: the capital crime would be not to include lags in regression

$$y_{1t} = \alpha + \gamma y_{2t} + u_t$$

True u_t (for $\alpha = \gamma = 0$) is infinitely serially correlated (random walk)

Unit roots in vector time series

- A. Vector autoregressions with unit roots
- B. Spurious regression
- C. Cointegration- single equation methods

$$\Delta \mathbf{y}_{t} = \mathbf{c} + \eta \mathbf{y}_{t-1} + \phi_{1} \Delta \mathbf{y}_{t-1} + \phi_{2} \Delta \mathbf{y}_{t-2} + \cdots + \phi_{p} \Delta \mathbf{y}_{t-p} + \varepsilon_{t}$$

When $\eta = 0$ this becomes a

VAR in differences

When η is unrestricted this becomes a VAR in levels

Intermediate case:

$$0 < \operatorname{rank}(\eta) < n$$

Example:

 $\eta = ab' \text{ for } a \text{ and } b (n \times 1) \text{ vectors}$

$$\Delta \mathbf{y}_{t} = \mathbf{c} + \eta \mathbf{y}_{t-1} + \phi_{1} \Delta \mathbf{y}_{t-1} + \phi_{2} \Delta \mathbf{y}_{t-2} + \cdots$$

$$+ \phi_{p} \Delta \mathbf{y}_{t-p} + \varepsilon_{t}$$

$$\Delta \mathbf{y}_{t} = \mathbf{c} + \mathbf{a} \mathbf{b}' \mathbf{y}_{t-1} + \phi_{1} \Delta \mathbf{y}_{t-1} + \phi_{2} \Delta \mathbf{y}_{t-2} + \cdots$$

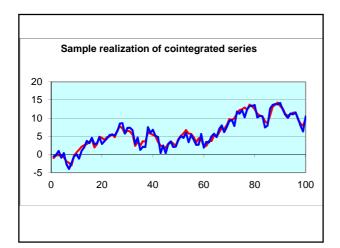
$$+ \phi_{p} \Delta \mathbf{y}_{t-p} + \varepsilon_{t}$$

level \mathbf{y}_{t-1} only matters through the linear combination $\mathbf{b}'\mathbf{y}_{t-1}$

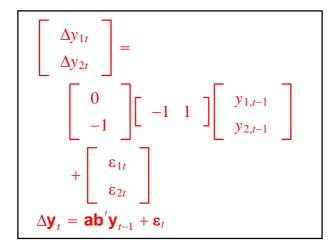
Example:

$$y_{1t} = y_{1,t-1} + \varepsilon_{1t}$$

 $y_{2t} = y_{1,t-1} + \varepsilon_{2t}$



$$\begin{bmatrix} \Delta y_{1t} \\ \Delta y_{2t} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix}$$



Definition: a vector \mathbf{y}_t is said to be cointegrated if

- (1) each element $y_{jt} \sim I(1)$
- (2) $\exists \mathbf{b} \neq \mathbf{0} : \mathbf{b}' \mathbf{y}_t \sim I(0)$

One way to estimate **b**: If $b_1 \neq 0$, then OLS estimation of $y_{1t} = c + \gamma_2 y_{2t} + \gamma_3 y_{3t} + \cdots + \gamma_n y_{nt} + u_t$ gives superconsistent estimates of normalized value of **b** $T(\hat{\gamma}_j - \gamma_{j0}) \stackrel{L}{\rightarrow} \text{nonstandard}$

Example:

$$\begin{aligned} y_{1t} &= y_{1,t-1} + \varepsilon_{1t} \\ y_{2t} &= \beta y_{1t} + \varepsilon_{2t} \\ \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix} &\sim N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix} \end{pmatrix} \\ \mathbf{y}_1 &= (y_{11}, \dots, y_{1T})' \\ \mathbf{y}_2 &| \mathbf{y}_1 &\sim N(\beta \mathbf{y}_1, \sigma_2^2 \mathbf{I}_T) \\ \text{Regression } y_{2t} &= \beta y_{1t} + \varepsilon_{2t} \\ \text{satisfies Gaussian regression model} \end{aligned}$$

OLS t test of H_0 : $\beta = \beta_0$ has exact small sample Student t distribution with T-1 degrees of freedom

$$\hat{\beta} = \beta_0 + \frac{\sum_{y_{1t}} y_{1t}}{\sum_{y_{1t}}^2}$$

$$T(\hat{\beta} - \beta_0) = \frac{T^{-1} \sum_{y_{1t}} y_{1t} \varepsilon_{2t}}{T^{-2} \sum_{y_{1t}}^2}$$

$$\frac{L}{\sigma_1 \sigma_2 \int_0^1 W_1(r) dW_2(r) dr}{\sigma_1^2 \int_0^1 [W_1(r)]^2 dr}$$

