Unit root processes and functional central limit theorem

A. Small-sample estimation properties for stationary AR(1)

Consider next an AR(1) process:

$$y_t = \rho y_{t-1} + \varepsilon_t$$

$$\varepsilon_t \sim \text{i.i.d. } (0, \sigma^2)$$

$$|\rho| < 1$$

Then

$$E(y_t) = 0$$

$$Var(y_t) = \sigma^2/(1 - \rho^2)$$

Estimate by OLS regression of y_t on y_{t-1}

$$\widehat{\rho} = \frac{\sum_{t=1}^{T} y_{t-1} y_t}{\sum_{t=1}^{T} y_{t-1}^2}$$

Substitute $y_t = \rho y_{t-1} + \varepsilon_t$

$$\hat{\rho} = \rho + \frac{\sum_{t=1}^{T} y_{t-1} \varepsilon_t}{\sum_{t=1}^{T} y_{t-1}^2}$$

Substitute
$$y_t = \rho y_{t-1} + \varepsilon_t$$

$$\widehat{\rho} = \rho + \frac{\sum_{t=1}^{T} y_{t-1} \varepsilon_t}{\sum_{t=1}^{T} y_{t-1}^2}$$

$$\sqrt{T}(\widehat{\rho}_T - \rho) = \frac{\sqrt{T} T^{-1} \sum_{t=1}^{T} y_{t-1} \varepsilon_t}{T^{-1} \sum_{t=1}^{T} y_{t-1}^2}$$

Numerator of $\sqrt{T}(\hat{\rho}_T - \rho)$

$$\sqrt{T} T^{-1} \sum_{t=1}^{T} y_{t-1} \varepsilon_t$$

Notice $y_{t-1}\varepsilon_t$ is martingale difference

$$E(y_{t-1}\varepsilon_t y_{t-s}\varepsilon_{t-s}) = 0$$
 for $s > 0$

with mean $E(y_{t-1}\varepsilon_t) = 0$ and variance

$$E(y_{t-1}^2 \varepsilon_t^2) = \sigma^4 / (1 - \rho^2)$$

So by central limit theorem,

$$\sqrt{T} T^{-1} \sum_{t=1}^{T} y_{t-1} \varepsilon_t \stackrel{L}{\to} N(0, \sigma^4/(1-\rho^2))$$

Denominator of $\sqrt{T}(\hat{\rho}_T - \rho)$

$$T^{-1} \sum_{t=1}^{T} y_{t-1}^2$$

is the sample mean of y_{t-1}^2 which by law of large numbers converges in probability to its population mean,

$$T^{-1} \sum_{t=1}^{T} y_{t-1}^2 \stackrel{p}{\to} \sigma^2 / (1 - \rho^2)$$

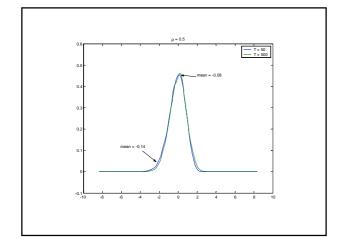
Conclusion:

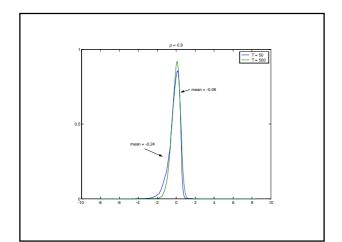
$$\sqrt{T} \left(\widehat{\rho}_T - \rho \right) = \frac{\sqrt{T} T^{-1} \sum_{t=1}^{T} y_{t-1} \varepsilon_t}{T^{-1} \sum_{t=1}^{T} y_{t-1}^2}$$

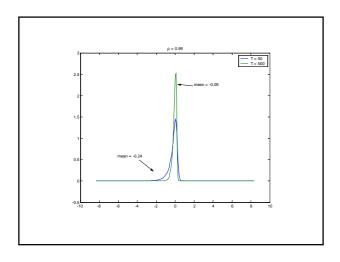
is asymptotically a $N(0, \sigma^4/(1 - \rho^2))$ variable divided by the constant

$$\sigma^2/(1-\rho^2)$$
, or

$$\sqrt{T}(\widehat{\rho}_T - \rho) \stackrel{L}{\rightarrow} N(0, 1 - \rho^2)$$







 $\widehat{
ho}$ is downward-biased in small samples

This bias is more severe as ρ gets bigger

Normal approximation gets better as *T* gets bigger

Variance of $\widehat{\rho}$ around ρ gets smaller as ρ gets bigger

$$\sqrt{T}(\widehat{\rho}_T - \rho) \stackrel{L}{\rightarrow} N(0, 1 - \rho^2)$$

Next consider the OLS t-statistic

$$\begin{split} \tau_{\rho} &= \frac{\widehat{\rho} - \rho}{\widehat{\sigma}_{\widehat{\rho}}} \\ \widehat{\sigma}_{\widehat{\rho}}^2 &= \frac{\widehat{\sigma}^2}{\sum_{t=1}^T y_{t-1}^2} \\ \tau_{\rho} &= \frac{\sqrt{T} \left(\widehat{\rho}_T - \rho \right)}{\sqrt{\widehat{\sigma}_T^2 / \left(T^{-1} \sum_{t=1}^T y_{t-1}^2 \right)}} \end{split}$$

