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Abstract

This paper develops a unified model of economic fluctuations and growth characterized by

long-run equilibrium unemployment and sustained monopoly power. Changes in demand are a

key cause of deviations from the steady-state growth path despite the absence of any nominal

rigidities. The key friction in the model is the technological requirement that production of

certain goods requires a dedicated team of workers that takes time to assemble and train.
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1 Introduction.

Many of us are persuaded that fluctuations in demand are a key driver of business cycles.

Production of automobiles and construction of homes appear to fall in a recession not because

the items become more difficult to build, but instead because fewer people seem willing to buy

them. Evidence supporting this conclusion comes from Mian and Sufi (2014), Michaillat and

Saez (2015), and Auerbach, Gorodnichenko, and Murphy (2020), among many others.

A common understanding of the mechanism whereby a decrease in demand leads to lower

output is based on a failure of wages and prices to adjust sufficiently quickly. Potential GDP

is sometimes defined as the level of output that would be observed if wages and prices were

perfectly flexible. This magnitude is often viewed as depending on the labor force, capital

stock, and available technology. If wages and prices fall sufficiently quickly in response to a

drop in demand, this is supposed to keep output at potential.

But the key feature that makes developed economies productive is specialization of labor,

capital, and technology. When this is the case, potential GDP depends not just on the levels

of these factors of production but also on the match between specialized factors and the

composition of demand. If the demand for a particular product falls below the level that

resources were precommitted to be able to produce, producers have limited incentive to lower

price and limited ability to shift productive factors to some other specialization. This paper

illustrates this in the context of a general equilibrium growth model with perfectly flexible

wages and prices. It develops a unified model of growth and fluctuations in which demand

and other variables contribute to short-run fluctuations while long-run growth is determined

solely by increases in population and productivity. It thus provides an alternative motivation

for the consensus interpretation of economic growth and recessions described above without

making any appeal to failure of wages and prices to adjust.

The observation that excess capacity can give rise to real effects of demand shocks even

with perfectly flexible wages and prices has recently been developed by Murphy (2017) and

Auerbach, Gorodnichenko, and Murphy (2020). Their models share many important features

and implications with the one presented here. A key difference is that in their models, capac-

ity is taken to be exogenous, whereas in this paper capacity is determined endogenously as

individuals weigh the costs and benefits of specialization.

The model here focuses on the simple case where labor is the only factor of production.

Production of some goods is only possible if a dedicated team of workers is assembled and

trained in advance to make that particular good. Capacity to produce good j is determined

by the number of people specializing in that good and an exogenously specified productivity.

Given the precommitted specialized resources, the good can be produced at zero marginal cost

up to the level of capacity.

Developing a new good is a costly gamble. But if it is successful, the team has a monopoly
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in producing the good and faces the linear demand curve shown in the top panel of Figure

1. The intercepts Ajt and Q̄jt are functions of consumer preferences and the distribution

of income that will be derived below. With zero marginal cost, the unit maximizes profits

by producing up to the point where marginal revenue equals zero, namely the point Q̄jt/2,

provided it has the capacity to do so.1

Suppose there is a shock to demand for good j that reduces both Ajt and Q̄jt by a factor

χ < 1. In the model developed below, this would result from a change in consumer preferences

that reduces the marginal utility of good j by the factor χ. The profit-maximizing response is

for producers to lower the quantity of good j that is produced by the factor χ.

The change in preferences also implies an increase in the relative demand for other goods.

But if those goods are already being produced at capacity, the profit-maximizing response is

to raise the price of those items with no increase in quantity. If specialized resources cannot be

costlessly shifted across activities, the result of a shock to relative demand is idle productive

resources and a fall in total real GDP.

The decision to specialize is endogenous. Developing a new specialty takes time. Non-

specialized workers evaluate the lifetime costs and benefits in making this decision. If the

drop in demand is purely transitory, it does not effect any future returns, and thus does not

affect the expected lifetime benefits of future specialization. There are some possible general

equilibrium effects on impact, but in a calibration of the model these are quantitatively minor.

The response to a purely transitory fall in demand for some goods is thus a temporary drop

in total real output with essentially no lasting consequences.

Suppose instead that there is a change in preferences that increases Ajt and Q̄jt by a factor

χ > 1. The profit-maximizing response of a unit that is already at capacity is to increase

the price with no change in quantity. Apart from quantitatively modest general equilibrium

effects, the increase in demand has no effect on real GDP. Empirical support for the proposition

that a decrease in demand can have a bigger effect on output than an increase of the same

magnitude was provided by Weise (1999) and Lo and Piger (2005). Scholars like Tobin (1972)

and Ball and Mankiw (1994) attributed this observed asymmetry to the mechanics of partial

price adjustment. Here, as in Murphy (2017) and Auerbach, Gorodnichenko, and Murphy

(2020), the asymmetry is caused by technological costs of adjusting resources and would arise

even with perfectly flexible prices. When demand falls below capacity, the profit-maximizing

response is to lower both output and price, whereas an increase in demand above capacity

leads only to a price increase.

If the shock to demand is persistent there can be interesting dynamic effects. In the tech-

nology modeled here, all members of a specialized team are indispensable. All members of

1The equation for a line with intercepts Ajt and Q̄jt is Pjt = Ajt − QjtAjt/Q̄jt implying the revenue
function AjtQjt −Q

2
jtAjt/Q̄jt with marginal revenue Ajt − 2QjtAjt/Q̄jt. This is a line with the same vertical

intercept as the demand curve and twice the slope. The horizontal intercept at Qjt = Q̄jt/2 is the point at
which elasticity of demand is unity.
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the unit either remain committed to producing good j or else the unit disbands. If the drop

in demand for good j is sufficiently large and long lasting, it may be in the lifetime interests

of the workers to abandon production of the good and turn to producing a nonspecialized

good or try to develop a new specialty. The number of nonspecialized workers at any time

who are trying to develop a specialty is an endogenous response to the costs and benefits of

specialization. Nonspecialized workers experience different i.i.d. shocks to their productivity

at producing the nonspecialized good. Those with favorable productivity produce the non-

specialized good, while those with less favorable productivity try to develop a new specialty.

The cut-off responds endogenously to economic conditions. But it is never the case that all

workers are trying to specialize. The result is that it takes time for the economy to return

to the level of specialization that is optimal in the long run. The gradualness of the return

to the long-run equilibrium is a result of technological costs of reallocating resources, not any

sluggishness in the adjustment of wages or prices.

In response to a drop in demand that is persistent but less severe, it may be in the interest

of specialized workers to wait for demand for their specialty to recover. In this case there

could be a longer-lasting episode of underutilized resources. The opportunities and rewards

to specialization will be lower during the demand slump, resulting in a build-up over time in

the fraction of the labor force without a specialization. This causes the consequences for total

output to build over time, and can result in a hump-shaped response to the shock in which

the maximum effect is not observed until many months after the initial shock. Empirical

support and alternative explanations for a hump-shape response to demand were provided

by Christiano, Eichenbaum and Evans (2005), Hamilton (2008), and Auclert, Rognlie and

Straub (2020). Here the hump shape is an endogenous implication of the technological costs

associated with reallocating specialized resources.

Figure 4 below illustrates a variety of dynamic responses that could result from a demand

shock to 0.6% of GDP depending on the duration of the shock and how its incidence is

distributed across different goods.

The core contribution of the paper is to explain how demand could be a key driver of short-

run fluctuations but not matter for long-run fluctuations without relying on the assumption

that wages or prices take time to adjust. The friction in this model that replaces the nominal

rigidities in Keynesian models is the technological requirement that production of some goods

requires specialized resources committed in advance.

There are of course many other papers that have proposed alternative explanations for how

demand shocks could lead to lower output even with perfectly flexible prices. One popular

approach interprets aggregate demand shocks as a decrease in desired current consumption

relative to future consumption. However, Angeletos (2018) noted that this mechanism would

predict recessions to be associated with higher investment and hours worked. An alternative

literature emphasizes coordination problems. Models such as those developed by Cooper and
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John (1988), Woodford (1991), Kaplan and Menzio (2016), and Fajgelbaum, Schaal, and

Taschereau-Dumouchel (2017) are characterized by multiple equilibria, in which demand may

or may not be a factor in aggregate fluctuations depending on equilibrium selection. Angeletos

and Lian (2020) and Ilut and Saijo (2021) emphasized coordination of expectations in models

with a unique equilibrium but in which individual actors are not fully rational. By contrast,

the model developed here is characterized by a unique equilibrium in which everyone behaves

completely rationally.

There is also a large literature that emphasizes sectoral shocks, costly reallocation, and

mismatch. Shocks to productivity are the underlying cause of economic fluctuations in most

of these models, such as Alvarez and Shimer (2011) and Şahin et al. (2014). Relative demand

shocks are the driving variable in Guerrieri et al. (2021), but nominal wage and price rigidities

are fundamental for propagating demand shocks in their model. Hamilton (1988) showed

how sectoral demand shocks can lead to unemployment either from reallocation of labor or

from impacted workers waiting for conditions in their sector to improve, but that was in a

two-sector model without growth, creation of new goods, or monopoly power. None of these

papers developed the case that costly reallocation alone could explain why demand shocks can

have dynamic multiplier consequences for aggregate economic activity such as are typically

attributed to nominal rigidities.

This paper makes a number of other contributions to the literature. It shows how monopoly

power can be sustained in a growing economy even as new goods are introduced and some

old goods are discontinued every period. It develops a new characterization of inequality as

arising from successful gambles to create new goods. The costs associated with trying to cre-

ate new goods determine steady-state income differentials and unemployment as well as the

speed with which the economy recovers from shocks. The model allows for considerable het-

erogeneity, yet both individual and aggregate outcomes can be calculated using only a handful

of equations. The model is also consistent with the observation that the unemployment rate

has been remarkably stable despite a century of economic growth and technological innova-

tions. Martellini and Menzio (2020) noted the challenges in explaining this using standard

search and matching models and proposed an alternative explanation. In this model, a stable

unemployment rate in the face of long-term economic growth is an equilibrium implication of

the fact that the opportunity cost and potential benefits of being unemployed along with the

tax base that finances compensation paid to the unemployed all grow with the overall level of

productivity.

2 Demand for goods.

At time t the population consists of a continuum of individuals of measure Nt who each

consume a discrete set j ∈ Jt of different goods. Goods are nonstorable, and there are no
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capital or financial markets, so that the budget constraint for individual i is

�

j∈Jt

Pjtqijt ≤ yit (1)

where Pjt is the nominal price of good j, qijt is the quantity of good j consumed by individual

i, and yit the individual’s nominal income. The objective of consumer i is to maximize
2

Uit =
�

j∈Jt

−γijt
2
(q̄ijt − qijt)

2 (2)

subject to (1).The first-order conditions for an interior solution are

γijt(q̄ijt − qijt) = λitPjt j ∈ Jt (3)

for λit the marginal utility of income. Holding λit constant, these imply a price elasticity of

demand given by

εijt =

����
∂qijt
∂Pjt

γijt(q̄ijt − qijt)/λit
qijt

���� =
q̄ijt − qijt

qijt
. (4)

Quadratic preferences have some important advantages for purposes of this model. As

emphasized by Murphy (2017), quadratic preferences imply that the elasticity of demand

changes as we move along the demand curve, which is important for understanding how

decisions of monopolist producers respond to changing conditions. The price elasticity of

consumer i’s demand is less than one when qijt > q̄ijt/2 and greater than one when qijt < q̄ijt/2.

In the general equilibrium described below, producers choose a level of production and price

such that the market-wide elasticity is always greater than or equal to one. Along the steady-

state growth path, the market-wide elasticity will turn out to be exactly equal to one.

Another advantage of quadratic utility over isoelastic preferences is that quadratic prefer-

ences allow the possibility that producers of j could be driven out of business if productivity

or demand is too low. If the price Pjt becomes too high, a consumer with preferences (2) will

choose qijt = 0, whereas isoleastic preferences imply that consumers always buy every good

in equilibrium, willing to pay Pjt → ∞ as qijt −→ 0. In the economy described below, some

goods are always being discontinued and new goods are being created along the steady-state

growth path.

A final advantage of quadratic preferences is that they result in simple closed-form solutions

for key magnitudes.

Expenditure shares. A useful way to summarize the demand of individual i is by the fraction

of income that consumer i chooses to spend on good j at time t. The following proposition

2If one were to motivate (2) as a second-order approximation to logarithmic preferences, q̄ijt/2 would be
the value of qijt around which the Taylor expansion is taken. See the discussion of Figure 3 in Section 7.
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gives some results that will prove useful in characterizing the equilibrium fraction of spending

devoted to different goods along the steady-state growth path.

Proposition 1. Define

αijt = γijt(q̄ijt/2)
2. (5)

(a) If prices and income are such that individual i would choose qijt = q̄ijt/2 for all j ∈ Jt,

then the fraction of individual i’s income that is spent on good j is proportional to αijt:

Pjtqijt/yit = αijt/
�

j∈Jt
αijt. (6)

(b) If there is a set M
(k)
t of measure R

(k)
t of different individuals at date t who all share

the same preference parameters, that is, if γijt = γ
(k)
jt and q̄ijt = q̄

(k)
jt for all i ∈ M

(k)
t ,and if

prices and incomes are such that members of the group on average choose to consume q̄
(k)
jt /2,

that is, if

(1/R
(k)
t )

�

i∈M
(k)
t

qijtdi = q̄
(k)
jt /2 ∀j ∈ Jt, (7)

then the fraction of the group’s income that is spent on good j is proportional to α
(k)
jt :

�
i∈M

(k)
t
Pjtqijtdi

�
i∈M

(k)
t
yitdi

=
α
(k)
jt

�
j∈Jt

α
(k)
jt

. (8)

Market-wide demand curves. Summing across all consumers i gives the market demand

curve Pjt = Ajt − BjtQjt. Note we will be following the notational convention of using lower-

case letters like qijt to refer to magnitudes for individual consumers i and upper case like

Qjt to refer to total magnitudes for individual goods j. Here Ajt = Q̄jt/Λjt, Bjt = 1/Λjt,

Λjt =
� Nt
0
(λit/γijt)di and

Q̄jt =

� Nt

0

q̄ijtdi. (9)

The marginal revenue for producers of good j is MRjt = Ajt − 2BjtQjt. The good-level

elasticity has the same properties as the demand curves for individual consumers; the market-

wide elasticity is greater than or equal to one provided Qjt ≤ Q̄jt/2.