If instead $\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix} \sim N \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix} $ Then regressor y_{1t} is correlated with residual $y_{2t} = \beta y_{1t} + \varepsilon_{2t}$ But still $T^{1/2}(\hat{\beta} - \beta_0) \overset{p}{\to} 0$ $T(\hat{\beta} - \beta_0) \overset{p}{\to} \text{nonstandard}$	
In general, for $y_{1t} = c + \gamma_2 y_{2t} + \gamma_3 y_{3t} + \dots + \gamma_n y_{nt} + u_t$ $y_{it} \sim I(1)$ for $i = 1, \dots, n$ $u_t \sim I(0)$ (so cointegrated) u_t correlated with y_{it} then OLS estimates are superconsistent $T(\hat{\gamma} - \gamma_0) \xrightarrow{L}$ nonstandard	
However, if y _r is not cointegrated, OLS gives spurious regression.	

How to tell the difference: if spurious, $u_t \sim I(1)$ if cointegrated, $u_t \sim I(0)$ Estimate $\hat{\gamma}$ by OLS, do Dickey-Fuller test on residuals \hat{u}_t Compare with Table B.9, Case 2.	
Using Table B.9: • Case 1: Estimated "cointegrating regression" contains no constant term • Case 2: Estimated "cointegrating regression" contains a constant term and right-hand variables not trended • Case 3: Estimated "cointegrating regression" contains a constant term and right-hand variables are trended	
Unit roots in vector time series A. Vector autoregressions with unit roots B. Spurious regression C. Cointegration—single equation methods D. Cointegration—full information maximum likelihood	

Consider an $(n \times 1)$ vector \mathbf{y}_t characterized by 0 < h < n different cointegrating relations:

$$\Delta \mathbf{y}_{t} = \mathbf{c} + \alpha \mathbf{\beta}' \mathbf{y}_{t-1} + \zeta_{1} \Delta \mathbf{y}_{t-1} + \zeta_{2} \Delta \mathbf{y}_{t-2} + \cdots + \zeta_{p-1} \Delta \mathbf{y}_{t-1} + \boldsymbol{\varepsilon}_{t}$$

$$\boldsymbol{\alpha} \quad (n \times h)$$

$$\boldsymbol{\beta} \quad (n \times h)$$

$$\boldsymbol{\rho}(\boldsymbol{\alpha}) = \boldsymbol{\rho}(\boldsymbol{\beta}) = h$$

$$\boldsymbol{\varepsilon}_{t} \sim \text{i.i.d. } N(\mathbf{0}, \boldsymbol{\Omega})$$

Step 1: Do OLS regressions of each of the n elements of $\Delta \mathbf{y}_t$ and n elements of \mathbf{y}_{t-1} on a constant and p-1 lags of $\Delta \mathbf{y}_{t-j}$

$$\Delta \mathbf{y}_{t} = \mathbf{\hat{\pi}}_{0} + \mathbf{\hat{\Pi}}_{1} \Delta \mathbf{y}_{t-1} + \mathbf{\hat{\Pi}}_{2} \Delta \mathbf{y}_{t-2} + \cdots + \mathbf{\hat{\Pi}}_{p-1} \Delta \mathbf{y}_{t-p+1} + \mathbf{\hat{u}}_{t}$$

$$\mathbf{y}_{t-1} = \mathbf{\hat{\theta}} + \mathbf{\hat{\Xi}}_{1} \Delta \mathbf{y}_{t-1} + \mathbf{\hat{\Xi}}_{2} \Delta \mathbf{y}_{t-2} + \cdots + \mathbf{\hat{\Xi}}_{p-1} \Delta \mathbf{y}_{t-p+1} + \mathbf{\hat{v}}_{t}$$

Step 2: Form the variance-covariance matrices of these residuals

$$\begin{split} \hat{\Sigma}_{\text{VV}} &= T^{-1} \sum\nolimits_{t=1}^{T} \hat{\mathbf{v}}_{t} \hat{\mathbf{v}}_{t}^{'} \\ \hat{\Sigma}_{\text{UU}} &= T^{-1} \sum\nolimits_{t=1}^{T} \hat{\mathbf{u}}_{t} \hat{\mathbf{u}}_{t}^{'} \\ \hat{\Sigma}_{\text{UV}} &= T^{-1} \sum\nolimits_{t=1}^{T} \hat{\mathbf{u}}_{t} \hat{\mathbf{v}}_{t}^{'} \\ \hat{\Sigma}_{\text{VU}} &= \hat{\Sigma}_{\text{UV}}^{'} \end{split}$$