Numerator of τ_{ρ}

$$\sqrt{T}(\widehat{\rho}_T - \rho) \stackrel{L}{\to} N(0, 1 - \rho^2)$$

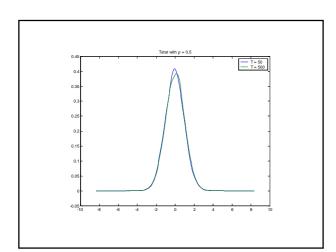
Denominator of τ_{ρ}

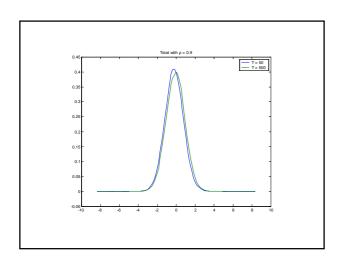
$$\sqrt{\widehat{\sigma}_T^2/(T^{-1}\sum y_{t-1}^2)} \stackrel{p}{\to} \sqrt{\sigma^2/[\sigma^2/(1-\rho^2)]}$$

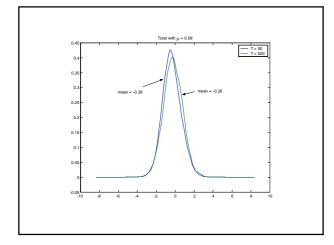
$$= \sqrt{1-\rho^2}$$

Conclusion

$$\tau_{\rho} \stackrel{L}{\rightarrow} N(0,1)$$







Observations

 $au_{
ho}$ is negatively skewed relative to the N(0,1) in small samples

This skew is more severe as ho gets bigger

Normal approximation gets better as T gets bigger

Unit root processes and functional central limit theorem

- A. Small-sample estimation properties for stationary AR(1)
- B. Properties of OLS estimate of ρ when true value is unity

Summary of asymptotic results:

$$\sqrt{T}(\widehat{\rho}_T - \rho) \stackrel{L}{\to} N(0, 1 - \rho^2)$$

$$\tau_\rho \stackrel{L}{\to} N(0, 1)$$

Conjecture: when $\rho = 1$,

$$\sqrt{T}(\widehat{\rho}_T - \rho) \stackrel{p}{\to} 0$$

 $\tau_{\rho} \stackrel{L}{\rightarrow}$ something nonstandard

$$y_{t} = \rho y_{t-1} + \varepsilon_{t}$$

$$\text{true } \rho_{0} = 1$$

$$\widehat{\rho} = \frac{\sum_{t=1}^{T} y_{t-1} y_{t}}{\sum_{t=1}^{T} y_{t-1}^{2}}$$

$$= \rho_{0} + \frac{\sum_{t=1}^{T} y_{t-1} \varepsilon_{t}}{\sum_{t=1}^{T} y_{t-1}^{2}}$$

$$\sqrt{T} (\widehat{\rho}_{T} - \rho_{0}) \stackrel{p}{\to} 0$$

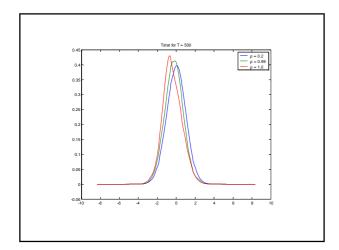
$$T(\widehat{\rho}_{T} - \rho_{0}) = \frac{T^{-1} \sum_{t=1}^{T} y_{t-1} \varepsilon_{t}}{T^{-2} \sum_{t=1}^{T} y_{t-1}^{2}}$$

Numerator of $T(\hat{\rho}_T - \rho_0) = T^{-1} \sum_{t=1}^T y_{t-1} \epsilon_t$ Notice under $H_0: \rho_0 = 1$ $y_t = y_{t-1} + \epsilon_t$ $y_t^2 = y_{t-1}^2 + 2y_{t-1}\epsilon_t + \epsilon_t^2$ $y_{t-1}\epsilon_t = (1/2)(y_t^2 - y_{t-1}^2 - \epsilon_t^2)$ $T^{-1} \sum_{t=1}^T y_{t-1}\epsilon_t = T^{-1}(1/2)(y_T^2 - y_0^2 - \sum_{t=1}^T \epsilon_t^2)$ Numerator of $T(\hat{\rho}_T - \rho_0)$ = $T^{-1}(1/2) \Big(y_T^2 - y_0^2 - \sum_{t=1}^T \varepsilon_t^2 \Big)$ Suppose $y_0 = 0$ (asymptotically same) $T^{-1} \sum_{t=1}^T \varepsilon_t^2 \overset{p}{\to} \sigma^2$ by law of large numbers

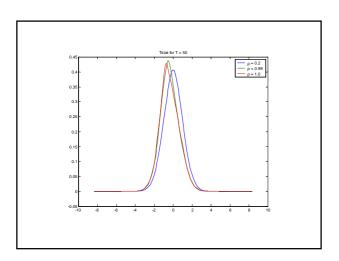
$$T^{-1}y_T^2 = T^{-1}(\varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_T)^2$$
$$= \left(\sqrt{T} T^{-1} \sum_{t=1}^T \varepsilon_t\right)^2$$
which by central limit theorem

converges to the square of a $N(0, \sigma^2)$ = $\sigma^2 \chi^2(1)$

Conclusion: numerator of $T(\hat{\rho}_T - \rho_0)$ = $T^{-1}(1/2) \left(y_T^2 - y_0^2 - \sum_{t=1}^T \varepsilon_t^2 \right)$ converges in distribution to $\sigma^2(1/2)[\chi^2(1) - 1]$ Denominator of $T(\hat{\rho}_T - \rho_0)$ also has a nonstandard asymptotic distribution when $\rho_0 = 1$, and t-statistic τ_ρ also has nonstandard distribution



Probability that $\tau_{\rho} < -1.96 = 0.05$ Probability that N(0,1) < -1.96 = 0.025



A more elegant characterization of these "nonstandard" distributions Consider $u_t \sim \text{i.i.d.}(0,1)$