3 Production of specialized goods.

Good j = 1 can be produced by anyone without any training or coordination with others. By

contrast, goods j > 1 are specialized in the sense that their production requires a dedicated

team who work together to produce the good. If any worker were to leave the team, the

good could not be produced. Once the workers who form a team are assembled, they enjoy

a monopoly in producing good j and base their production and pricing decisions on that

monopoly power. Team j consists of a measure of Njt workers and has total production
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capacity XjtNjt where productivity per worker Xjt for the team evolves according to an

exogenous process. At the time that its production and pricing decisions for period t are

made, unit j takes Xjt and Njt as given and chooses Pjt and Qjt to maximize total profits

PjtQjt subject to Pjt = Ajt − BjtQjt, Pjt ∈ [0, Ajt], and Qjt ≤ XjtNjt. The number of

specialized goods is sufficiently large that unit j ignores the effect of its decisions on Λjt or the

price and output of other units. The profit-maximizing strategy is to produce up to the point

where marginal revenue equals zero if there is sufficient production capacity and to produce

at production capacity if not:

Qjt =

�
Q̄jt/2 if XjtNjt ≥ Q̄jt/2 [demand constrained]

XjtNjt if XjtNjt < Q̄jt/2 [supply constrained]
. (10)

We will describe production of good j as demand constrained in the first instance and supply

constrained in the second; see the top panel of Figure 1.

Note that under no circumstances would a monopolist ever choose to produce in the inelas-

tic region of the demand curve. It is always the case for every period t and every specialized

good j that Qjt ≤ Q̄jt/2.

New hiring. In period t, unit j takes its total capacity NjtXjt as given. We assume that

the hiring decision for Nj,t+1 is based on the goal of maximizing expected profit of the unit.

Let N∗
j,t+1 denote the level of employment that maximizes expected revenue:

N ∗
j,t+1Et(Xj,t+1) = Et(Q̄j,t+1/2). (11)

Since the team could not be productive if any current member leaves, workers are not laid off

even if N ∗
j,t+1 < Njt. New workers are hired up to the level N

∗
j,t+1 if N

∗
j,t+1 > Njt. The number

of positions offered to new members of the team who would begin working in t + 1 is thus

Ojt = max{N
∗
j,t+1 −Njt, 0}.

Note that maximizing the profit of the ongoing unit is not the same objective as maximizing

the income of continuing workers. We think of an observed firm as a collection of a large

number of separate producing units, with the objective of the firm being to maximize total

profit subject to the constraint that individuals are available to do the work at the offered

terms. If instead we took the objective to be to maximize expected income of existing team

members, that would add an additional friction to hiring in the model.

4 Nonspecialized workers.

We will refer to an individual who is not part of a specialized team at time t as “nonspecial-

ized.” Nonspecialized workers can choose between 3 options.

Option 1: seek to join an existing specialized unit. To pursue this option, an individual

trains and applies in period t for a position to produce good j beginning in period t+1. With
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probability πjt the individual will be successful. Each individual takes πjt as given, though

in equilibrium πjt will be determined by the number of people applying for the job and the

number of openings available. An individual who pursues this option will receive nominal

compensation Ct while unemployed, financed through a proportional tax levied on the income

of specialized workers during period t.

Option 2: seek to create a new good. An individual who is trying to join a team that

creates a new good also receives unemployment compensation Ct during period t and has a

probability kπ of being successful. There is also a utility cost kU of making an effort to create

a new good. The parameters kπ and kU are fixed technological parameters that summarize

the importance of frictions in creating new goods. If kπ → 1 and kU → 0, the monopoly power

of specialized teams would not be sustained along the steady-state growth path.

Option 3: produce good 1. Good 1 is assumed to be produced in a nonspecialized sector in

which anyone could work with no training or coordination with others. If individual i works in

sector 1, s/he could produce xit units of good 1. The productivity parameter xit is distributed

independently across workers and across time. A favorable productivity xit for individual i

at time t has no implications for that same individual’s productivity at t + 1. The nominal

income of individual i during period t is given by

yit =

�
P1txit if produces good 1

Ct if looks for a job
.

Objective of nonspecialized workers. Nonspecialized workers choose between the above

three options, seeking to maximize

vit = Et

∞�

s=1

βs log yi,t+s (12)

where Et denotes an expectation conditional on information available at date t and 0 < β < 1

is a discount rate. We will motivate this objective as an approximation to expected lifetime

utility in Section 7.

Let Yjt be the after-tax nominal income of each individual who is part of specialized team

j at date t,

Yjt = (1− τ )PjtQjt/Njt,

for τ the tax rate. Let Vjt denote the value of (12) for such an individual:

Vjt = log Yjt + β(1− kjt)EtVj,t+1 + βkjtEtV1,t+1. (13)

Here kjt is the probability that unit j will discontinue production in t + 1. If the good is

discontinued, next period those individuals will be nonspecialized. Since productivity xit is
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drawn independently over time, the expected lifetime utility in the event that the team is

disbanded is EtV1,t+1, the same for all individuals.

If a nonspecialized individual successfully creates a new good, the expected lifetime utility

is EtV
♯
t+1, whose value will be described below. Thus the value of (12) for a nonspecialized

individual at time t is

vit =






log(P1txit) + βEtV1,t+1 if produces good 1

logCt + βπjtEtVj,t+1 + β(1− πjt)EtV1,t+1 if applies to join existing unit j

logCt − kU + βkπEtV
♯
t+1 + β(1− kπ)EtV1,t+1 if tries to create a new good

.

(14)

Decisions of nonspecialized workers. Individual i chooses the most favorable of the options

in (14). The optimal decision is characterized by a productivity threshold X∗
1t such that

individual i chooses to produce good 1 if xit ≥ X∗
1t and looks for something better otherwise.

If some individuals choose to produce good 1 and others try to create new goods, then X∗
1t

would be the level of productivity at which the marginal nonspecialized individual is indifferent

between working or trying to create a new good:

log(P1tX
∗
1t) + βEtV1,t+1 = logCt − kU + βkπEtV

♯
t+1 + β(1− kπ)EtV1,t+1. (15)

Expression (15) can equivalently be written

log(P1tX
∗
1t)− logCt = −kU + βkπEtṼ

♯
t+1 (16)

where Ṽ ♯
t = V ♯

t −V1t is the expected lifetime advantage of specializing in a newly created good

relative to being nonspecialized. Alternatively, when there is an incentive to try to specialize

in continuing good j, (14) would require

log(P1tX
∗
1t) + βEtV1,t+1 = logCt + βπjtEtVj,t+1 + β(1− πjt)EtV1,t+1 (17)

log(P1tX
∗
1t)− logCt = βπjtEtṼj,t+1 (18)

for Ṽjt = Vjt − V1t the lifetime advantage of specializing in j. In a typical equilibrium in

which some individuals try to create a new good while others seek to join existing unit j, both

conditions (16) and (18) hold, requiring that in equilibrium πjt must satisfy

βπjtEtṼj,t+1 = −kU + βkπEtṼ
♯
t+1. (19)

It follows from equations (14), (15), and (17) that the lifetime income of nonspecialized
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individual i is characterized by

vit =

�
log(P1txit) + βEtV1,t+1 if xit ≥ X∗

1t

log(P1tX
∗
1t) + βEtV1,t+1 if xit < X∗

1t

. (20)

The expression EtV1,t+1 is the expected value for vi,t+1 across individuals i. Since xit is dis-

tributed independently across time, we can find the date t value of V1t by taking the expected

value of (20) across all nonspecialized individuals i at time t:

V1t = log(P1tX̃1t) + βEtV1,t+1 (21)

log X̃1t = P (xit ≥ X∗
1t)E[log(xit)|xit ≥ X∗

1t] + P (xit < X∗
1t) logX

∗
1t. (22)

Another object of interest is X̂1t, the average output of nonspecialized individuals:

X̂1t = E (xit|xit ≥ X∗
1t)P (xit ≥ X∗

1t). (23)

Note that this definition of X̂1t means that if N1t denotes the total number of nonspecialized

individuals (including both those working and those unemployed), the total amount of good

1 that is produced is given by

Q1t = N1tX̂1t. (24)

Distribution of productivity across nonspecialized workers. Simple closed-form expressions

for key magnitudes can be obtained when log of productivity is distributed uniformly across

nonspecialized workers.

Proposition 2. Suppose that the log of potential productivity for producing good 1 is

distributed independently across individuals as log xit ∼ U(Rt, St) and let logX
∗
1t ∈ [Rt, St]

be the threshold level of productivity above which nonspecialized individuals choose to produce

good 1 (that is, X∗
1t satisfies (16) or (18)). Then:

(a) the fraction of nonspecialized individuals who are employed is

h1t = P (xit ≥ X∗
1t) =

St − logX
∗
1t

St − Rt
; (25)

(b) the expected flow-equivalent productivity of nonspecialized individuals (value of (22)) is

log X̃1t =
S2t − 2Rt logX

∗
1t + (logX

∗
1t)

2

2(St −Rt)
(26)

which is monotonically increasing in X∗
1t;
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(c) the average output of nonspecialized individuals (expression (23)) is

X̂1t =
exp(St)−X∗

1t

St − Rt
. (27)

5 Entry and exit of specialized goods.

Preferences for newly created goods. The income advantage of a worker specialized in good j

at time t is given by the fraction of income that consumers spend on good j divided by the

fraction of the population specializing in producing j. The fraction of income that consumer

i wants to spend on good j in turn depends on the preference parameters γijt and q̄ijt.

We think of the creation of a new good as the discovery of something that is a new potential

source of utility to consumers. This utility is governed by previously undiscovered preference

parameters γijt and q̄ijt. We assume that there exists a technology for making such discoveries

with the feature that when a larger group of individuals join together to successfully create a

particular new good, they are able to discover a good for which the preference parameters γijt

and q̄ijt are such that consumers want to spend a larger share of their income on that good.

A bigger team can discover a product that captures a larger market share. We characterize

the preferences discovered for a new good j in terms of the share of income that consumers

would want to spend on that good along the steady-state growth path. We greatly simplify

the analysis by assuming that this share is the same across all consumers.

The steady-state growth path is characterized by an advantage to specialization that just

compensates for the costs of trying to develop a specialty. We assume that newly created

goods enter with this steady-state advantage.3 This steady-state advantage, which we denote

by ω0, is a function of other technological parameters that will be derived below. Let q0ijt
denote the consumption of good j by individual i along the steady-state growth path. The

steady-state growth path turns out to be characterized by q0ijt = q̄ijt/2. From (5) this implies

an expenditure share given by αijt = γijt(q
0
ijt)

2, which we assume is the same value α0j across

consumers and across time. If J ♯2t denotes the set of goods that are newly created in period

t, the assumption that goods that are newly created at date t enter with the steady-state

advantage ω0 is thus represented by

α0j = ω0njt for j ∈ J
♯
2t. (28)

Discontinued goods. A good will be discontinued if the expected benefit to workers from

retaining that specialization is less than they could anticipate by returning to the pool of

3If new goods did not enter with the steady-state advantage, there would be additional dynamics introduced
as the advantage for each individual new product converges to the steady-state value. This would complicate
the characterization of dynamics without adding any additional insights.
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nonspecialized workers:

if EtVj,t+1 < EtV1,t+1, then j ∈ J
♭
2t. (29)

In Section 9 we will show how condition (29) could arise from a sufficiently severe shock to the

demand for good j. We assume that shocks like this occur every period, causing a fraction kX

of goods to be discontinued every period along the steady-state growth path. Workers take

this risk into account in assessing the potential benefits to specialization in (13) with kjt = kX

for every good j along the steady-state growth path.

Steady-state growth path. Along the steady-state growth path, the number of discontinued

goods (J ♭2t) equals the number of newly created goods each period (J
♯
2t) and the number of

workers who successfully create new goods just balances population growth and the number

induced to give up their previous specialization. The steady-state growth path is characterized

by a constant fraction over time of the population without a specialty: n1t = n01.

Note that expression (28) does not restrict the number of goods or the relative expenditure

shares of different specialized goods. Suppose for example that there are kJ new goods created

each period and that the fraction of new-goods workers who produce good j is represented by

aℓj with a1 + · · ·+ akJ = 1,

njt = aℓjn
♯
t for j ∈ J

♯
2t and ℓj ∈ {1, ..., kJ} (30)

where n♯t is the fraction of the population that produce goods that were first created in period

t. Then from (28), α0j = ω0aℓjn
♯
t for j ∈ J

♯
2t. With kJ goods newly created at t and kXJ2t

goods discontinued (where J2t is the number of specialized goods of all type produced at t),

the number of goods produced along the steady-state growth path is given by the constant

J2 = kJ/kX .

6 Steady-state growth with constant productivity.

In this section we consider an economy in which population grows at rate n and productivity

is constant. Thus in this section the bounds on the productivity of nonspecialized workers Rt

and St are constants R and S over time. The log of productivity of workers producing goods

that are newly created at time t is drawn from a time-invariant distribution logXjt ∼ N(µ, σ2)

for j ∈ J♯2t and the productivity of workers producing good j remains fixed as long as good j

remains in production.

We assume that a constant fraction kX of existing specialized goods is discontinued each

period. Setting kjt = kX in (13) and subtracting (21) from the result gives

Ṽjt = log Ỹjt + β(1− kX)EtṼt+1 (31)

for Ṽjt = Vjt − V1t and Ỹjt = Yjt/(P1tX̃1t). We conjecture a steady-state growth path along

12



which the share of spending on good 1 is constant at α1 and Ỹjt is the same for all specialized

goods and constant over time: Ỹjt = Ỹ 0. This would mean from (31) that the lifetime advan-

tage of any specialization is constant: Ṽjt = Ṽ 0. We suppose that new goods enter with this

same advantage. The steady-state growth path is also characterized by a constant fraction of

the population that is nonspecialized (n1t = n01) and a constant fraction of the unemployed

who are trying to acquire a specialty (h1t = h01). From (25)-(27) the latter would mean that

X∗
1t, X̃1t, and X̂1t are constants. Also along the steady-state growth path, each good always

has exactly the capacity to produce the profit-maximizing ouput,

Qjt = NjtXjt = Q̄jt/2 j ∈ J2t, (32)

with team j adding new workers as the population grows to achieve this. A fraction h0t of

the unemployed try to create new goods and the remaining 1 − h0t apply for new openings

with continuing goods, with h0t = h00 and the probability πt = π0 of a successful application

both constant over time. In this section we prove the existence and uniqueness of such a

steady-state growth path and sketch the forces that would cause an economy to converge to

this path.

Advantage from specialization. A constant share of spending on good 1 would mean

�
j∈J2t

PjtQjt

P1tQ1t
=
1− α1
α1

(33)

for J2t the set of specialized goods produced at t. Let Yst denote the average after-tax income

per person of specialized workers. From (33) and (24) this is

Yst =
(1− τ)

�
j∈J2t

PjtQjt

(1− n1t)Nt

=

�
(1− τ )(1− α1)

α1

�

P1tN1tX̂1t

(1− n1t)Nt

�

.

Let Ỹt be the ratio of Yst to P1tX̃1t, the flow-equivalent income of nonspecialized in (22):

Ỹt =
Yst

P1tX̃1t

=

�
(1− τ)(1− α1)n1t

α1(1− n1t)

�
X̂1(X

∗
1t)

X̃1(X∗
1t)

(34)

where in light of (27) and (26) we have written X̂1t and X̃1t as functions of X
∗
1t. Note that

if n1t and X
∗
1t are constant, then Ỹt is constant. Substituting (34) into (31), the steady-state

advantage to specialization is

Ṽ (n01,X
∗0
1 ) =

�
1

1− β(1− kX)

��
log

�
(1− τ)(1− α1)n

0
1

α1(1− n01)

�
+ log X̂1(X

∗0
1 )− log X̃1(X

∗0
1 )

�
.