Step 3: Calculate the eigenvalues $\hat{\lambda}_1, \dots, \hat{\lambda}_n$ (ordered $\hat{\lambda}_1 > \hat{\lambda}_2 > \dots > \hat{\lambda}_n$) and eigenvectors $\hat{\mathbf{a}}_1, \dots, \hat{\mathbf{a}}_n$ of the matrix $\hat{\boldsymbol{\Sigma}}_{\text{VV}}^{-1} \hat{\boldsymbol{\Sigma}}_{\text{VU}} \hat{\boldsymbol{\Sigma}}_{\text{UU}}^{-1} \hat{\boldsymbol{\Sigma}}_{\text{UV}}$

Then the MLE of the space of cointegrating vectors (the space spanned by columns of β) is spanned by $\hat{\mathbf{a}}_1, \dots, \hat{\mathbf{a}}_h$

And the maximum value achieved for the log likelihood under the restriction that there are exactly *h* cointegrating relations is given by

$$\mathcal{L}^* = -(Tn/2)\log(2\pi) - (Tn/2)$$
$$-(T/2)\log|\hat{\Sigma}_{UU}| - (T/2)\sum_{i=1}^{h}\log(1-\hat{\lambda}_i)$$

Implication: a likelihood ratio test of the null hypothesis of h cointegrating relations against the alternative that there are n cointegrating relations (i.e., every linear combination of \mathbf{y}_t is stationary under H_A) is given by $2(\mathcal{L}_A^* - \mathcal{L}_0^*) = -T\sum_{i=h+1}^n \log(1-\hat{\lambda}_i)$ Critical values from Table B.10.

Test of null of h cointegrating relations against alternative of $h+1$ relations: $2(\mathcal{L}_A^* - \mathcal{L}_0^*) = -T\log(1-\hat{\lambda}_{h+1})$	
Compare with critical values in Table B.11	

Unit roots in vector time series

- A. Vector autoregressions with unit roots
- B. Spurious regression
- C. Cointegration- single equation methods
- D. Cointegration—full information maximum likelihood
- E. Testing hypotheses about the cointegrating vector

Suppose we have a maintained hypothesis that there are exactly h cointegrating relations, and want to test the hypothesis that only linear combinations of $\mathbf{D}'\mathbf{y}_t$ are involved in cointegration, where \mathbf{D}' is known $(q \times n)$ matrix and q < n

hypothesized not to appear in cointegrating relation: $\mathbf{D}' = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
Let $\hat{\Sigma}_{UU}$ $\hat{\Sigma}_{VV}$ and $\hat{\Sigma}_{VU}$ be same unrestricted matrices defined above and let $\tilde{\Sigma}_{VV} = D'\hat{\Sigma}_{VV}D$ $\tilde{\Sigma}_{UV} = \hat{\Sigma}_{UV}D$	
Let $\tilde{\lambda}_i$ denote the i th largest eigenvalue of $\tilde{\Sigma}_{VV}^{-1}\tilde{\Sigma}_{VU}\tilde{\Sigma}_{UU}^{-1}\tilde{\Sigma}_{UV}$	

Then the likelihood ratio test of the null hypothesis is given by

$$2(\mathcal{L}_{A}^{*} - \mathcal{L}_{0}^{*}) = -T \sum_{i=1}^{h} \log(1 - \hat{\lambda}_{i}) + T \sum_{i=1}^{h} \log(1 - \tilde{\lambda}_{i})$$

which asymptotically has a $\chi^2(hn - hq)$ distribution

Unit roots in vector time series

- A. Vector autoregressions with unit roots
- B. Spurious regression
- C. Cointegration- single equation methods
- D. Cointegration—full information maximum likelihood
- E. Testing hypotheses about the cointegrating vector
- F. Summary and overview

What to do with all these issues?

- should we use differences or growth rates?
- should we use error-correction representation or not?

	· · · ·	 	

If we always just estimate in levels: • benefit– get consistent estimate of truth no matter what • costs– some hypothesis tests invalid, inefficient estimates	
Recommendation: • Make best effort to identify nature of unit roots and cointegration and estimate as appropriate • Compare with levels estimate • If same answer great, if different answer, try to reconcile	