Define $X_T(r)$ for $r \in [0,1]$ to be T^{-1} times the sum of the first rth fraction of a sample of size T

$$X_T(r) = T^{-1} \sum_{t: (t/T) \leq r} u_t$$

$$X_T(r) = T^{-1} \sum_{t=1}^{[Tr]^*} u_t$$

where

 $[Tr]^*$ = greatest integer less than or equal to Tr

 $X_T(1)$ = sample mean

 $X_T(0)=0$

N I	_ 1	٠	_
1/1	ot		םי
1 4		ш	

$$\sqrt{T}X_T(r) = \sqrt{\frac{[Tr]^*}{T}} \sqrt{\frac{1}{[Tr]^*}} \sum_{t=1}^{[Tr]^*} u_t$$

$$\stackrel{L}{\to} N(0, r)$$

by the CLT

$$\sqrt{T}[X_T(r_2) - X_T(r_1)] \stackrel{L}{\to} N(0, r_2 - r_1)$$
 and is independent of $X_T(r_1)$ for $r_2 > r_1$

Definition: Standard Brownian motion W(r) is a random process

$$W: r \in [0,1] \to \Re^1$$

such that

(a)
$$W(0) = 0$$

		_		
1	(h)	f∩r	anv	dates
М	\sim	101	ann	uaici

(b) for any dates
$$0 \le r_1 < r_2 < \cdots < r_k \le 1$$
, the values $W(r_2) - W(r_1)$, $W(r_3) - W(r_2)$, ..., $W(r_k) - W(r_{k-1})$ are independent multivariate Gaussian with $W(s) - W(t) \sim N(0, s - t)$

(c) for any realization, W(r) is continuous in r with probability 1

Can think of W(r) as the limiting distribution of

$$\sqrt{T}X_T(r) = T^{-1/2}\sum_{t=1}^{[Tr]^*}u_t$$

$$\sqrt{T}X_T(.) \stackrel{L}{\to} W(.)$$

[functional central limit theorem]

Continuous mapping theorem					
If $S_T(.) \stackrel{L}{\to} S(.)$ and $g(.)$ is a					
continuous functional, then					
$g[S_T(.)] \stackrel{L}{\rightarrow} g[S(.)]$					

Example 1: if we multiply u_t by σ (so have white noise with variance σ^2), then multiply W(.) by σ , that is, for $\varepsilon_t \sim \text{i.i.d.} (0, \sigma^2)$,

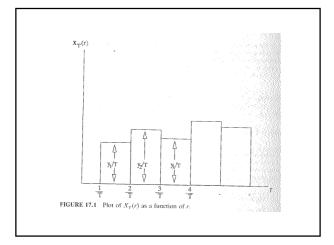
$$X_{T}(r) = T^{-1} \sum_{t=1}^{[Tr]^{*}} \varepsilon_{t}$$

$$= \sigma T^{-1} \sum_{t=1}^{[Tr]^{*}} u_{t}$$

$$\sqrt{T} X_{T}(.) \xrightarrow{L} \sigma W(.)$$

Example 2:

$$\sqrt{T} \int_0^1 X_T(r) dr \stackrel{L}{\to} \sigma \int_0^1 W(r) dr$$



Usefulness of Example 2. Define

$$\xi_{t} = \varepsilon_{1} + \varepsilon_{2} + \dots + \varepsilon_{t}, \, \xi_{0} = 0$$
Then $X_{T}(r) = T^{-1}\xi_{[Tr]^{*}}$

$$\int_{0}^{1} X_{T}(r) dr = T^{-1} \int_{0}^{1} \xi_{[Tr]^{*}} dr$$

$$= T^{-1} [\xi_{1}/T + \xi_{2}/T + \dots + \xi_{T-1}/T]$$

$$\sqrt{T} \int_{0}^{1} X_{T}(r) dr = T^{-3/2} \sum_{t=1}^{T} \xi_{t-1}$$

Thus since

$$\sqrt{T} \int_0^1 X_T(r) \, dr \overset{L}{\to} \sigma \int_0^1 W(r) \, dr$$

it follows that

$$T^{-3/2} \sum_{t=1}^{T} \xi_{t-1} \stackrel{L}{\to} \sigma \int_{0}^{1} W(r) dr$$

But $\xi_t = \varepsilon_1 + \varepsilon_2 + \cdots + \varepsilon_t$ was a random walk

$$T^{-1/2}\sum_{t=1}^{T}\varepsilon_{t}\overset{L}{\to}\sigma W(1)$$

$$T^{-3/2} \sum_{t=1}^{T} \xi_{t-1} \stackrel{L}{\rightarrow} \sigma \int_{0}^{1} W(r) dr$$

Example 3:

$$S_T(r) = \left[\sqrt{T}X_T(r)\right]^2$$

$$\stackrel{L}{\to} \sigma^2[W(r)]^2$$

$$\sim \sigma^2 r^2 \cdot \chi^2(1)$$

Example 4:

$$\int_{0}^{1} S_{T}(r) dr = \frac{\xi_{1}^{2}}{T^{2}} + \frac{\xi_{2}^{2}}{T^{2}} + \cdots \frac{\xi_{T-1}^{2}}{T^{2}}$$

$$= T^{-2} \sum_{t=1}^{T} \xi_{t-1}^{2}$$

$$\stackrel{L}{\to} \sigma^{2} \int_{0}^{1} [W(r)]^{2} dr$$

So return to our result that for

$$y_t = \rho y_{t-1} + \varepsilon_t$$

true $\rho_0 = 1$

$$T(\widehat{\rho}_T - \rho_0) = \frac{T^{-1} \sum_{t=1}^T y_{t-1} \varepsilon_t}{T^{-2} \sum_{t=1}^T y_{t-1}^2}$$

We earlier saw that for numerator,

$$T^{-1} \sum_{t=1}^{T} y_{t-1} \varepsilon_{t}$$

$$\stackrel{L}{\to} (1/2) \sigma^{2} [\chi^{2}(1) - 1]$$

$$= (1/2) \sigma^{2} \{W(1)^{2} - 1\}$$

D	:.	1.	
Den	าทา	nato	nr.