(35)

Creation of new goods. The numerator on the left side of (33) is the tax base, and from (24),

13



the denominator is P1tN1tX̂1t. With a total of (1−h1t)N1t individuals collecting unemployment

compensation, the compensation per individual is

Ct =
τ
�

j∈J2t
PjtQjt

(1− h1t)N1t
=

�
τ (1− α1)

α1(1− h1t)

�
P1tX̂1t. (36)

Let hY t denote the log difference between the income that the marginal nonspecialized in-

dividual could earn from producing good 1 and the income collected from unemployment

compensation:

hY t = log(P1tX
∗
1t)− logCt. (37)

From expression (36) this is

hY t = − log

�
τ(1− α1)

α1

�
+ log(1− h1t) + logX

∗
1t − log X̂1t = hY (X

∗
1t). (38)

We can write the equilibrium condition for creation of new goods (16) as

hY t = −kU + kπβṼt.

The steady-state solution is

− log

�
τ(1− α1)

α1

�
+ log(1− h1(X

∗0
1 )) + logX

∗0
1 − log X̂1(X

∗0
1 ) = −kU + kπβṼ (n

0
1,X

∗0
1 ). (39)

New hiring. If each continuing good adds workers at the rate of population growth, along

the steady-state growth path the total number of new openings is

Ot = (1− kX)(e
n − 1)(1− n1t)Nt. (40)

Since each continuing good offers the same lifetime advantage, the probability of successfully

applying for one of these positions is the same across all continuing goods. With (1−h1t)(1−

h0t)n1tNt individuals applying for these positions, the probability of success is

πt =
(1− kX)(e

n − 1)(1− n1t)

(1− h1t)(1− h0t)n1t
= π(n1t, X

∗
1t, h0t). (41)

Individuals are indifferent between applying for existing jobs and trying to create new goods

when (19) holds:

− kU + kπβṼ (n
0
1, X

∗0
1 ) = π(n01, X

∗0
1 , h00)βṼ (n

0
1, X

∗0
1 ). (42)

Changes in the number of specialized workers. Note that (1 − h1t)h0tkπn1tNt individuals

will join newly created units in t+1 which would be added to the (1−kX)(1−n1t)e
nNt workers

14



at continuing units. The total number of nonspecialized at t + 1, which could be written as

n1,t+1e
nNt, would then consist of the total population at t+ 1 (e

nNt) minus the total number

of specialized individuals:

n1,t+1e
nNt = enNt − (1− h1t)h0tkπn1tNt − (1− kX)(1− n1t)e

nNt

n1,t+1 = n1t + kX(1− n1t)− e−nh0t(1− h1t)kπn1t. (43)

Thus the fraction of nonspecialized workers will be constant if

kX(1− n01) = e−nh00kπ(1− h1(X
∗0
1 ))n

0
1. (44)

The conditions for steady-state growth are characterized by the three equations (44), (42)

and (39) in the three unknowns X∗0
1 , n01, h

0
0.

Proposition 3. If kπ, kX , α1, β, τ are all ∈ (0, 1) and n and kU are both positive, there

exists a unique value of (X∗0
1 , n01, h

0
0) for which (44), (42) and (39) simultaneously hold. At

this solution, logX∗0
1 ∈ (R, S), hY (X

∗0
1 ) > 0, Ṽ (n

0
1, X

∗0
1 ) > 0, and 0 < π(n01, X

∗0
1 , h00) < 1.

The fact that Ṽ 0 is positive means that individuals would prefer to be specialized if they

could acquire a specialty at no cost. The barriers to becoming specialized (a probability kπ

less than one of being able to join an existing enterprise and a cost kU of trying to create a

new one) require as compensation that Ṽ 0 be positive in equilibrium. The value of ω0 is given

by (1 − α1)/(1 − n01). Letting n
0
j denote the value of njt when good j was first introduced

(n0j = njt for j ∈ J
♯
2t), expression (28) becomes

α0j = n0j
(1− α1)

(1− n01)
. (45)

Converging to the steady state. Figure 2 plots πtβṼt+1 and −ku + kπβṼt+1 as functions of

Ṽt+1. The point at which nonspecialized individuals are indifferent between applying for an

existing job and trying to create a new good is the point at which the two lines cross. If the

advantage to specialization is a large value like Ṽ
[1]
t+1, then πt must be a large value like π

[1]
t

shown in the figure. For a given level of job openings Oj , this means from (41) that (1− h0t)

is small and the fraction of unemployed seeking to create new products h0t is bigger. Thus

a large value of Ṽt+1 encourages more people to try to create new goods, which from (43)

means that n1,t+1 will be lower because more people will develop a specialty. From (35), a

lower value of n1 will bring Ṽ down. The steady state is characterized by a value Ṽ
0 for which

n1,t+1 = n1t = n01.
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7 Steady-state growth with growing productivity.

Here we generalize to an economy in which productivity grows at the rate g. Proposition 4

establishes that if the threshold X∗
1t grows at the same rate g as overall productivity and if

the fraction of the population without a specialization is constant, then the unemployment

rate, the income advantage to specialization, and the flow value of searching for work are all

constant.

Proposition 4. Let h1t, X̃1t, X̂1t, Ct, hY t, and Ỹt be given by (25)-(27), (36), (37) and

(34). If Rt+1 = Rt + g, St+1 = St + g, and logX∗
1,t+1 = logX∗

1t + g, then h1,t+1 = h1t,

log X̃1,t+1 = log X̃1t + g, log X̂1,t+1 = log X̂1t + g, logCt+1 = logCt + g, and hY,t+1 = hY t. If

also n1,t+1 = n1t, then Ỹt+1 = Ỹt.

Quadratic preferences in a growing economy. We assume for a growing economy that

creation of a new good by n0jNt people at date t arises from the discovery of a good on which

individuals will want to consume a constant fraction α0j = ω0n0j of their growing income along

the steady-state growth path. A useful way to think about this is to relate our assumption of

quadratic preferences to a specification in which individual i has a logarithmic utility function:

U †it =
�

j∈Jt

αjt log qijt. (46)

Let q0ijt denote the consumption of good j by individual i at date t along the steady-state

growth path. A second-order approximation to (46) around the steady-state growth path

gives

U †
it ≃

�

j∈Jt

αjt




log q0ijt +
1

q0ijt
(qijt − q0ijt)−

1

2
�
q0ijt
�2 (qijt − q0ijt)

2

�

=
�

j∈Jt

�
δ0ijt −

γijt
2
(q̄ijt − qijt)

2
�

q̄ijt = 2q
0
ijt (47)

γijt =
αjt�
q0ijt
�2 . (48)

See the top panel of Figure 3. Note that if consumption on the steady-state growth path were

q0ijt = q̄ijt/2, expression (48) would just be another way to write expression (5).

A typical approach in macroeconomics is to assume that an expression like (46) is the

true utility function and (2) an approximation in which the approximating parameters q̄ijt

and γijt are functions of the true preference parameter αjt and the steady-state consumption

q0ijt. Under that interpretation, the expenditure share would be exactly equal to αjt and the

elasticity would be be exactly equal to one for all t. By contrast, here we are proposing to view
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(2) as the true preferences and (46) as an approximation. Under this interpretation, in the

neighborhood of the steady state, the expenditure share is approximately αjt and the elasticity

is approximately one. This second interpretation allows us to incorporate the benefits of using

quadratic preferences noted in Section 2 while also taking advantage of some of the attractive

steady-state growth features of logarithmic preferences.

Note that maximization of (46) subject to the budget constraint (1) has the solution

Pjtqijt = αjtyit Substituting this into (46) gives the indirect utility function,

�

j∈Jt

αjt log

�
αjtyit
Pjt

�
= log yit +

�

j∈Jt

αjt logαjt −
�

j∈Jt

αjt logPjt,

which provides a motivation for (12).

Assumptions behind the steady-state growth path with productivity growth. Population

grows at a fixed rate n starting from a value Nt0 at an initial date t0. Log productivity

at date t0 is distributed log xit0 ∼ U(Rt0 , St0) across individuals i for nonspecialized workers

and logXjt0 ∼ N(µ, σ2) across goods j for specialized workers producing good j. There are kJ

types of specialized goods at date t0 as in (30). Each period a fraction kX of each type of good

is discontinued and one new good of each type is created. The log of the productivity of newly

created goods at date t is drawn from the distribution logXjt ∼ N(µ+ gt, σ2) for j ∈ J♯2t and

t = t0+1, t0+2, ... with logXj,t+1 = logXj,t+ g for as long as specialized good j is produced.

Likewise log xit ∼ U(Rt, St) with Rt+1 = Rt + g and St+1 = St + g for t = t0, t0 + 1, ... Each

consumer wants to spend a fraction α0j of their income along the steady-state growth path on

good j as long as the good remains produced and the desired share of spending on good 1 is

constant at α1 along the steady-state growth path.

Proposition 5. Let (X∗0
1 , n01, h

0
0) be the unique solution to (44), (42) and (39) for R = Rt0

and S = St0. If at initial date t0 there are 1/kX specialized goods of each type ak (so that the

initial total number of goods is J2,t0 = kJ/kX), the initial share of nonspecialized workers is

n1t0 = n01, and the initial share of the population specialized in good j satisfies

njt0 =
α0j(1− n01)

1− α1
j ∈ J2t0 , (49)

then for all t ≥ t0:

(a) the fraction of the population that is nonspecialized, the threshold at which nonspecial-

ized choose unemployment, the fraction of the nonspecialized who are employed, and fraction

of the nonspecialized who try to create new goods are constant over time,

n1t = n01 X∗
1t = X∗0

1 h1t = h01 h0t = h00;

(b) the number of specialized goods in production is constant: J2t = kJ/kX ;
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(c) the consumption of good j by every specialized worker at time t is given by

q0sjt =
(1− α1)(1− τ )

1− n01
n0jXjt j ∈ Jt (50)

where X1t is defined to be X̂1t;

(d) the average consumption of good j by nonspecialized workers at time t is given by

q0njt =
[α1 + τ (1− α1)]

n01
n0jXjt j ∈ Jt; (51)

(e) the share of the population that produces good j remains constant as long as the good

remains in production: njt = n0j for j ∈ Jt and the quantity of any good grows at rate n + g

for as long as it is produced:

logQj,t+1 = n+ g + logQjt j ∈ {{1} ∪ J ♮
2,t+1};

(f) the relative price of good j at time t is given by

pjt =
Pjt
P1t

=
αjn

0
1X̂1t

α1n0jXjt

(52)

which is constant over time as long as the good continues to be produced;

(g) the total demand parameter for good j is given by

Q̄0
jt

2
= [n01q

0
njt + (1− n01)q

0
sjt]Nt j ∈ Jt;

(h) at any date t, all specialized workers earn the same income as each other and the log

difference between their income and that of the average nonspecialized is a constant over time.

8 Adjustment dynamics.

In this section we analyze the path by which an economy that is not in steady state converges

over time to the steady-state growth path. We begin by parameterizing departures from steady

state.

Shocks to demand and supply. In Section 7 we assumed that if a fraction n0j of the popula-

tion successfully creates a new good j, they discover a good for which the preference parameters

for individual i at date t are given by q̄ijt = 2q
0
ijt and γijt = α0j/(q

0
ijt)

2 where q0ijt is the consump-

tion of good j by individual i along the steady-state growth path and α0j = n0j(1−α1)/(1−n
0
1).

We now generalize this to study an economy in which the preference parameters for individual

i at date t are given by q̄ijt = χjt2q
0
ijt and γijt = ξjtαjt/(q

0
ijt)

2. Here χjt > 1 would represent

the possibility that consumers value good j more than normal at date t while χjt < 1 would
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represent lower than normal demand. Since the market-wide demand parameter Q̄jt is given

by
� Nt
0

q̄ijtdi, an increase in χjt shifts the demand for good j up. The magnitude ξjt is a

different demand shock that changes Ajt without changing Q̄jt in Figure 1. Thus ξjt makes

the demand curve steeper or flatter which will lead producers to change the price but does

not change the profit-maximizing level of output. Without loss of generality4 we assume that

χ1t = ξ1t = 1.

To understand the role of αjt, recall from Proposition 1 that if all specialized goods were

producing at the unconstrained profit-maximizing level (Qjt = Q̄jt/2 for all j ∈ J2t) and

if
�

j∈Jt
αjt = 1, then

�
j∈J2t

αjt would measure the share of spending on specialized goods.

Although each producer has a monopoly in their particular good, if
�

j∈J2t
αjt is constant at

1 − α1 for all t, specialists are always competing with each other for a fixed share (1 − α1)

of consumers’ budgets. We adopt a simple characterization in which the share of good j out

of the total share of specialized goods is determined by the share of producers of that good

relative to all specialists:

αjt =
njt

(1− n1t)
(1− α1) for j ∈ J2t. (53)

Note (53) ensures that
�

j∈J2t
αjt = 1 − α1 for all t and simplifies to the earlier specification

αjt = α0j in (45) if the economy is on the steady-state growth path at date t. Expression

(53) implies that if off the steady-state growth path more people than usual become new

specialists, they take some of the short-run expenditure share away from existing specialized

goods. Again note that the specification of αjt has no effect on quantity Qjt that producers

of good j choose to produce, but does influence the price they charge for the good and thus

the income that producers receive off the steady-state growth path.

Finally, we specify the productivity of producers of good j as Xjt = ζjtX
0
jt where X

0
jt is the

productivity associated with the steady-state growth path. Here ζjt > 1 captures a favorable

productivity shock at date t and ζjt < 1 represents lower than normal productivity.

We now describe the equations of motion for an economy that begins at date t0 in which

the initial values of njt0 and n1t0 may not be at the steady-state values n
0
j and n

0
1 and the values

of χjt, ξjt, and ζjt may not equal unity for a finite number of initial periods t0, t0+1, ..., t0+D.