$$T^{-2} \sum_{t=1}^{T} y_{t-1}^{2} \xrightarrow{L} \sigma^{2} \int_{0}^{1} [W(r)]^{2} dr$$

Conclusion:

$$T(\widehat{\rho}_T - \rho_0) \stackrel{L}{\to} \frac{(1/2)\{W(1)^2 - 1\}}{\int_0^1 [W(r)]^2 dr}$$

Can also show that, for the usual OLS t statistic, when $\rho_0 = 1$,

$$\frac{\hat{\rho}_T - \rho_0}{\hat{\sigma}_{\hat{\rho}}} \stackrel{L}{\to} \frac{(1/2)\{W(1)^2 - 1\}}{\left[\int_0^1 [W(r)]^2 dr\right]^{1/2}}.$$

This is called the Dickey-Fuller (Case 1) distribution.

Using same methods it can be shown that if we include a constant term in the estimated regression,

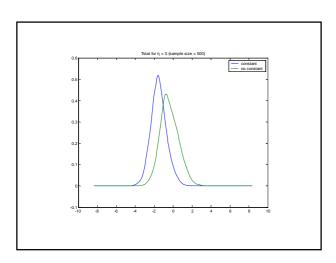
$$y_t = \alpha + \rho y_{t-1} + \varepsilon_t$$

true $\alpha_0 = 0, \rho_0 = 1$

then the OLS t test is characterized by

$$\frac{\widehat{\rho}_{T} - \rho_{0}}{\widehat{\sigma}_{\widehat{\rho}}} \xrightarrow{L} \frac{(1/2)\{W(1)^{2} - 1\} - W(1)\int_{0}^{1} W(r) dr}{\left\{\int_{0}^{1} [W(r)]^{2} dr - \left[\int_{0}^{1} W(r) dr\right]^{2}\right\}^{1/2}}$$

which is called the Dickey-Fuller (Case 2) distribution



Unit root processes and functional central limit theorem

- A. Small-sample estimation properties for stationary AR(1)
- B. Properties of OLS estimate of ρ when true value is unity
- C. Augmented Dickey-Fuller test

Suppose true process is

$$\Delta y_t = \phi_1 \Delta y_{t-1} + \phi_2 \Delta y_{t-2} + \dots + \phi_p \Delta y_{t-p} + \varepsilon_t$$

$$\varepsilon_t \sim \text{i.i.d. } (0, \sigma^2)$$

$$1 - \phi_1 z - \phi_2 z^2 - \dots - \phi_p z^p = 0$$

implies |z| > 1

Then $y_t \sim I(1)$.

What would happen if we estimated the following regession

$$\Delta y_t = \eta y_{t-1} + \phi_1 \Delta y_{t-1} + \phi_2 \Delta y_{t-2} + \cdots + \phi_p \Delta y_{t-p} + \varepsilon_t$$

(true $\eta = 0$).

Note variance of Δy_{t-j} is finite, but variance of y_{t-1} grows with t.

This suggests OLS estimate of $\widehat{\eta}$ converges faster than the estimates of $\widehat{\phi}_j$

Let
$$\mathbf{z}_{t} = (\Delta y_{t-1}, \Delta y_{t-2}, \dots, \Delta y_{t-p})'$$

$$\phi = (\phi_{1}, \phi_{2}, \dots, \phi_{p})'$$

$$\Delta y_{t} = \eta y_{t-1} + \mathbf{z}_{t}' \phi + \varepsilon_{t}$$

$$\begin{bmatrix} \widehat{\eta} \\ \widehat{\phi} \end{bmatrix} = \begin{bmatrix} \sum y_{t-1}^{2} & \sum y_{t-1} \mathbf{z}_{t}' \\ \sum \mathbf{z}_{t} y_{t-1} & \sum \mathbf{z}_{t} \mathbf{z}_{t}' \end{bmatrix}^{-1}$$

$$\begin{bmatrix} \sum y_{t-1} y_{t} \\ \sum \mathbf{z}_{t} y_{t} \end{bmatrix}$$

$$\begin{bmatrix} \hat{\eta} \\ \hat{\phi} \end{bmatrix} = \begin{bmatrix} \sum y_{t-1}^2 \sum y_{t-1} \mathbf{z}_t' \\ \sum \mathbf{z}_t y_{t-1} \sum \mathbf{z}_t \mathbf{z}_t' \end{bmatrix}^{-1} \\ \begin{bmatrix} \sum y_{t-1} (\eta_0 y_{t-1} + \mathbf{z}_t' \boldsymbol{\phi}_0 + \varepsilon_t) \\ \sum \mathbf{z}_t (\eta_0 y_{t-1} + \mathbf{z}_t' \boldsymbol{\phi}_0 + \varepsilon_t) \end{bmatrix}$$

$$\begin{bmatrix} \hat{\eta} - \eta_0 \\ \hat{\phi} - \phi_0 \end{bmatrix} = \begin{bmatrix} \sum y_{t-1}^2 & \sum y_{t-1} \mathbf{z}_t' \\ \sum \mathbf{z}_t y_{t-1} & \sum \mathbf{z}_t \mathbf{z}_t' \end{bmatrix}^{-1} \\ \begin{bmatrix} \sum y_{t-1} \varepsilon_t \\ \sum \mathbf{z}_t \varepsilon_t \end{bmatrix}$$

If $\widehat{\eta}_T$ converges at rate T and $\widehat{\phi}_T$ converges at rate \sqrt{T} , then we want to premultiply by

$$\mathbf{\Upsilon}_T = \left[\begin{array}{cc} T & 0 \\ 0 & T^{1/2} \mathbf{I}_{p-1} \end{array} \right]$$

$$\Upsilon_{T} \begin{bmatrix}
\widehat{\eta}_{T} - \eta_{0} \\
\widehat{\phi}_{T} - \phi_{0}
\end{bmatrix}$$

$$= \Upsilon_{T} \begin{bmatrix}
\sum y_{t-1}^{2} \sum y_{t-1} \mathbf{z}'_{t} \\
\sum \mathbf{z}_{t} y_{t-1} \sum \mathbf{z}_{t} \mathbf{z}'_{t}
\end{bmatrix}^{-1}$$

$$\Upsilon_{T} \Upsilon_{T}^{-1} \begin{bmatrix}
\sum y_{t-1} \varepsilon_{t} \\
\sum \mathbf{z}_{t} \varepsilon_{t}
\end{bmatrix}$$

$$\begin{bmatrix} T(\widehat{\boldsymbol{\eta}}_{T} - \boldsymbol{\eta}_{0}) \\ T^{1/2}(\widehat{\boldsymbol{\phi}}_{T} - \widehat{\boldsymbol{\phi}}_{0}) \end{bmatrix} = \begin{cases} \mathbf{\Upsilon}_{T}^{-1} \begin{bmatrix} \sum y_{t-1}^{2} \sum y_{t-1} \mathbf{z}_{t}^{'} \\ \sum \mathbf{z}_{t} y_{t-1} & \sum \mathbf{z}_{t} \mathbf{z}_{t}^{'} \end{bmatrix} \mathbf{\Upsilon}_{T}^{-1} \end{cases}^{-1} \\ \mathbf{\Upsilon}_{T}^{-1} \begin{bmatrix} \sum y_{t-1} \varepsilon_{t} \\ \sum \mathbf{z}_{t} \varepsilon_{t} \end{bmatrix}$$

$$\begin{bmatrix} T(\widehat{\boldsymbol{\eta}}_T - \boldsymbol{\eta}_0) \\ T^{1/2}(\widehat{\boldsymbol{\phi}}_T - \widehat{\boldsymbol{\phi}}_0) \end{bmatrix} = \begin{bmatrix} T^{-2} \sum y_{t-1}^2 & T^{-3/2} \sum y_{t-1} \mathbf{z}_t' \\ T^{-3/2} \sum \mathbf{z}_t y_{t-1} & T^{-1} \sum \mathbf{z}_t \mathbf{z}_t' \end{bmatrix}^{-1} \\ \begin{bmatrix} T^{-1} \sum y_{t-1} \varepsilon_t \\ T^{-1/2} \sum \mathbf{z}_t \varepsilon_t \end{bmatrix}$$

Recall that we showed that when y_t
follows a random walk $(\Delta y_t = \varepsilon_t)$,

$$T^{-1} \sum_{t=1}^{T} y_{t-1} \varepsilon_t \stackrel{L}{\to} (1/2) \sigma^2 [\chi^2(1) - 1]$$

More generally, if

$$\Delta y_t = \psi_0 \varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + \cdots$$
with $\sum_{j=0}^{\infty} |\psi_j| < \infty$, then

$$T^{-1} \sum_{t=1}^{T} y_{t-1} \varepsilon_{t} \stackrel{L}{\to} (1/2) \sigma^{2} \left(\sum_{j=0}^{\infty} \psi_{j} \right) [\chi^{2}(1) - 1]$$

Furthermore, $T^{-3/2} \sum_{t=1}^{T} y_{t-1} \Delta y_{t-j} \stackrel{p}{\to} 0$

$$\begin{bmatrix} T(\widehat{\boldsymbol{\eta}}_T - \boldsymbol{\eta}_0) \\ T^{1/2}(\widehat{\boldsymbol{\varphi}}_T - \widehat{\boldsymbol{\varphi}}_0) \end{bmatrix} = \begin{bmatrix} T^{-2} \sum y_{t-1}^2 & T^{-3/2} \sum y_{t-1} \mathbf{z}_t' \\ T^{-3/2} \sum \mathbf{z}_t y_{t-1} & T^{-1} \sum \mathbf{z}_t \mathbf{z}_t' \end{bmatrix}^{-1} \\ \begin{bmatrix} T^{-1} \sum y_{t-1} \varepsilon_t \\ T^{-1/2} \sum \mathbf{z}_t \varepsilon_t \end{bmatrix}$$

$$\begin{bmatrix} T(\widehat{\boldsymbol{\eta}}_{T} - \boldsymbol{\eta}_{0}) \\ T^{1/2}(\widehat{\boldsymbol{\phi}}_{T} - \widehat{\boldsymbol{\phi}}_{0}) \end{bmatrix} \xrightarrow{L}$$

$$\frac{(1/2)\sigma^{2}\left(\sum_{j=0}^{\infty} \psi_{j}\right)[\chi^{2}(1)-1]}{T^{-2}\sum_{j=1}^{\infty} y_{i-1}^{2}}$$

$$\left(T^{-1}\sum_{j=0}^{\infty} \mathbf{z}_{t}\mathbf{z}_{t}^{j}\right)^{-1}\left(T^{-1/2}\sum_{j=0}^{\infty} \mathbf{z}_{t}\epsilon_{t}\right)$$

$$\begin{aligned} \left(T^{-1} \sum \mathbf{z}_{t} \mathbf{z}_{t}^{'}\right)^{-1} \left(T^{-1/2} \sum \mathbf{z}_{t} \varepsilon_{t}\right) &\stackrel{L}{\rightarrow} \\ \mathbf{q} \sim N(\mathbf{0}, \sigma^{2} \Gamma_{0}^{-1}) \\ \Gamma_{0} &= E(\mathbf{z}_{t} \mathbf{z}_{t}^{'}) = \underset{T \rightarrow \infty}{\mathsf{plim}} T^{-1} \sum \mathbf{z}_{t} \mathbf{z}_{t}^{'} \end{aligned}$$

Conclusion:

Asymptotic distribution of $T^{1/2}(\phi_T - \phi_0)$ is same as standard case, in fact, identical to that if we hadn't estimated η at all!