Proposition 6. At any point off the steady-state growth path:

(a)

Q̄jt/2 = χjtHtn
0
jX

0
jtNt = χjtHtQ

0
jt for j ∈ Jt (54)

Ht = 1 + λH(n1t − n01) (55)

λH =
α1 + τ (1− α1)− n01

n01(1− n01)
(56)

4A lower demand for good 1 could equivalently be expressed as ξjt > 1∀j ∈ J2t.
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with λH < 0 for typical parameter values;

(b) the quantity of good j that is produced at date t is

Qjt =

�
n1tNtX̂1t for j = 1

min{Q̄jt/2, njtNtζjtX
0
jt} for j ∈ J2t

; (57)

(c) the relative price of good j at date t is

pjt =
Pjt
P1t

=

�
P 0j
P 01

�2�
α1
α0j

��
αjt
α0j

�
ξjt

�
Q̄jt −Qjt

Q̄1t −Q1t

�
for j ∈ J2t (58)

which in the special case when Qjt = Q̄jt/2 becomes

pjt =
Pjt
P1t

= ξjt

�
P 0j
P 01

��
njt(1− n01)

n0j(1− n1t)

�

χjtHtn

0
1X̂

0
1t

2Htn01X̂
0
1t − n1tX̂1t

�

; (59)

(d) the share parameter for good j is characterized by

αjt =
njt(1− n01)

n0j(1− n1t)
α0j for j ∈ J2t; (60)

(e) if good j continues into t+ 1, the number of individuals specializing in j at t+ 1 is

Nj,t+1 = max

�
Q̄j,t+1

2Xj,t+1
, Njt

�
for j ∈ J ♮

2,t+1, (61)

the overall fraction of continuing specialists is

n♮t+1 =
�

j∈J
♮
2,t+1

Nj,t+1/Nt+1,

and if Nj,t+1 = Q̄j,t+1/(2Xj,t+1) then

Nj,t+1

N 0
j,t+1

=
χj,t+1Ht+1

ζj,t+1
; (62)

(f) after-tax income per individual specialized in good j (Yjt = (1− τ )PjtQjt/Njt) is char-

acterized by
Yjt
P1t

=
Y 0
t ξjt(1− n01)Qjt(Q̄jt −Qjt)Q

0
1t

(1− n1t)(Q0
jt)
2(Q̄1t −Q1t)

for j ∈ J2t (63)

which if Qjt = Q̄jt/2 simplifies to

Yjt
P1t

=
Y 0
t ξjt(1− n01)(χjtHt)

2Q0
1t

(1− n1t)(2HtQ0
1t − n1tX̂1tNt)

(64)
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and which along the steady-state growth path is the same for all specialized workers:

Y 0
t =

(1− τ)(1− α1)n
0
1

α1(1− n01)
X̂0
1t; (65)

(g) compensation per unemployed individual is

Ct =
τ
�

j∈J2t
njtYjt

n1t(1− h1t)(1− τ)
; (66)

(h) the lifetime advantage of being specialized in good j relative to being nonspecialized is

Ṽjt = log Yjt − log(P1tX̃1t) + β(1− kX)Ṽj,t+1 for j ∈ J2t (67)

with good j endogenously discontinued after period t ( j ∈ J ♭
t ) if Ṽj,t+1 < 0;

(i) if some individuals spend period t trying to create a new good , then

log(P1tX
∗
1t)− logCt = −kU + kπβṼj,t+1 for j ∈ J ♯

2,t+1; (68)

(j) if a positive fraction hjt of unemployed workers seek to specialize in continuing good j,

the fraction πjt who are successful is characterized by

πjt =
Nj,t+1 −Njt

(1− h1t)hjtn1tNt

log(P1tX
∗
1t)− logCt = πjtβṼj,t+1 (69)

for j ∈ J ♮
2,t+1 and h0t = 1−

�
j∈J ♮

2,t+1
hjt the fraction seeking to create new goods;

(k) the fraction of the population in t+ 1 producing newly created goods is

n♯t+1 = e−n(1− h1t)h0tn1tkπ (70)

and the fraction of the population that is nonspecialized is given by

n1,t+1 = 1− n♯t+1 − n♮t+1. (71)

(l) Define real GDP to be the ratio of current production evaluated at steady-state prices

to steady-state production evaluated at steady-state prices:

Qt =

�
j∈Jt

P 0jtQjt�
j∈Jt

P 0jtQ
0
jt

. (72)
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This can equivalently be written as

Qt =
�

j∈Jt
α0j(Qjt/Q

0
jt) =

�
1− α1
1− n01

��
j∈J2t

�
Qjt

NtX0
jt

�
+

�
α1
n01

��
X̂1t

X̂0
1t

�

n1t. (73)

In the special case when all goods are demand constrained and χjt = ζjt = 1 ∀j, this becomes

Qt =
Ht(1− α1)

1− n01

�
j∈J2t

n0j +

�
α1
n01

��
X̂1t

X̂0
1t

�

n1t. (74)

The role of demand in determining real output. Recall from Proposition 5e that the long-

run growth rate of real output is determined solely by growth in population and productiv-

ity. By contrast, Proposition 6 identifies demand as potentially important in the short run.

Whereas Keynesian models attribute this difference between short and long run to the time

necessary for wages and prices to adjust to economic conditions, here it arises solely from the

time required for productive resources to be reallocated. For example, if the current number

of specialists in good j is higher than warranted by long-run demand (njt0 > n0j), long-run

equilibrium is eventually restored either by limiting new hires in j until population growth

returns the share to n0j or, if the rewards from waiting for a return to profitability are insuffi-

cient, discontinuing production of j altogether. In the latter case, some of the individuals will

eventually develop a new specialty, but doing so takes time. If the excess supply results instead

from a temporary drop in demand (χjt < 1 for t = t0, t0+1, ...., t0+D), the result would again

be a temporary drop in output with specialized factors of production underutilized as they

wait for demand conditions to improve, or again possibly a permanent discontinuation of the

good’s production if demand is expected to remain depressed for a sufficiently long period.

Shortfalls in demand can have effects that are long lasting as a result of the technological

costs of developing new specialties, but will not have permanent effects because eventually

specialties will adapt to long-run incentives.

Result 6a establishes that the overall number of nonspecialized individuals n1t is itself a

factor entering demand for specialized goods. An increase in n1t results in lower total demand

provided that α1 + τ (1− α1) < n01. In interpreting this inequality, note that α1 is the steady-

state fraction of income that goes to nonspecialized individuals as a result of production of

good 1 and τ(1− α1) is the fraction collected as unemployment compensation. If the sum of

these is less than n01, the fraction of the population that is nonspecialized, then the average

after-tax income of a nonspecialized individual along the steady-state path is less than that of

someone who is specialized. This is all that is needed to conclude that λH < 0. This condition

is almost guaranteed by Proposition 3, which established that Ṽ 0 > 0, meaning that the log

after-tax income of specialized workers exceeds the expected log income of nonspecialized along

the steady-state growth path. However, because of Jensen’s Inequality, this is not quite enough
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to conclude that expected specialized after-tax income also exceeds the expected income of the

nonspecialized, which is the condition required by α1 + τ(1 − α1) < n01. For most parameter

values, Jensen’s Inequality is not big enough to reverse the typical outcome. Online Appendix

D provides sufficient conditions under which λH is necessarily negative. When λH < 0, Q̄jt is

lower when the fraction of nonspecialized individuals is higher.

Short-run determinants of real GDP. Note that we calculated real GDP in (72) as the

ratio of current to steady-state output evaluated at steady-state prices. Thus Qt > 1 means

a value of real GDP higher than steady state and Qt < 1 means a value lower than steady

state. As an example, consider the special case when there are no demand or productivity

shocks (χjt = ζjt = 1), all goods have capacity to produce the profit-maximizing output

(Qjt = Q̄jt/2), and the population share of each specialty is the steady-state value (njt = n0j).

In this case (74) becomes

Qt = Ht

�
1− α1
1− n01

�
(1− n1t) +

�
α1
n01

��
X̂1t

X̂0
1t

�

n1t (75)

Note that (1 − α1)/(1 − n01), is greater than 1 and (α1/n
0
1) is less than 1. Thus when Ht =

(X̂1t/X̂
0
1t) = 1,

∂Qt

∂n1t
=

α1
n01
−
1− α1
1− n01

< 0.

Thus even if Ht and (X̂1t/X̂1t0) were unity, a higher fraction of nonspecialized workers would

mean lower GDP because fewer of the goods that consumers value are being produced. When

n1t > n01, both (X̂1t/X̂
0
1t) < 1 because when more individuals are nonspecialized, a higher

fraction of them look for jobs,5 and alsoHt < 1 due to lower demand. Both these are additional

factors pushing real GDP below 1 when n1t > n01. A higher number of nonspecialized lowers

real GDP.

Linearized adjustment dynamics. We can get some additional understanding by linearizing

the results in Proposition 6. Let w†t denote the deviation of the variable wt or its log from the

value on the steady-state growth path.6 Online Appendix B shows that if j is a continuing

specialized good that is demand constrained in period t (that is, if j ∈ J♮2t, t = t0+1, t0+2, ...,

and Q̄jt/2 < njtNtXjt), then the deviations from steady state of output, employment, and

relative price are characterized by

Q†
jt = χ†jt + λHn

†
1t (76)

n†jt = n†j,t−1 − n (77)

5If n1t > n
0
1, then X

∗
1t > X

∗0
1t and X̂1t < X̂

0
1t.

6Specifically, w†t = logwt − logw
0
t for wt = Qjt,X

∗
1t, χjt, ξjt, ζjt; w

†
t = wt − w

0 for wt = njt; and p
†
jt =

log(Pjt/P1t)− log(P 0jt/P
0
1t).
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p†jt = ξ†jt + χ†jt + λHn
†
1t +

1

n01(1− n01)
n†1t +

n†jt
n0j
+ λ5X

∗
1t. (78)

An increase in demand that shifts the demand curve up (χ†jt > 0) leads to an increase in

production and relative price of good j, whereas an increase in demand that rotates the

demand curve up (ξ†jt > 0) leads to an increase in price with no change in quantity. If the

good is demand constrained, productivity shocks ζ†jt have no effects on either quantity or price,

and no new workers will be hired in t, causing employment as a share of the population to

fall at the rate of population growth in (77). In addition, aggregate economic conditions also

influence output, with a positive value of n†1t leading to lower production of each good j when

λH < 0. Aggregate conditions (operating through both n†1t and X
∗†
1t ) have more complicated

general equilibrium implications for relative prices.

Calibration. Our baseline numerical examples use the parameter values in Table 2. We

assume that a period corresponds to one quarter, with n implying an annual population growth

rate of 1% and β an annual discount rate of 2%. Note that taxes in this model are used solely

to finance unemployment compensation, motivating a relatively low value (τ = 0.02) for the

marginal tax rate.7 Productivity for all workers grows at some fixed rate g (which does not

affect any of the numbers reported in the table), and the log difference between the most

productive and least productive nonspecialized individual (St − Rt) is constant at 1 for all t.

There are huge gross flows out of and into employment in a typical month in the U.S. Davis,

Faberman, and Haltiwanger (2006, Table 1) found that 10% of workers lose or quit their

jobs each quarter, and the estimates in Ahn and Hamilton (2022) imply that 12% of employed

individuals will be unemployed or out of the labor force 3 months later. Our value of kX = 0.02

assumes that involuntary separations account for less than 1/5 of these observed gross flows.

When the probability of successfully creating a new good is kπ = 0.25, the baseline parameters

imply a steady-state unemployment rate of u0 = 5.1%. specialized workers receive 60% of the

pretax income of the economy but only account for 55.6% of the population, implying a value

for ω0 = 1.0784. The discounted lifetime advantage of being specialized is Ṽ 0 = 4.80, which

translates into a per-period flow advantage of [1−β(1−kX)]Ṽ
0 = 0.12, or 12% higher after-tax

incomes for specialized workers.

Adjustment dynamics in the absence of new shocks. Adjustment dynamics are straightfor-

ward in the case when Qj,t+s = Q̄j,t+s/2 and χj,t+s = ξj,t+s = ζj,t+s = 1 for all s ≥ 0. In this

case equation (64) implies that all specialized workers earn the same income as each other

from date t onward

yt =
y0(1− n01)H

2
t q
0
1

(1− n1t)
�
2Htq01 − n1tX̂1t

� . (79)

Here we’ve introduced the notation yt = Yjt/P1t to represent the common real income of any

7The ratio of the average wage of a nonspecialized worker P 01tX̂
0
1t/h

0
1 to steady-state unemployment com-

pensation (36) is [h01τ(1− α1)]/[α1(1− h
0
1)] = 0.23.
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specialized worker in the absence of shocks and q01 = Q0
1t/Nt for the per capita output of good

1 along the steady-state growth path. We also simplify the notation to the case with zero

productivity growth, since g > 0 results in a system of equations with identical implications

to those presented in this subsection. For example, y0 in (79) corresponds to Y 0
t /(1 + g)t in

the notation that was used in equation (65). With yt the same for all specialized workers,

unemployment compensation in (66) becomes

ct =
τ (1− n1t)yt

n1t(1− h1t)(1− τ )
(80)

for ct = Ct/P1t. Common incomes also mean that (67) becomes a single value function Ṽt for

all specialties,

Ṽt = log(yt)− log X̃1t + β(1− kX)Ṽt+1 (81)

and (68) becomes

x∗1t − log ct = −kU + βkπṼt+1 (82)

for x∗1t = logX
∗
1t. The fraction of the population that is nonspecialized evolves as in (71):

n1,t+1 = 1− n♯t+1 − n♮t+1. (83)

We assume that new goods enter with njt = n0j when j ∈ J
♯
2t. However, economic conditions

after they enter may cause njt for j ∈ J
♮
2t to differ from n0j . For example, depressed demand

could discourage hiring of new workers, in which case nj,t+s would fall below the value njt = n0j
when the good was first introduced. For some of the examples in the next section, it is helpful

to keep track of the state variable n̄t which is defined as the sum of the steady-state employment

shares n0j of all specialized goods that are produced at t: n̄t =
�

j∈J2t
n0j . A fraction (1− kX)

of goods in t survive to t+ 1, and the value of n0j for these goods at t+ 1 by definition is the

same as in t. In addition, for newly produced goods the steady-state population share is the

value when they were first introduced: n0j = njt for j ∈ J
♯
2t. Thus the equation of motion for

n̄t is

n̄t+1 = (1− kX)n̄t + n♯t+1. (84)

The fraction of the population that is newly specialized is given by (70)

n♯t+1 = e−n(1− h1t)h0tn1tkπ. (85)

A fraction (1 − kX) of the specialized goods in t survive to t + 1, and the profit-maximizing

employment share for those that survive is n∗j,t+1 = Ht+1n
0
j . Provided n

∗
j,t+1 ≥ njt ∀j ∈ J2t,

this means

n♮t+1 = Ht+1(1− kX)n̄t. (86)
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Since continuing specialities offer a common income, equilibrium requires in (69) a common

probability of successful application πt:

x∗1t − log ct = βπtṼt+1. (87)

The value of πt can be calculated as the ratio of total openings to total applicants:

πt =
n♮t+1e

n − (1− kX)(1− n1t)

(1− h1t)(1− h0t)n1t
. (88)

In addition we have the definitions

Ht = 1 + λH(n1t − n01) (89)

h1t =
S − x∗1t
S −R

(90)

log X̃1t =
S2 − 2Rx∗1t + (x

∗
1t)

2

2(S − R)
(91)

X̂1t =
exp(S)− exp(x∗1t)

S −R
. (92)

Equations (79)-(92) are a system of 14 nonlinear dynamic equations in the 14 variables

yt, ct, Ṽt, x
∗
1t, n1t, n̄t, n

♯
t+1, n

♮
t+1, πt, h0t, Ht, h1t, X̃1t, X̂1t in which n1t and n̄t are predetermined

state variables, Ṽt is a forward-looking state variable, and the other variables can be solved

out to arrive at a nonlinear system in the three state variables. Steady-state magnitudes that

appear as coefficients in the nonlinear system (for example, y0, n01, and q01 in (79)) can be

obtained by finding the steady-state solution from Proposition 3. For any specified initial n1t0
and n̄t0 , the system can be solved using the perfect foresight solver in Dynare (Adjemian et

al., 2011) and the terminal conditions n1,t+s → n01, n̄t+s → n01, and Ṽt+s → Ṽ 0. Shocks to

χjt, ξjt, ζjt can be modeled as described in the next two sections. For more details see online

Appendix C.