Asymptotic distribution of $\widehat{\eta}$ is nonstandard, in fact, asymptotic distribution of t test of $\eta=0$ is same (Dickey-Fuller case 1) as that of $\rho=1$ in the regression

$$y_t = \rho y_{t-1} + \varepsilon_t$$

$$T(\widehat{\eta}_T - \eta_0) \xrightarrow{L} \text{nonstandard}$$

$$T^{1/2}(\widehat{\eta}_T - \eta_0) \xrightarrow{p} 0$$

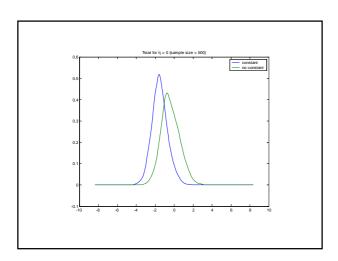
When constant is included in estimated regression,

$$\Delta y_t = c + \eta y_{t-1} + \phi_1 \Delta y_{t-1} + \phi_2 \Delta y_{t-2} + \cdots + \phi_p \Delta y_{t-p} + \varepsilon_t,$$

but true process is AR(p) in firstdifferences without constant or drift

$$\Delta y_t = \phi_1 \Delta y_{t-1} + \phi_2 \Delta y_{t-2} + \dots + \phi_p \Delta y_{t-p} + \varepsilon_t$$

then t-test of $\eta = 0$ has the Dickey-
Fuller Case 2 distribution.

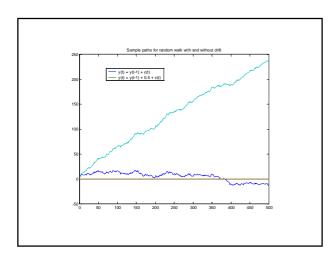


•24

Why include constant in regression when true model doesn't have it and it makes distribution more skewed?

Answer: if true $\eta = 0$, it's obvious

that c must be near zero

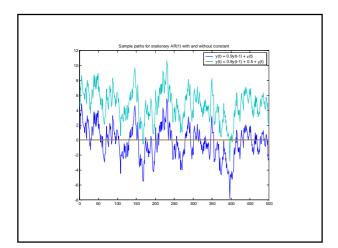


$$y_t = c + y_{t-1} + \varepsilon_t$$

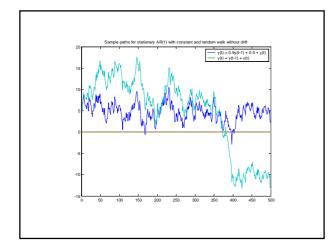
$$\Rightarrow y_t = ct + y_0 + \sum_{\tau=1}^t \varepsilon_\tau$$

$$\Rightarrow y_t = ct + y_0 \pm 2\sigma \sqrt{t}$$

If true $\eta=0$, it's obvious that c must be near zero. If true $\eta<0$, it's obvious that c must be greater than zero.



 $H_0: \eta = 0$ (only sensible if $c \simeq 0$) $H_A: \eta < 0$ (only sensible if c > 0)



Conclusion: to test for unit root $(\eta = 0)$ estimate

$$\Delta y_t = c + \eta y_{t-1} + \phi_1 \Delta y_{t-1} + \phi_2 \Delta y_{t-2} + \cdots + \phi_p \Delta y_{t-p} + \varepsilon_t$$

Calculate distribution assuming true c = 0, $\eta = 0$ (i.e., compare t test of $\eta = 0$ with Case 2 in Table B.6)

What if data do exhibit a strong trend? Estimate

$$\Delta y_t = c + \delta t + \eta y_{t-1} + \phi_1 \Delta y_{t-1} + \phi_2 \Delta y_{t-2}$$

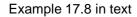
$$+ \cdots + \phi_p \Delta y_{t-p} + \varepsilon_t$$

$$H_0: \eta = 0$$

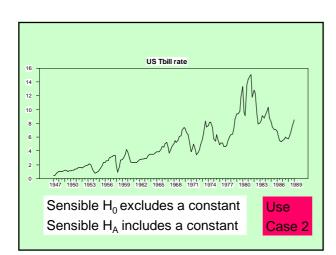
(only sensible if c > 0 and $\delta = 0$)

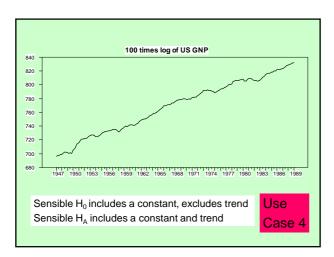
 $H_A: \eta < 0$ (only sensible if c>0 and $\delta>0$)

Compare OLS t test of $\eta = 0$ with Case 4 in Table B.6)



U.S. 3-month Treasury bill rate, 1947:Q2 to 1989:Q1





Caution on interpreting ADF tests

The ADF test assumes

$$y_t = \alpha + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \varepsilon_t$$
 and tests

$$H_0: \phi_1 + \dots + \phi_p = 1$$

 $H_A: \phi_1 + \dots + \phi_p < 1$

If we reject H_0 that does not mean we reject the hypothesis that $y_t \sim I(1)$

Example:

 a_t and ε_t uncorrelated white noise each with unit variance

$$\xi_{t} = \xi_{t-1} + a_{t}$$

$$y_{t} = \varepsilon_{t} + 10^{-6} \times \xi_{t}$$

$$(1 - L)y_{t} = 10^{-6}a_{t} + (1 - L)\varepsilon_{t}$$

$$s_{\Delta y}(0) = 10^{-12} > 0$$

So y_t is a unit root process, but is impossible to distinguish from white noise if $T < 10^6$.

Could not claim to have rejected this possibility based on observed data. Issue: this $y_t \sim ARMA(1,1)$ for which AR(p) is poor approximation.

Correct interpretation of ADF:
Given that I approximate with $AR(p)$, is
$\phi_1 + \cdots + \phi_p = 1$ consistent with the data?
As T gets larger, could increase p
so the set of considered models gets
closer to set of all $I(1)$ processes.

Unit root processes and functional central limit theorem

- A. Small-sample estimation properties for stationary AR(1)
- B. Properties of OLS estimate of ρ when true value is unity
- C. Augmented Dickey-Fuller test
- D. Elliott, Rothenberg and Stock test

Note the ADF test conditions on initial p values for y_t . ERS find that these values have

ERS find that these values have information about constant and trend that could produce a more powerful test.

Uniformly most powerful test (against all $\rho=1+\eta$) does not exist. But choosing a test with strong power for $\rho=1+c/T$ with c=-7.0 (case 2) or c=-13.5 (case 4) works well.

Elliott-Rothenberg-Stock GLS
augmented Dickey-Fuller test

Case 2: want to include constant under alternative but not under the null.

(1) Set $\rho = 1 - 7/T$ (e.g, $\rho = 0.93$ when T = 100.

(2) Calculate

$$\mathbf{y}^* = \begin{bmatrix} y_1 \\ y_2 - \rho y_1 \\ y_3 - \rho y_2 \\ \vdots \\ y_T - \rho y_{T-1} \end{bmatrix}$$

$$\mathbf{x}^* = \begin{vmatrix} 1 \\ 1 - \rho \\ 1 - \rho \\ \vdots \\ 1 - \rho \end{vmatrix}$$

•31

(3) Regress y^* on x^*

$$\hat{c} = (\mathbf{x}^{*\prime}\mathbf{x}^*)^{-1}(\mathbf{x}^{*\prime}\mathbf{y}^*)$$

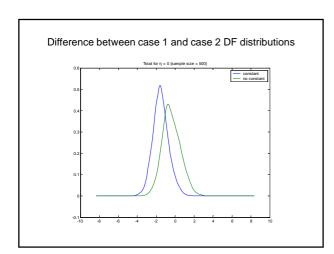
- (4) Calculate $\tilde{y}_t = y_t \hat{c}$
- (5) Do ADF using \tilde{y}_t with no constant term:

$$\Delta \tilde{\mathbf{y}}_{t} = \eta \tilde{\mathbf{y}}_{t-1} + \phi_{1} \Delta \tilde{\mathbf{y}}_{t-1} + \phi_{2} \Delta \tilde{\mathbf{y}}_{t-2}$$

$$\cdots + \phi_p \Delta \tilde{y}_{t-p} + \varepsilon_t$$

$$t = p + 1, p + 2, \dots, T$$

Compare OLS t stat for $\eta = 0$ with Case 1 in Table B.6.



Elliott-Rothenberg-Stock GLS augmented Dickey-Fuller test

Case 4: want to include constant and time trend under alternative but not under the null.

(1) Set $\rho = 1 - 13.5/T$ (e.g, $\rho = 0.865$ when T = 100.

$$\mathbf{y}^{*} = \begin{bmatrix} y_{1} \\ y_{2} - \rho y_{1} \\ y_{3} - \rho y_{2} \\ \vdots \\ y_{T} - \rho y_{T-1} \end{bmatrix}$$

$$\mathbf{x}^{*} = \begin{bmatrix} 1 & 1 \\ 1 - \rho & 2 - \rho 1 \\ 1 - \rho & 3 - \rho 2 \\ \vdots & \vdots \\ 1 - \rho & T - \rho (T - 1) \end{bmatrix}$$

(3) Regress
$$y^*$$
 on x^*

$$\begin{bmatrix} \hat{c} \\ \hat{\delta} \end{bmatrix} = (\mathbf{x}^{*'}\mathbf{x}^{*})^{-1}(\mathbf{x}^{*'}\mathbf{y}^{*})$$

- (4) Calculate $\tilde{y}_t = y_t \hat{c} \hat{\delta}t$
- (5) Do ADF using \tilde{y}_t with no constant term or trend:

$$\Delta \tilde{\mathbf{y}}_{t} = \eta \tilde{\mathbf{y}}_{t-1} + \phi_{1} \Delta \tilde{\mathbf{y}}_{t-1} + \phi_{2} \Delta \tilde{\mathbf{y}}_{t-2}$$

$$\cdots + \phi_{p} \Delta \tilde{\mathbf{y}}_{t-p} + \varepsilon_{t}$$

$$t = p + 1, p + 2, \dots, T$$

Compare OLS t stat for $\eta = 0$ with Panel C in Table 1 of ERS.