9 Demand shocks.

In this section we consider an economy in which all predetermined variables at t0 are equal

to their steady-state values, meaning njt = n0j ∀j ∈ J2t0 , n1t0 = n01, and n̄t0 = 1 − n01. In

this section there are no shocks to productivity (ζjt = 1 ∀j, t). In our first two examples,

χjt = χ �= 1 for a fraction κ of the specialized goods that were produced at t0 with χjt = 1 for

the remaining goods and for all t > t0. Note from (64) that nonimpacted goods (those with

χjt = 1) will all offer the same income as each other, which we denote yt, while income for
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impacted goods (those with χjt = χ) is

yχt = χ2yt. (93)

If nχt and n
c
t denote the fraction of the population specializing in impacted and nonimpacted

goods, unemployment compensation from (66) is given by

ct =
τ (nctyt + nχt y

χ
t )

n1t(1− h1t)(1− τ)
. (94)

9.1 A transient drop in demand.

Let κ denote the fraction of specialized goods that were in production at t0 for which χjt0 = χ.

In our first example, 10% of specialized goods experience a 10% drop in demand (κ = 0.1, χ =

0.9). Since specialized goods account for 60% of steady-state GDP, this corresponds to a

demand shock equal to 0.6% of GDP in t0. For this example, lower demand lasts for only one

period (χjt = 1 for t > t0).

To determine variables for dates t > t0, note that beginning in t = t0+1, χjt = ξjt = ζjt = 1

∀j. The profit-maximizing level of production for every specialized good will be Q̄jt/2 = HtQ
0
jt

and all teams will add new workers each period to be able to produce this amount. No one

has any incentive to give up their specialty in t0, since Ṽt+1 remains quite positive. Thus the

economy for t > t0 is described by equations (79)-(92) with the particular path determined by

the values of the state variables n1,t0+1 and n̄t0+1 that are endogenously determined at date

t0.

To determine variables at date t0, note that n1t0 = n01, so from (55), Ht0 = 1. Thus from

(54) and (57), impacted goods will produce χQ0
jt0
in t0 while nonimpacted specialized goods

produce the steady-state quantities (Qjt0 = Q0
jt0
if χjt0 = 1). Note that the latter have neither

the incentive nor the capacity to produce more than this. The total number of people available

to produce good 1 is determined by n1t0 = n01, so whether production of good 1 is above or

below Q0
1t0
is determined by the productivity threshold x∗1t∗ above which the nonspecialized

produce good 1. Incentives at t = t0 for trying to create a good that will begin production

in t0 + 1 are still described by (82). The one variable entering this determination of x
∗
1t that

differs from the steady-state magnitude is unemployment compensation at t0. This is given

by (94), which can be written

ct =
τ(1− n1t)yt

n1t(1− h1t)(1− τ)
s3t (95)

s3t =

�
1 + κ(χ2 − 1) t = t0

1 t > t0
.
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Thus the adjustment path for this example is represented by the system (79)-(92) with (80)

replaced by (95). This can again be solved using Dynare with s3t treated as an exogenous

shock.

From this solution any other magnitudes of interest can be calculated. For example, for

all specialized goods, njt = n0j for t = t0 and njt = Htn
0
j for t > t0. This allows us to calculate

the relative price of any individual good pjt = Pjt/P1t from (59):

pjt =






p0j

�
χjt0n

0
1X̂

0
1t0

2n01X̂
0
1t0
−n01X̂1t0

�
t = t0

p0j

�
1−n01
1−n1t

� �
Ht2n01X̂

0
1t

2Htn01X̂
0
1t−n1tX̂1t

�
t = t0 + 1, t0 + 2, ...

.

Since Qjt/(NtX
0
jt) = χjtHt, real GDP for this example is found from (73) to be

Qt =





(1− α1)[1 + κ(χ− 1)] + α1

X̂1t0
X̂0
1t0

t = t0
(1−α1)
(1−n01)

Htn̄t +
α1X̂1t
n01X̂

0
1t

n1t t > t0
.

The solid green line in Figure 4 plots the path over time of a few selected variables for

this example. Real GDP (panel E) falls 0.55% below the steady-state growth path in t0 but

almost completely recovers by t0 + 1. The reason that real GDP does not not fall quite

by the full 0.6% expected is because of a modest general-equilibrium feedback. The lower

income of the impacted specialized workers in period t0 results in a decrease in the tax base

from which unemployment compensation gets funded. The slight decrease in unemployment

compensation induces some nonspecialized individuals in t0 to produce good 1 rather than

train for a specialty (panel C). The increase in production of good 1 slightly offsets the lost

production of some specialized goods, explaining why GDP falls by only 0.55% rather than

0.6%.

The drop in demand for impacted goods leads to an increase in the relative price of all

other goods. But this increase in relative prices results in little or no increase in production

of those goods because the productive resources that become underutilized in the sectors with

lower demand cannot be costlessly reallocated to produce in other sectors. Since the drop

in demand only lasts one period, there is very little reallocation over time either. To a first

approximation, a transient drop in demand results in a transient drop in real GDP from which

the economy almost immediately recovers.

9.2 A transient increase in demand.

Consider next the case in which there is a transitory 10% increase in demand (χ = 1.1)

affecting 10% of the specialized goods. Since these goods would have been at capacity with

χ = 1, their response at t0 is to increase price with no change in production. The time paths

in this case are plotted in dashed blue in Figure 4. In this case tax receipts (in units of good 1)
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go up, providing more generous unemployment compensation that leads to a slight reduction

of good 1. The result is that real GDP actually falls very slightly in response to an increase

in demand for goods that are already capacity constrained. To summarize: a reduction in

demand will reduce real GDP, but an increase in demand need not increase real GDP.

9.3 A large persistent but isolated drop in demand.

Next consider the case of a 40% drop in demand that affects only 2.5% of specialized goods

(χ = 0.6, κ = 0.025). Note that the total size of the shock to demand is the same as in

Example 9.1 (with κ(χ − 1) = −0.01 in both cases) but in Example 9.3 the drop in demand

is concentrated on a small subset of goods. If the low demand only lasted for a single period,

the results would be identical to those in Example 9.1. Here however we consider a shock

that lasts for D = 8 periods. We take the shock to be isolated in the sense that new goods

created beginning in t0 + 1 all enjoy the steady-state demand level χjt = 1. From (64) the

period t log income for workers specializing in the impacted good would differ from that of

other specialized workers by logχ2 for each t = t0, ..., t0 +D − 1. From (67) this means that

the lifetime advantage as of date t of having a specialty in the impacted good is

Ṽ χ
t = Ṽt + βXt0+D−t logχ

2 (96)

βXt0+D−t =

� �t0+D−t−1
s=0 [β(1− kX)]

s t = t0, ..., t0 +D − 1

0 t ≥ t0 +D
. (97)

If the drop in demand is big enough and lasts long enough, it could turn out that Ṽ χ
t0+1

< 0

which would mean Et0Vj,t0+1 for impacted goods is less than Et0V1,t0+1. In this case individuals

who had specialized in the impacted goods would be better off abandoning their specialty and

returning to the pool of the nonspecialized and the possibility of developing a new specialty.

This turns out to be the case for the size of the shock in this numerical example. All impacted

goods produce χQ0
jt0
in period t0 and are then discontinued.

The effects of discontinued goods can be represented as shocks to the equations that de-

termine n♮t+1 and n̄t+1 by generalizing (86) and (84) to

n♮t+1 = Ht+1(1− kX)s7tn̄t

n̄t+1 = (1− kX)n̄ts1t + n♯t+1.

For Example 9.3, s1t = s7t = (1 − κ) for t = t0 and equal to unity afterwards. Finally, the

probability in (88) of successfully obtaining a job with a continuing specialty is modified to

reflect the fact that discontinued goods will not be hiring in t0 + 1:

πt =
n♮t+1e

n − (1− kX)(1− n1t)s6t
(1− h1t)(1− h0t)n1t
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with s6t = (1− κ) for t = t0 and equal to unity afterwards.

The time paths for variables in this example are shown as solid black lines in Figure 4. The

fact that there are fewer specialists in t0+1 raises the value of Ṽt0+1 (panel B), and this partially

offsets the effect of χ on Ṽ χ
t0+1

in equation (96). However, for this numerical example it is the

case that all impacted specialists still want to return to the pool of nonspecialized despite the

higher value of Ṽt0+1 (see panel D)
8 With the higher anticipated rewards to specialization,

more nonspecialized than usual start trying to develop a specialty in t0 (panel C). This results

in a lower level of production of good 1 in t0 that contributes to the GDP loss resulting from

lower production of specialized goods (panel E).

Demand for all new and surviving goods is back to normal beginning in t0+1. But GDP is

not back to steady state because of the surplus of nonspecialized individuals. Why doesn’t the

economy return to steady state immediately? The distribution of productivity of nonspecial-

ized workers xit results in a continuum of opportunity costs across nonspecialized workers who

might consider trying to develop a specialization. At any point in time, some nonspecialized

individuals find it worth their while to search for something better and others do not. More

than the usual number will be searching as long as n1t > n01, and this will eventually return

the economy to n1t = n01. But the effects of a demand shock can persist long after the shock

is gone if it takes time for the overall population to develop new specializations.

This example offers one possible interpretation of why goods are always being discontinued

along the steady-state growth path. Suppose that along the steady-state growth path, each

period t a fraction kX of specialized producers learn that demand for their particular product

is going to experience a decrease of the magnitude considered in this example beginning in

t + 1. Producers of those goods would have an incentive to abandon their specialty after

producing in t, and choose to return to the pool of nonspecialized workers. Thus a shock of

the kind considered in Example 9.3 could be viewed as occurring all the time in this model.

Everyone takes into account the possibility that the good could be discontinued at any time

(and eventually will be discontinued for certain) through the parameter kX that enters every

decision. Example 9.3 could be viewed as exploring what happens when these regular demand

shocks affect a larger fraction of goods than usual and catch the producers of these goods by

surprise in t0.

9.4 The role of technological frictions.

How long it takes to return to steady state depends on how hard it is to create new goods.

Here we illustrate this with an example that is identical to Example 9.3 except that now the

8For a more modest shock χ, it could be the case that if all impacted goods were to drop out, the value
of Ṽt0+1 would be sufficiently big that an impacted specialist would want to remain in, whereas if they all
remained in then Ṽt0+1 would be sufficiently small that everyone would want to drop out. In this case the
equilibrium would be characterized by a fraction κχ of impacted goods being discontinued such that Ṽ

χ
t0+1

exactly equals zero, i.e., those who remain are just indifferent between staying or leaving.
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probability of successfully creating a new specialized good is kπ = 0.60 rather than 0.25 in our

baseline parameterization. With lower technological frictions to developing new goods, there

is a lower equilibrium unemployment rate (u0 = 2.4% versus 5.1% for the baseline parameters)

and a lower equilibrium advantage to being specialized (Ṽ 0 = 0.7 versus 4.8 for the baseline

case). If this economy were subjected to the same shock as in Example 9.3, all impacted

specialists would again choose to return to the pool of the nonspecialized. Indeed, they would

have chosen to do so with a much smaller or less persistent shock, since a new specialization

is much more easily obtained when kπ = 0.6. This is reflected in the very negative value for

the red plot of Ṽ χ
t in panel D of Figure 4. Although the surge in nonspecialized workers in

t0 + 1 is the same as in Example 9.3, the economy recovers more quickly.

9.5 A persistent drop in demand for new and existing goods.

The assumption in Examples 9.3 and 9.4 was that newly created goods were immune from

the lower demand that hit existing goods. In those examples, a surge in new good creation

was a key factor that helped the economy recover. In reality, starting a new business may be

harder than usual when the economy is weak. To study this possibility, we now consider a

demand shock that affects not just goods that were produced at t0 but also any new goods

that are introduced during the period when demand remains weak. Just as in Example 9.1, we

suppose that 10% of existing goods at t0 experience a 10% drop in demand (κ = 0.1, χ = 0.9),

but now we assume that low demand persists for D = 5 periods. For these numerical values,

it turns out that impacted specialized workers would want to retain their specialty and wait

until demand recovers. But impacted goods are demand constrained and do no additional

hiring until demand recovers. For the first D− 1 periods the condition for new good creation

(82) becomes

x∗1t − log ct = −kU + βkπṼt+1 + βkπβ
X
t0+D−t−1

logχ2

for βXj given by (97). Some nonspecialized workers will still choose this option, though fewer do

so than would in steady state because of the lower return to trying to develop a specialization.

Let Jχ2t denote the set of goods produced at t for which χjt = χ. This set consists of

those goods that survive to t that either experienced χjt0 = χ in t0 or were newly created

between t0+1 and t0+D−1. For this example we keep track of the fraction of the population

with impacted specialties, which evolves during the period of depressed demand according to

nχt+1 = e−n(1− kX)n
χ
t + n♯t+1, and the sum of n

0
j for all impacted goods, n̄

χ
t =

�
j∈Jχ2t

n0j . The

latter evolves according to n̄χt+1 = (1− kX)n
χ
t + n♯t+1 since new goods enter with n

0
j = njt for

t ∈ J♯2t and continuing goods retain n
0
j as long as they continue to be produced. We also have

n̄ct =
�

j∈Jc2t
n0j whose value is given by n̄

c
t = (1 − kX)

t−t0(1 − κ)(1 − n01). These changes can

again be represented by a series of shocks for periods t0, ..., t0 +D− 1 after which the system

dynamics revert to (79)-(92). For details see online Appendix C.

The cyan curves in Figure 4 show the adjustment dynamics for this example. The lower
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rewards to specializing (panel D) and the reduced hiring opportunities from continuing goods

result in a larger fraction of the nonspecialized deciding to produce good 1 (panel C). This

higher production of good 1 helps offset much of the initial loss in GDP in t0 that resulted

from less production of impacted specialized goods. But since fewer of the nonspecialized are

investing in specialization, we see in panel A an increase over time in the fraction of the

population that are nonspecialized. This continues to drag GDP down as long as the period

of weak hiring persists, and by period t0 + 4 GDP is 1% below trend. Demand conditions are

fully recovered beginning in t0+5, but the economy only gradually returns to steady state for

the same reasons as in Example 9.3. This provides an illustration of the possible hump-shaped

response to a demand shock mentioned in the introduction. In this example, the normal inflow

of people who are looking for better jobs confronts a slower than normal rate of new hiring.

The effects of this on the number of nonspecialized workers and the value of GDP build over

time.

9.6 Shocks to ξjt.

Up to this point we have been discussing shocks to the preference parameter χjt, which results

in a vertical shift of the demand curve for good j and changes the profit-maximizing level

of output Q̄jt/2 (see Figure 1). Consider now a shock to the parameter ξjt, which changes

the vertical intercept Ajt of the demand curve but leaves the horizontal intercept Q̄jt and the

profit-maximizing level of output Q̄jt/2 unchanged. From equation (57), this has no direct

effect on output regardless of whether the good is demand- or supply-constrained. It results

instead in an increase in the relative price of good j and in the relative income of producers

of good j. The changes in income will result in a change in tax receipts and unemployment

compensation which would have general-equilibrium effects on h1t and n1t, but these would

be secondary contributions of the size noted in Example 9.1.

It is possible that if a drop in ξjt is large enough and lasts long enough, the drop in

income for producers of the good would be sufficiently large to persuade them to discontinue

production, but we do not explore this possibility here.

Although shocks to ξjt are less interesting for purposes of the questions studied here than

are shocks to χjt, it would be important to include them in any empirical applications. The

three shocks χjt, ξjt, ζjt could be viewed as the fundamental drivers (along with aggregate

factors represented here by n1t and x∗1t) of the three variables Qjt, pjt, Njt. If we think of

observed output for a given sector or firm k as resulting from a collection of J
[k]
t separate

production activities (e.g., N
[k]
t =

�
j∈J

[k]
t
Njt), some fraction of which could be demand-

constrained and others supply-constrained, the three observed magnitudes Q
[k]
t , p

[k]
t , N

[k]
t could

be interpreted as driven by a mixture of three unobserved shocks χ
[k]
t , ξ

[k]
t , ζ

[k]
t .
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10 Productivity shocks.

In this section we consider an economy that begins period t0 with all predetermined variables

equal to their steady-state values and χjt = ξjt = 1 ∀j, t. We study the consequences if the

productivity parameter ζjt = ζ �= 1 for a fraction κ of the specialized goods in production in

date t0.

10.1 A transient drop in productivity.

Consider first a 10% drop in productivity that affects 10% of the specialized goods at t0 (ζ =

0.9, κ = 0.1) with productivity returning to normal in t0+1. Since n1t0 = n01 andHt0 = 1, from

(57) nonimpacted goods will produce Q0
jt0
while impacted goods will produce ζQ0

jt0
.Moreover,

Q̄jt0 −Qjt0 = (2− ζ)Q0
jt0
= 1.1Q0

jt0
for j ∈ Jζ2t0 so from (58) impacted goods raise their price

by 10% relative to nonimpacted goods. With a 10% drop in production and a 10% increase in

price, the effect on relative income is nearly a wash; Qjt0(Q̄jt0−Qjt0) = ζ(2−ζ)(Q0
jt0
)2 so from

(63) yζt = ζ(2− ζ)yt. For ζ = 0.9, ζ(2− ζ) = 0.99, implying a 1% drop in the relative income

of impacted workers. Thus the general equilibrium effects operating through unemployment

compensation ct0 are even more modest here than in Example 9.1. We would see nearly a

0.6% drop in real GDP at t0 followed by an almost complete recovery in t0+ 1, with the time

paths of variables in Example 10.1 almost the same as the solid green lines in panels A-C and

E of Figure 4.

The effects of supply and demand shocks could look quite similar to each other in the

data. Note moreover that we could not use measured productivity to distinguish between

the 10% demand shock in Example 9.1 and the 10% productivity shock in Example 10.1. In

both cases, output falls by 10% with no change in labor input, so measured productivity of

impacted goods falls by 10% in both examples. The one way we could distinguish between

demand and supply shocks is in observations of relative prices. In Example 9.1 the drop in

production is accompanied by a decrease in the relative price, whereas in Example 10.1 we

would see an increase in the relative price.

10.2 A transient increase in productivity.

Consider next the case in which a fraction κ = 0.1 of the goods in production at t0 experience

a 10% increase in productivity (ζ = 1.1), with conditions again returning to normal beginning

in t0+1. Although more goods could be produced in t0, no one has an incentive to do so, since

Q̄jt0/2 is still the profit-maximizing level of production. There is no incentive to change prices,

and no incentive to make any changes for the future since conditions at t0 + 1 will be back to

steady state. If businesses already have the capacity to produce at the revenue-maximizing

level of output, a purely transient increase in productivity has no effect on the output or price

of any good at any date.
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10.3 A persistent decrease in productivity.

We saw in Example 9.3 that if a drop in demand is sufficiently severe and long lasting it could

induce workers to abandon their specialty. How big a drop in productivity would be necessary

to produce the same result? A demand shock lowers income by a factor of χ2 whereas the

factor for a productivity shock is ζ(2− ζ). For χ = ζ = 0.9, χ2 = 0.81 and ζ(2− ζ) = 0.99. A

10% drop in demand would have a significant effect on income, whereas the effect on income

of a 10% drop in productivity would be negligible. In Example 9.3 we saw that a 40% drop

in demand (χ = 0.6) that persisted for two years would be sufficient to persuade workers to

try to develop a specialization. To get a comparable income effect from a productivity shock

would require an 80% drop in productivity that persists for two years.9 Thus in this model

both demand and supply shocks could contribute to short-run economic fluctuations, but it

would require quantitatively bigger productivity shocks to produce some of the propagation

mechanisms to which we have called attention.

11 Discussion.

Although labor is the only factor of production in this model, the mechanisms explored here

apply more generally to production that relies on a network of interdependent specialized

resources. And although we model each production team as producing a single, stand-alone

final good, our view is that most firms in the economy make use of a number of separate teams

to produce a variety of differentiated products.

In order to focus as clearly as possible on the role of specialization in determining the

level of economic activity, this paper abstracted from many details that play a key role in

economic fluctuations. Here labor was the only input, with specialization taking the form

of training and assembling a dedicated team of workers. Specialized capital is an even more

important commitment for most businesses (Ramey and Shapiro, 1998 and 2001). Production

moreover typically depends on inputs purchased from other firms that themselves specialize to

be able to provide those goods or services, amplifying the forces studied here through network

connections; see Baqaee, 2018, Baqaee and Farhi, 2019, and Bigio 2021. This paper completely

ignored financial frictions, even though they appear to be a key factor in many economic

downturns. And although nominal frictions played no role in this model, they could well be

an additional factor in amplifying economic downturns, just as they are known to amplify the

effects of productivity shocks in existing models that incorporate costs of reallocating resources

across sectors (e.g., Guerrieri et al., 2020).

By focusing on just a single source of specialization and a single technological friction, the

hope was to shed light on the interaction between specialization and demand as a fundamental

short-run determinant of the level of GDP.

9For χ = 0.6 and ζ = 0.2, χ2 = ζ(2− ζ) = 0.36.
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12 Conclusion.

There is a consensus among many macroeconomists that demand shocks are important in the

short run but not in the long run. The usual explanation for why there is a difference between

the short run and the long run is the claim that wages and prices are slow to adjust. This

paper emphasized a different channel: productive resources take time to reallocate.

Both demand shocks and productivity shocks could contribute to short-run fluctuations

in the model here. Why did I emphasize the role of demand? Consumer preferences change

all the time. But events that lead to significant drops in productivity are harder to identify

as the cause of historical economic downturns. The popularity of macroeconomic models in

which productivity shocks are the primary cause of short-run economic fluctuations is based

not on anything observed in the data but instead on a lack of satisfactory models with which

we could understand how demand shocks could be the main cause of business cycles. This is

why I wrote this paper.
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Table 1. Ranges and derivatives of key variables.

Variable Value at Value at Sign of Steady-state
Zt logX∗

1t = Rt logX∗
1t = St ∂Zt/∂ logX

∗
1t derivative

(1) logX∗
1t Rt St > 0

(2) log(1− h1t) −∞ 0 > 0 λ2 =
1

logX∗0

1t
−Rt

(3) log X̃1t
St+Rt
2 St > 0 λ3 =

logX∗0

1t
−Rt

St−Rt

(4) X̂1t
exp(St)−exp(Rt)

St−Rt
0 < 0

(5) log X̂1t > St+Rt
2 −∞ < 0 λ5 =

−X∗0

1t

X̂0

1t
(St−Rt)

(6) hY t −∞ ∞ > 0

(7) Ṽt finite −∞ < 0

Table 2. Parameter values used in baseline calculations.

Exogenous parameters

parameter meaning

α1 = 0.4 steady-state expenditure share of good 1
τ = 0.02 marginal tax rate
β = 0.995 discount rate
kU = 0.2 utility cost of trying to create new good
kπ = 0.25 probability of successfully creating new good
kX = 0.02 fraction of goods discontinued each period in steady state
n = 0.0025 population growth rate
Rt0 = 1 initial lowest log productivity of nonspecialized workers
St0 = 2 initial highest log productivity of nonspecialized workers

Derived parameters

parameter meaning

λ2 = 8.668 elasticity of nonspecialized unemployment (1− h1t) with respect to threshold X∗

1t

λ3 = 0.1154 elasticity of flow-value of nonspecialized X̃1t with respect to threshold X∗

1t

λ5 = −0.7032 elasticity of productivity of unemployed X̂1t with respect to threshold X∗

1t

λH = −0.1281 semi-elasticity of demand parameter Q̄jt with respect to fraction of nonspecialized n1t

Steady-state values of endogenous variables

variable meaning

n01 = 0.4436 fraction of population without a specialization
logX∗0

1t0 = 1.1154 initial productivity threshold for nonspecialized workers to produce good 1
1− h01 = 0.1154 fraction of nonspecialized workers who are unemployed
h00 = 0.8719 fraction of nonspecialized who try to create new goods
u0 = 0.0512 fraction of population who are unemployed
π0 = 0.2082 probability of successfully becoming specialized in an existing good
ω0 = 1.0784 ratio of spending to employment share of specialized goods

Ṽ 0 = 4.8032 discounted lifetime log income differential between specialized and nonspecialized
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Figure 1. Market demand and marginal revenue.  

 

Notes to Figure 1.  Top panel: demand, elasticity of demand, and marginal revenue for good j.  Bottom 

panel: effects on demand and marginal revenue if the marginal utility of good j for all consumers 

decreases by a factor � . 

Figure 2. Benefit of creating new good versus specializing in existing good.  

Notes to Figure 2.  Horizontal axis: advantage of specialization (�����).  Vertical axis: benefit to trying to 

create new good (solid black) and of specializing in existing good for two different values of �� (dashed 

red and dotted blue). 
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Figure 3. Individual utility and demand curves. 

Notes to Figure 3.  Top panel: logarithmic preferences and quadratic approximation.  Bottom panel: 

demand curve associated with quadratic preferences. 
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Figure 4. Effects of demand shocks. 

 

Notes to Figure 4.  Horizontal axis: time (	
 = 1). Vertical axis: deviation of variable from value on the 

steady-state growth path for Panels A-C and E; levels in Panels D and F.  Panel A: fraction of population 

without a specialization (��� − ��

). Panel B: lifetime advantage of specializing in goods that do not 

experience demand shock (��� − �� 
). Panel C: fraction of nonspecialized workers who are unemployed 

(−ℎ�� + ℎ�

). Panel D: lifetime advantage of specializing in goods that experience demand shock (���

�
). 

Panel E: log of real GDP (����� ). A value of -0.01 on the vertical axis represents a value of real GDP 

that is 1% below the value on the steady-state growth path.  Panel F: relative price that would maximize 

profits for goods that experience demand shocks (���
�

) with steady-state relative price normalized at 1. 

Solid green (Example 9.1): 10% of specialized goods experience 10% drop in demand that only lasts for 

period 	
.  Dashed blue (Example 9.2): 10% of specialized goods experience 10% increase in demand that 

only lasts for period 	
.  Solid black (Example 9.3): 2.5% of specialized goods experience 40% drop in 

demand that would last for 8 periods if goods remained in production.  Dotted red (Example 9.4): same as 

Example 9.3 except that creating a new good is easier (�� = 0.6).  Solid cyan (Example 9.5): 10% of 

specialized goods and all newly created goods experience a 10% drop in demand that lasts for 5 periods. 

. 
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Figure A1. Value of specialization solved in terms of ℎ
� and ���
∗ (ℎ
�). 

 

Notes to Figure A1.  Each value of ℎ
� implies a steady-state fraction of the population without a 

specialization and thus particular values of ���
∗ (ℎ
�) and �� (ℎ
�, ���

∗ (ℎ
�)).  Each point on the horizontal 

axis corresponds to a particular value of ℎ
� and its implied ���
∗ (ℎ
�) and �� (ℎ
�, ���

∗ (ℎ
�)) with that value 

of ��  plotted on the horizontal axis.  Thus ℎ
� is decreasing and ���
∗  increasing as we move to the right 

along the horizontal axis.  The vertical axis plots the value of trying to create a new good (in black) or 

seeking to specialize in an existing good (in dashed red) as a function of that �� (ℎ
�, ���
∗ (ℎ
�)).  The two 

panels correspond to different parameter configurations depending on whether �� (1, ���
∗ (1)) is positive 

(top panel) or nonpositive (bottom panel). 



Appendix A. Proofs of propositions
Proof of Proposition 1.

(a) If qijt = q̄ijt/2, equation (3) becomes

γijtq̄ijt/2 = λitPjt. (A1)

Multiplying both sides of (A1) by q̄ijt/2 = qijt gives

αijt = λitPjtqijt. (A2)

Summing (A2) over j and using
�

j∈Jt
Pjtqijt = yit gives

�
j∈Jt

αjt = λityit. (A3)

Dividing (A2) by (A3) gives (6).

(b) For all i ∈ M
(k)
t we have from (3) that

γ
(k)
jt (q̄

(k)
jt − qijt) = λitPjt.

Integrating over i ∈ M
(k)
t , dividing by R

(k)
t , and using (7) gives

γ
(k)
jt (q̄

(k)
jt − q̄

(k)
jt /2) = Pjtλ

(k)
t (A4)

for λ
(k)
t = (1/R

(k)
t )

�
i∈M

(k)
t

λitdi. Multiplying (A4) by (7) gives

α
(k)
jt =

λ
(k)
t Pjt

�
i∈M

(k)
t

qijtdi

R
(k)
t

. (A5)

Summing over j gives
�

j∈Jt
α
(k)
jt =

λ
(k)
t

R
(k)
t

�

i∈M
(k)
t

yitdi. (A6)

Dividing (A5) by (A6) gives (8).

Proof of Proposition 2.

Let z ∼ U(R, S): f(z) = (S −R)−1 for z ∈ [R,S]. Then:

(a)

P (z ≥ z∗) =

� S

z∗

1

S −R
dz =

z

S − R

����
S

z∗

=
S − z∗

S −R
;
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(b)

z̃ = E(z|z ≥ z∗)P (z ≥ z∗) + z∗P (z < z∗)

=

� S

z∗

z

S − R
dz + z∗

� z∗

R

1

S − R
dz =

1

S −R

z2

2

����
S

z∗

+
z∗

S − R
z|z

∗

R

=
S2 − z∗2

2(S − R)
+

z∗(z∗ − R)

S − R
=

S2 − 2Rz∗ + z∗2

2(S − R)

dz̃

dz∗
=
2z∗ − 2R

2(S −R)
> 0 ∀z∗ > R;

(c) � S

z∗

exp(z)

S − R
dz =

exp(z)

S − R

����
S

z∗

=
exp(S)− exp(z∗)

S − R
.