Unit root processes and functional central limit theorem

- A. Small-sample estimation properties for stationary AR(1)
- B. Properties of OLS estimate of ρ when true value is unity
- C. Augmented Dickey-Fuller test
- D. Elliott, Rothenberg and Stock test
- E. Consequences for nonstationary AR(p)

•			
•			
٠			
•			

Above	disci	Ission	consid	ered
ADOVE	uisci	JOSIUII	COLISIA	CICU.

$$\Delta y_t = \eta y_{t-1} + \phi_1 \Delta y_{t-1} + \phi_2 \Delta y_{t-2} + \cdots + \phi_p \Delta y_{t-p} + \varepsilon_t$$

Now consider OLS estimation of

$$y_{t} = \rho_{1}y_{t-1} + \rho_{2}y_{t-2} + \cdots + \rho_{p+1}y_{t-p-1} + \varepsilon_{t}$$

$$= (1 + \eta + \phi_{1})y_{t-1} + (\phi_{2} - \phi_{1})y_{t-2} + \cdots + (-\phi_{p})y_{t-p-1} + \varepsilon_{t}$$
OLS: $\hat{\rho}_{1} \equiv 1 + \hat{\eta} + \hat{\phi}_{1}$

Suppose we wanted to do a hypothesis test about the value of $\eta + \phi_1$

$$T^{1/2} \widehat{\eta}_T \stackrel{p}{\to} \eta_0$$

$$T^{1/2} (\widehat{\phi}_{1T} - \phi_{10}) \stackrel{L}{\to} N(0, v)$$

$$\Rightarrow T^{1/2} (\widehat{\phi}_{1T} + \widehat{\eta}_T - \phi_{10} - \eta_0) \stackrel{L}{\to} N(0, v)$$

OLS:
$$\hat{\rho}_1 \equiv 1 + \hat{\eta} + \hat{\phi}_1$$

 $T^{1/2}(\hat{\rho}_{1T} - \rho_{10}) \stackrel{L}{\rightarrow} N(0, v)$

•34	

Original regression:

$$y_t = \mathbf{x}_t' \mathbf{\beta} + \varepsilon_t$$
$$\widehat{\mathbf{\beta}} = \left(\sum_{t} \mathbf{x}_t \mathbf{x}_t'\right)^{-1} \left(\sum_{t} \mathbf{x}_t y_t\right)$$

Transformed regression:

$$y_{t} = \mathbf{x}_{t}^{*'} \boldsymbol{\beta}^{*} + \varepsilon_{t}$$

$$\mathbf{x}_{t}^{*} = \mathbf{H} \mathbf{x}_{t}$$

$$\hat{\boldsymbol{\beta}}^{*} = \left(\sum_{t} \mathbf{x}_{t}^{*} \mathbf{x}_{t}^{*'}\right)^{-1} \left(\sum_{t} \mathbf{x}_{t}^{*} y_{t}\right)$$

$$= \left(\mathbf{H} \sum_{t} \mathbf{x}_{t} \mathbf{x}_{t}^{'} \mathbf{H}^{'}\right)^{-1} \left(\mathbf{H} \sum_{t} \mathbf{x}_{t} y_{t}\right)$$

$$= \mathbf{H}^{'-1} \hat{\boldsymbol{\beta}}$$

Summary

True model:

$$\Delta y_t = \phi_1 \Delta y_{t-1} + \phi_2 \Delta y_{t-2} + \cdots$$
$$+ \phi_p \Delta y_{t-p} + \varepsilon_t$$
$$1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p = 0$$
implies $|z| > 1$

Estimated model:

$$y_t = \rho_1 y_{t-1} + \rho_2 y_{t-2} + \cdots + \rho_{p+1} y_{t-p-1} + \varepsilon_t$$

Each estimate $\hat{\rho}_j$ is asymptotically Normal.

A standard t test of $\hat{\rho}_j = \rho_{j0}$ is asymptotically valid for any j.

Most F tests on the ρ_j 's are asymptotically valid.

	The only	problem	comes	from	the
fact	that				

$$\widehat{\rho}_1 + \widehat{\rho}_2 + \cdots + \widehat{\rho}_{p+1} = 1 + \widehat{\eta},$$

which has a nonstandard distribution (though Normal approximation to t statistic is not too bad).

To test null hypothesis that

$$\rho_1 + \rho_2 + \dots + \rho_{p+1} = 1$$

(i.e., null hypothesis that there is a unit root), compare t test of this hypothesis with the distribution derived above for the case

$$y_t = \rho y_{t-1} + \varepsilon_t$$

What about the following?

True model:

$$\Delta y_t = \phi_1 \Delta y_{t-1} + \phi_2 \Delta y_{t-2} + \cdots$$
$$+ \phi_p \Delta y_{t-p} + \varepsilon_t$$
$$1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p = 0$$

implies |z| > 1 (same as before)

Estimated model:

$$\Delta y_t = c + \eta y_{t-1} + \phi_1 \Delta y_{t-1} + \phi_2 \Delta y_{t-2} + \cdots + \phi_p \Delta y_{t-p} + \varepsilon_t$$

(added a constant term)

Results: individual coefficients ϕ_j			
are asymptotically Normal, and			
t statistics for $\phi_j = \phi_{j0}$ are			
asymptotically valid.			
This implies same for t statistics on $\widehat{ ho}_j$ in			
$y_t = c + \rho_1 y_{t-1} + \rho_2 y_{t-2} + \cdots$			
$+ \rho_{p+1} y_{t-p-1} + \varepsilon_t$			

 $\Delta y_t = c + \eta y_{t-1} + \phi_1 \Delta y_{t-1} + \phi_2 \Delta y_{t-2} + \cdots$ $+ \phi_p \Delta y_{t-p} + \varepsilon_t$

Both \hat{c} and $\hat{\eta}$ have nonstandard asymptotic distributions, and t test of $\eta=0$ has different asymptotic distribution from case with no constant term (and more different from N(0,1) distribution).

If we estimate in the form

$$y_t = c + \rho_1 y_{t-1} + \rho_2 y_{t-2} + \cdots + \rho_{p+1} y_{t-p-1} + \varepsilon_t,$$

problematic hypothesis tests:

$$c = c_0$$

 $\rho_1 = \rho_2 = \dots = \rho_{p+1} = 0$
 $\rho_1 + \rho_2 + \dots + \rho_{p+1} = 1$

all other hypothesis tests, done in usual way, are asymptotically ok