Proof of Proposition 3.

Write expression (44) as
1− n1t

n1t
=

kπ
kXen

(1− h1t)h0t (A7)

and substitute this result into (35):

Ṽ (h0t,X
∗
1t) =

�
1

1− β(1− kX)

��
log

�
(1− τ )(1− α1)

α1

�

− log

�
kπ

kXen

�
− log(1− h1t)− log h0t + log X̂1t − log X̃1t

�
. (A8)

Condition (39) can be written

hY t(X
∗
1t) = −kU + kπβṼ (h0t,X

∗
1t) (A9)

where hY t(X
∗
1t) denotes the function of X∗

1t given in (38).

From rows (2) and (5) of Table 1, as logX∗
1t increases from Rt to St, the left side of (A9)

monotonically increases from −∞ to ∞. For fixed h0t > 0, the right side monotonically

decreases from∞ to −∞. Thus given any h0t ∈ (0, 1), there exists a unique logX∗
1t ∈ (Rt, St)

at which condition (A9) holds, that is, for which conditions (44) and (39) simultaneously hold.

Denote this solution X∗
1t(h0t).

From (A8), a larger value of h0t lowers the right side of (A9) and thus is associated with

a lower value of X∗
1t: ∂X∗

1t(h0t)/∂h0t < 0. As h0t → 0, − log h0t → ∞ and log(X∗
1t(h0t)) is

driven to St. Since hY t(X
∗
1t) in (38) is monotonically increasing in X∗

1t and since X∗
1t(h0t) is

monotonically decreasing in h0t, it follows that hY t(X
∗
1t(h0t)) is a monotonically decreasing

function of h0t. By the definition of X∗
1t(h0t), we know that

hY t(X
∗
1t(h0t)) = −kU + kπβṼ (h0t,X

∗
1t(h0t)) (A10)
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holds for all h0t. Monotonicity of the left side of (A10) as a function of h0t implies that the

right side is also a monotonically decreasing function of h0t.

Next consider the incentives for applying for a position with continuing enterprises. Sub-

stituting (A7) into (41),

πt(h0t) = max

�
(1− kX)(1− e−n)kπ

kX

h0t
(1− h0t)

, 1

�
, (A11)

allowing us to write (42) as

− kU + βkπṼ (h0t, X
∗
1t(h0t)) = βπt(h0t)Ṽ (h0t, X

∗
1t(h0t)). (A12)

Recalling that Ṽ (h0t, X
∗
1t(h0t)) is a monotonically decreasing function of h0t, consider two

cases. Suppose first that Ṽ (h0t, X
∗
1t(h0t)) is positive at its lowest point (h0t = 1). Note from

(A11) that πt = 1 at this point. With Ṽ positive and πt = 1 > kπ, the right side of (A12)

must be larger than the left side at the lowest possible value for Ṽ , namely Ṽ (1, X∗
1t(1)).

As h0t decreases below 1, Ṽ monotonically increases and πt monotonically decreases, the

latter eventually reaching 0 as h0t → 0. Thus there exists a unique value h00t ∈ (0, 1) at

which (A12) holds; see the top panel of Figure A1. Call this value h̄0t. This value implies a

unique X∗
1t(h̄0t), a unique h1t(X

∗
1t(h̄0t) and thus a unique n1t(h̄0t) from (A7). By construction

(X∗
1t(h

0
0t, n1t(h

0
0t), h

0
0t) satisfy (43), (42) and (44).

Alternatively, suppose that Ṽ (1, X∗
1t(1)) is negative (see the bottom panel of Figure A1).

Since Ṽ is monotonically decreasing in h0t and goes to ∞ as h0t → 0, there exists a unique

h̄0t ∈ (0, 1) at which Ṽ (h̄0t,X
∗
1t(h̄0t)) = 0. At this point the right side of (A12) is zero and the

left side is negative. As h0t decreases below h̄0t, the value of Ṽ increases without bound while

the magnitude πt(h0t) eventually goes to 0. Thus there again exists a unique h00t for which

condition (A12) holds and for which (X∗
1t(h

0
0t, n1t(h

0
0t), h

0
0t) simultaneously satisfies (44), (42)

and (39).

Proof of Proposition 4.

h1,t+1 =
St+1 − logX∗

1,t+1

St+1 −Rt+1
=

St + g − (logX∗
1t + g)

(St + g)− (Rt + g)
=

St − logX∗
1t

St − Rt

= h1t

log X̃1,t+1 =
(St + g)2 − 2(Rt + g)(logX∗

1t + g) + (logX∗
1t + g)2

2[(St + g)− (Rt + g)]

=
S2t − 2Rt logX∗

1t + (logX∗
1t)

2

2(St − Rt)
+
2Stg + g2 − 2g logX∗

1t − 2gRt − 2g
2 + 2g logX∗

1t + g2

2(St − Rt)

= log X̃1t +
g(2St − 2Rt)

2(St − Rt)
= log X̃1t + g
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X̂1,t+1 =
exp(St + g)−X∗

1t exp(g)

(St + g)− (Rt + g)
= exp(g)

�
exp(St)−X∗

1t

St −Rt

�
= exp(g)X̂1t.

The other results follow immediately.

Proof of Proposition 5.

(a) Let (X∗
1t0

, n01, h
0
0) be the unique solution to (39), (42) and (44) for date t0. Then

(egX∗
1t0

, n01, h
0
0) solve these three equations for date t0 + 1, as can be verified as follows. From

Proposition 4, X∗
1,t0+1

= egX∗
1t0

would imply h1,t0+1 = h01, log X̂1,t0+1 = g + log X̂1t0 and

log X̃1,t0+1 = g+log X̃1t0 establishing from (38) that hY,t0+1 = hY t0 and from (35) that Ṽt0+1 =

Ṽt0 . Hence (39), (42) and (44) are all satisfied at date t0 + 1, confirming that (egX∗
1t0, n

0
1, h

0
0)

is the solution. By induction, (eg(t−t0)X∗
1t0

, n01, h
0
0) is the solution for all t.

(b) Of the J2t0 = kJ/kX goods at initial date t0, kXJ2t0 = kJ will no longer be produced

beginning in t0 + 1. And since h0t0 > 0, kJ new goods (one of each type) will begin being

produced in t0 + 1. Thus J2,t0+1 = J2t0 and by induction J2t is constant for all t.

(c) Along the steady-state growth path, a fraction (1−α1)(1−τ) of total income Ȳt is earned

by specialized workers and the remaining [α1+τ (1−α1)]Ȳt is received by nonspecialized. Each

of these groups on average spends a fraction αjt of their income on good j. Since njtNtXjt

units of good j get produced, (1 − α1)(1 − τ )njtNtXjt units of good j are consumed by the

specialized and the remaining [α1 + τ(1 − α1)]njtNtXjt by nonspecialized. Dividing the first

expression by the total number of specialized workers (1− n1t)Nt gives result (c). Result (h)

below verifies that this is in fact the same number for all specialized workers.

(d) Dividing nonspecialized total spending on j, [α1 + τ(1 − α1)]njtNtXjt, by the total

number of nonspecialized n01Nt gives result (d). Since productivities xit are drawn indepen-

dently over time, this is the average nonspecialized spending and is the level of consumption

q0njt along the steady-state growth path.

(e) With njt = n0j , consumption of good j per individual in (50)-(51) grows at rate g so

that total consumption Qjt grows at g + n and equals total production in (32).

(f) The ratio of nominal spending on good j to that for good 1 is (PjtQjt)/(P1tQ1t) = αj/α1.

Since Qjt = n0jNtXjt, Pjt/P1t = (αjn1tX̂1t)/(α1n
0
jXjt). Since X̂1t and Xjt both grow at rate

g, the ratio X̂1t/Xjt is constant over time.

(g) This follows from applying results (c) and (d) to expression (9).

(h) Total spending on good j is PjtQjt = αjYt, so the after-tax income per person producing

good j is
(1− τ)PjtQjt

njtNt

=
αjYt(1− τ)

njtNt

. (A13)

Equation (49) establishes that at date t0 this magnitude is

(1− τ)Pjt0Qjt0

njt0Nt0

=
Yt0(1− τ )(1− α1)

(1− n01)Nt0
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which is the same for all j ∈ J2t0 . Thus the stated initial conditions imply that all specialized

workers earn the same income at date t0. The income for a worker producing good j at date

t is PjtXjt, which from result (f) is eg(t−t0) times the income that individual received at date

t0, the same constant factor for each j.

For goods that are produced for the first time in period t, substituting condition (45) into

(A13) gives
(1− τ )PjtQjt

njtNt

=
(1− α1)Yt(1− τ)

(1− n01)Nt

j ∈ J ♯
2t,

which is the same for each j ∈ J ♯
2t and the same as the income received by those producing

continuing specialized goods.

Proof of Proposition 6.

(a) Note that

q̄ijt =

	
2χjtq

0
sjt for i ∈Mst

2χjtq
0
njt for i ∈Mnt

(A14)

where Mst and Mnt denote the sets of specialized and nonspecialized workers, respectively.

From (A14), (9), and Proposition 5c-e:

Q̄jt = 2χjt[n1tq
0
njt + (1− n1t)q

0
sjt]Nt = 2χjtHtn

0
jX

0
jtNt (A15)

Ht =
n1t[α1 + τ (1− α1)

n01
+
(1− n1t)(1− α1)(1− τ)

1− n01
= 1 + λH(n1t − n01).

(b) This simply restates (24) and (10).

(c) For γijt = ξjtαjt/(q
0
ijt)

2 and q̄ijt = 2χjtq
0
ijt consumer i’s first-order condition (3) is

ξjtαjt
(q0ijt)

2
(2χjtq

0
ijt − qijt) = λitPjt. (A16)

From (50)-(52),
q0ijt
q0i1t

=
n0jX

0
jt

n01X̂
0
1t

=
α0jP

0
1

α1P 0
j

,

allowing (A16) to be written

ξjtαjt(2χjtq
0
ijt − qijt) = λitPjt



α0jP

0
1

α1P 0
j

�2
(q0i1t)

2. (A17)

From (A14),
� Nt
0
2χjtq

0
ijtdi = Q̄jt. Thus integrating (A17) over i gives

ξjtαjt(Q̄jt −Qjt) = ΛtPjt



α0jP

0
1

α1P 0
j

�2
(A18)
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for Λt =
� Nt
0

λit(q
0
i1t)

2di. Dividing (A18) by its value for j = 1,

ξjtαjt(Q̄jt −Qjt)

α1(Q̄1t −Q1t)
=



α0jP

0
1

α1P 0
j

�2

Pjt
P1t

�
.

Rearranging gives (58).

If we substitute (60), Qjt = Q̄jt/2, and (54) into (58) we get

Pjt
P1t

= ξjt



P 0
j

P 0
1

�2

α1
α0j

�

njt(1− n01)

n0j(1− n1t)

��
χjtHtn

0
jX

0
jtNt

2Htn01X̂
0
1tNt − n1tX̂1tNt




= ξjt



P 0
j

P 0
1

�2

α1
α0j

��
n0jX

0
jt

n01X̂
0
1t

�

njt(1− n01)

n0j(1− n1t)

��
χjtHtn

0
1X̂

0
1t

2Htn01X̂
0
1t − n1tX̂1t




= ξjt



P 0
j

P 0
1

�

njt(1− n01)

n0j(1− n1t)

��
χjtHtn

0
1X̂

0
1t

2Htn01X̂
0
1t − n1tX̂1t




.

The last equality followed from (52) and establishes (59).

(d) This is obtained by taking the ratio of (53) to (45).

(e) Expression (62) follows from (54):

Q̄j,t+1/2

Xj,t+1
=

χj,t+1Ht+1n
0
jX

0
j,t+1Nt+1

Xj,t+1
= χj,t+1Ht+1



X0
j,t+1

Xj,t+1

�
N 0
j,t+1.

(f) From (58) and (60),

Yjt = (1− τ )P1t



P 0
j

P 0
1

�2

α1
α0j

�

njt(1− n01)

n0j(1− n1t)

�
ξjt

�
Q̄jt −Qjt

Q̄1t −Q1t

�
Qjt

njtNt

. (A19)

From (52) we know

P 0
j

P 0
1

=
α0jn

0
1X̂

0
1t

α1n0jX
0
jt

=
α0jQ

0
1t

α1Q0
jt

(A20)

allowing (A19) to be written

Yjt
P1t

= (1− τ)
Q0
1t

Q0
jt

P 0
j

P 0
1

1− n01
1− n1t

ξjt

�
Q̄jt −Qjt

Q̄1t −Q1t

�
Qjt

n0jNt

. (A21)

Using (45) we can also conclude from (A20) that P 0
j /P

0
1 = [(1 − α1)n

0
1X̂

0
1t]/[α1(1 − n01)X

0
jt].

Substituting this into (A21) and rearranging,

Yjt
P1t

= (1− τ )
(1− α1)n

0
1

α1(1− n01)

1− n01
1− n1t

ξjt
(Q̄jt −Qjt)/Q

0
jt

(Q̄1t −Q1t)/Q0
1t

Qjt

n0jNtX0
jt

X̂0
1t. (A22)
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Note that if Qjt = Q̄jt/2,

Qjt(Q̄jt −Qjt) = (Q̄jt/2)
2 = (χjtHtn

0
jX

0
jtNt)

2 = (χjtHtQ
0
jt)
2. (A23)

Also

Q̄1t −Q0
1t = 2HtQ

0
1t − n1tX̂1tNt. (A24)

Substituting (A23) and (A24) into (A22) results in

Yjt
P1t

= (1− τ)
(1− α1)n

0
1

α1(1− n01)

1− n01
1− n1t

ξjt
(χjtHt)

2Q0
1t

(2HtQ0
1t − n1tX̂1tNt)

X̂0
1t. (A25)

Along the steady-state growth path, n1t = n01, and ξjt = χjt = Ht = 1. Thus from (A25) the

steady-state real income of specialized workers is given by (65). Substituting (65) into (A22)

and (A25) gives (63) and (64).

Results (g)-(k) restate expressions from elsewhere in the paper.

(l) Notice from α0j = P 0
jtQ

0
jt/
�

j∈Jt
P 0
jtQ

0
jt that

Qt =

�
j∈Jt

P 0
jtQ

0
jt(Qjt/Q

0
jt)�

j∈Jt
P 0
jtQ

0
jt

=
�

j∈Jt
α0j(Qjt/Q

0
jt).

Recall also that for j ∈ J2t, Q0
jt = n0jNtX

0
jt. Using this along with (45) and (24) we conclude

that

�
j∈Jt

α0j(Qjt/Q
0
jt) =

�
j∈J2t



α0j
n0j

�

Qjt

NtX0
jt

�
+ α1



Q1t

Q0
1t

�

=



1− α1
1− n01

��
j∈J2t



Qjt

NtX0
jt

�
+



α1
n01

��
X̂1t

X̂0
1t

�

n1t.

Note that if χjt = ζjt = 1 and Qjt = Q̄jt/2, then Qjt = Htn
0
jNtX

0
jt so Qjt/(NtX

0
jt) = Htn

0
j

and (73) becomes (74).
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Appendix B. Linearized adjustment dynamics (online)
Define w†

t = logwt − logw0
t for wt = Q̄jt, Qjt, X

∗
1t, Yjt, Ct, Xjt, Qt, χjt, ξjt, ζjt (recalling that

logQ0
t = logχ0jt = log ξ0jt = log ζ0jt = 0); w†

t = wt − w0 for wt = αjt, njt, h0t, Ṽjt; P †
jt =

log(Pjt/P1t) − log(P
0
jt/P

0
1t); Ỹ

†
jt = log Yjt − log Y 0

jt − [log(P1tX̃1t) − log(P
0
1tX̃

0
1t)]; λ2, λ3, λ5 are

the derivatives in Table 1 and λH the derivative in Proposition 6a.

Linearized version of Proposition 6.

Evaluating derivatives of Proposition 6 along the steady-state growth path and taking

deviations from steady state results in

Q̄†
jt = χ†jt + λHn†1t j ∈ Jt (B1)

Q†
1t =

1

n01
n†1t + λ5X

∗†
1t (B2)

Q†
jt =






χ†jt + λHn†1t if j ∈ J2t and Q̄jt/2 ≤ njtNtXjt

n
†
jt

n0j
+ ζ†jt if j ∈ J2t and Q̄jt/2 > njtNtXjt

(B3)

p†jt =
α†jt
α0j
+ ξ†jt + 2χ

†
jt −Q†

jt +
n†1t
n01
+ λ5X

∗†
1t j ∈ J2t (B4)

α†jt
α0j

=
n†jt
n0j
+

1

1− n01
n†1t j ∈ J2t (B5)

n†j,t+1 =

	
n0jχ

†
j,t+1 + n0jλHn†1,t+1 − n0jζ

†
j,t+1 if j ∈ J ♮

2t and Q̄j,t+1/2 ≥ Xj,t+1Njt

n†jt − n if j ∈ J ♮
2t and Q̄j,t+1/2 < Xj,t+1Njt

(B6)

Y †
jt = ξ†jt +

1

n01(1− n01)
n†1t + 2χ

†
jt + λ5X

∗†
1t j ∈ J2t (B7)

Ṽ †
jt = Y †

jt − λ3X
∗†
1t + β(1− kX)Ṽ

†
j,t+1 j ∈ J2t. (B8)

To derive result (B4) we used the fact that for all j ∈ Jt, Q̄0
jt = 2Q

0
jt establishing

log(Q̄jt −Qjt) ≃ logQ0
jt +

1

Q0
jt

[(Q̄jt − Q̄0
jt)− (Qjt −Q0

jt)]

= logQ0
jt +

2

Q̄0
jt

(Q̄jt − Q̄0
jt)−

Qjt −Q0
jt

Q0
jt

= logQ0
jt + 2Q̄

†
jt −Q†

jt (B9)

p†jt =
α†jt
α0j
+ ξ†jt + 2Q̄

†
jt −Q†

jt − 2Q̄
†
1t +Q†

1t.

Result (B4) then follows from (B1) and (B2). Similarly to derive (B7) we used (B9) along
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with

Y †
jt = ξ†jt +

1

1− n01
n†1t +Q†

jt + 2Q̄
†
jt −Q†

jt − 2Q̄
†
1t +Q†

1t.

For Ỹjt = log Yjt − log(P1tX̃1t) and Ỹ †
jt = Y †

jt − X̃†
1t = Y †

jt − λ3X
∗†
1t it follows from (B7) that

Ỹ †
jt = ξ†jt + 2χ

†
jt +

1

n01(1− n01)
n†1t + (λ5 − λ3)X

∗†
1t j ∈ J2t. (B10)
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Appendix C. Details of dynamic solution (online)
Baseline model and Examples 9.1-9.4.

Here we write the system in the form of 10 dynamic equations (C1)-(C10) in the 10

endogenous variables

zt = (n1t, Ṽt, n̄t, yt, ct, x
∗
1t, πt, h0t, n

♯
t+1, n

♮
t+1)

′

with four exogenous shocks s1t, s3t, s6t, s7t. In addition we will use the following symbols to

simplify some of the expressions, to be substituted in when coded:

Ht = 1 + λH(n1t − n01)

h1t =
S − x∗1t
S − R

.

The system can be written as follows:

n1,t+1 = 1− n♯t+1 − n♮t+1 (C1)

Ṽt = log yt −

�
S2 − 2Rx∗1t + (x

∗
1t)

2

2(S −R)

�
+ β(1− kX)Ṽt+1 (C2)

n̄t+1 = (1− kX)n̄ts1t + n♯t+1. (C3)

In the baseline model and Examples 9.1-9.2, s1t = 1 for all t. For Examples 9.3-9.4, since a

fraction κ of the specialists drop out after t0, the value of n̄t0+1 is characterized by

n̄t0+1 = (1− kX)(1− κ)n̄t0 + n♯t0+1

which is implemented by setting

s1t =

	
1− κ t = t0

1 t = t0 + 1, t0 + 2, ...
.

yt =
y0(1− n01)H

2
t q
0
1

(1− n1t)
�
2Htq01 − n1t

�
exp(S)−exp(x∗

1t)

S−R

�� (C4)

ct =
τ (1− n1t)yt

n1t(1− h1t)(1− τ )
s3t. (C5)

For the baseline model, s3t = 1 for all t. In Examples 9.1-9.4, a fraction κ of the goods are
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impacted at t0 and none are impacted afterwards, so

s3t =

	
1 + κ(χ2 − 1) t = t0

1 t = t0 + 1, t0 + 2, ...
.

x∗1t − log ct = −kU + βkπṼt+1 (C6)

x∗1t − log ct = βπtṼt+1 (C7)

πt =
n♮t+1e

n − (1− kX)(1− n1t)s6t
(1− h1t)(1− h0t)n1t

. (C8)

For the baseline model and Examples 9.1-9.2, s6t = 1. For Examples 9.3-9.4, a fraction κ

discontinue after period t0, as represented by

s6t =

	
(1− κ) t = t0

1 t = t0 + 1, t0 + 2, ...
.

n♯t+1 = e−n(1− h1t)h0tn1tkπ (C9)

n♮t+1 = Ht+1(1− kX)s7tn̄t. (C10)

For the baseline model and Examples 9.1-9.2, s7t = 1 for all t. For Examples 9.3-9.4,

s7t =

	
1− κ t = t0

1 t = t0 + 1, t0 + 2, ...
.

Predetermined variables at date t0 are n1t0 = n01, n̄t0 = 1− n01, n♯t0, and n♮t0. Initial values

of n♯t0 and n♮t0 do not appear anywhere in the system. A solution is a sequence {zt}
T
t=t0

for

very large T satisfying n1t0 = n01, n̄t0 = 1 − n01 and n1T ≃ n01, ṼT ≃ Ṽ 0, n̄T ≃ 1 − n01, yT ≃

y0, cT ≃ c0, x∗1T ≃ x∗01 , πT ≃ π0, h0T ≃ h00, n
♯
T+1 ≃ n♯0, n♮T+1 ≃ n♮0.

Example 9.5.

In this example we need to keep track of the fraction of the population specializing in

impacted and nonimpacted goods (nχt and nct , respectively) and what the fractions would be if

each good employed its steady-state level n0j (n̄
χ
t =

�
j∈J

χ
2t

n0j and n̄ct =
�

j∈J c
2t

n0j). The value

of n̄ct evolves independently of all other variables, since goods in Jc2t started out with njt0 = n0j
and a fraction kX of these disappear each period,

n̄ct+1 = (1− kX)n̄
c
t t = t0, ..., t0 +D − 2

starting from n̄ct0 = (1 − κ)(1 − n01). The other three magnitudes (nχt , n
c
t , n̄

χ
t ) influence and

respond to other variables during the initial periods as described below. We can adapt the

structure used for Examples 9.1-9.4 to this case by reinterpreting the meaning of n♮t and n̄t over
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the initial periods and by adding an eleventh state variable to the system, nχt , which denotes

the fraction of the population producing demand-impacted goods at t. Notice nχt0 = κ(1−n01)

and nχt0+D = 0.

During the impacted period, the variable n♮t will represent the fraction of workers pro-

ducing nonimpacted goods. Thus specialized workers during the impacted phase consist of

nonimpacted workers n♮t plus impacted workers nχt . After the impacted period, n♮t will revert

to its original interpretation as number of continuing workers. Thus

n1,t+1 =

	
1− n♮t+1 − nχt+1 for t = t0, t0 + 1, ..., t0 +D − 2

1− n♮t+1 − n♯t+1 for t = t0 +D − 1, t0 +D, ...
.

Note that when t = t0+D− 1, it will be the case that n1,t+1 = n1,t0+D for which there are no

impacted workers. This can be written in terms of shocks as

n1,t+1 = 1− n♮t+1 − s8tn
χ
t+1 − (1− s8t)n

♯
t+1 (C11)

s8t =

	
1 for t = t0, t0 + 1, ..., t0 +D − 2

0 for t = t0 +D − 1, t0 +D, ...
.

Equations (C2)-(C4) for Example 9.5 are the same as in Examples 9.1-9.2:

Ṽt = log yt −

�
S2 − 2Rx∗1t + (x

∗
1t)

2

2(S −R)

�
+ β(1− kX)Ṽt+1 (C12)

n̄t+1 = (1− kX)n̄t + n♯t+1 (C13)

yt =
y0(1− n01)H

2
t q
0
1

(1− n1t)
�
2Htq01 − n1t

�
exp(S)−exp(x∗

1t)

S−R

�� (C14)

though (C13) will not be referenced by the other equations during the impacted period. If

nct denotes the number of nonimpacted workers, the general expression for unemployment

compensation is

ct =
τyt(n

c
t + nχt χ

2)

n1t(1− h1t)(1− τ )

=






c0[(1−κ)+κχ2](1−h0
1
)

1−h1t
for t = t0

τyt(n
♮
t+n

χ
t χ

2)

n1t(1−h1t)(1−τ)
for t = t0 + 1, t0 + 2, ..., t0 +D − 1

τyt(1−n1t)
n1t(1−h1t)(1−τ)

for t = t0 +D, t0 +D + 1, ...

.

This can be written in terms of shocks as

ct = s9t
c0[(1− κ) + κχ2](1− h01)

1− h1t
+ (1− s9t)

τyt[s10,t(n
♮
t + nχt χ

2) + (1− s10,t)(1− n1t)]

n1t(1− h1t)(1− τ)
(C15)
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s9t =

	
1 for t = t0

0 for t = t0 + 1, t0 + 2, ...

s10,t =

	
1 for t = t0, t0 + 1, ..., t0 +D − 1

0 for t = t0 +D, t0 +D + 1, ...
.

The demand shock affects all newly created goods during the impacted period, so (C6) becomes

x∗1t − log ct = −kU + βkπṼt+1 + s5t (C16)

s5t =

	
βkπ

�t0−D−t−1
s=1 [β(1− kX)]

s logχ2 t = t0, t0 + 1, ..., t0 +D − 2

0 t = t0 +D − 1, t0 +D, ...
.

Expression (C7) continues as before

x∗1t − log ct = βπtṼt+1 (C17)

where πt is now characterized by

πt =






n
♮
t+1e

n−(1−kX)(1−κ)(1−n
0
1)

(1−h1t)(1−h0t)n1t
t = t0

n
♮
t+1e

n−(1−kX)n
♮
t

(1−h1t)(1−h0t)n1t
t = t0 + 1, t0 + 2, ..., t0 +D − 2

n
♮
t+1e

n−(1−kX)(1−n1t)

(1−h1t)(1−h0t)n1t
t = t0 +D − 1, t0 +D, ...

.

In the shock notation,

πt =
n♮t+1e

n − (1− kX)[s9t(1− κ)(1− n01) + (1− s9t)s8tn
♮
t + (1− s9t)(1− s8t)(1− n1t)]

(1− h1t)(1− h0t)n1t
.

(C18)

Expression (C9) remains unchanged:

n♯t+1 = e−n(1− h1t)h0tn1tkπ. (C19)

The hiring decisions of continuing goods are characterized by

n♮t+1 =

	
Ht+1(1− kX)n̄

c
t for t = t0, t0 + 1, ..., t0 +D − 2

Ht+1(1− kX)n̄t for t = t0 +D − 1, t0 +D, ...

with n̄ct = (1− kX)
t−t0(1− κ)(1− n01), or

n♮t+1 = Ht+1(1− kX)[s8ts11,t + (1− s8t)n̄t] (C20)

for s11,t = n̄ct . Since impacted goods do no hiring and new goods enter as impacted, the number
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of impacted workers over t = t0, t0 + 1, ..., t0 +D − 2 evolves according to

nχt+1 = e−n(1− kX)n
χ
t + n♯t+1

starting from nχt0 = κ(1− n01). Thus

nχt+1 = s8t[n
♯
t+1 + s9te

−n(1− kX)κ(1− n01) + (1− s9t)e
−n(1− kX)n

χ
t ]. (C21)

Real GDP.

Real GDP for Examples 9.1-9.5. If J χ
2t denote the set of demand-impacted goods and J c

2t

non-impacted specialized goods.

Qjt

NtX0
jt

=

	
χHtn

0
j for j ∈ J χ

2t

Htn
0
j for j ∈ J c

2t

and (73) becomes

�
j∈J2t

Qjt

NtX0
jt

= Ht

�
χ
�

j∈J
χ
2t

n0j +
�

j∈J c
2t

n0j

�
= Ht[χn̄χt + n̄ct ].

Qt =
1− α1
1− n01

Ht[χn̄χt + n̄ct ] +
α1
n01

X̂1t

X̂0
1t

n1t. (C22)

For Examples 9.1-9.4, this means

Qt =





(1− α1)[(1− κ) + κχ] + α1

X̂1t
X̂0
1t

for t = t0
(1−α1)
(1−n0

1
)
Htn̄t +

α1
n0
1

X̂1t
X̂0
1t

n1t for t > t0
. (C23)

For Example 9.5 we have

Qt =






(1− α1)[(1− κ) + κχ] + α1
X̂1t
X̂0
1t

for t = t0
1−α1
1−n0

1

Ht[χn̄χt + n̄ct ] +
α1
n0
1

X̂1t
X̂0
1t

n1t for t = t0 + 1, ..., t0 +D − 1
(1−α1)

(1−n0
1
)
Htn̄t +

α1
n0
1

X̂1t
X̂0
1t

n1t for t = t0 +D, t0 +D + 1, ...

.

Real GDP for Examples 10.1-10.3. In this case (54) states

Qjt0 =

	
ζnjt0Nt0X

0
jt0

for supply-impacted goods

njt0Nt0X
0
jt0

for nonimpacted goods
.
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for which (73) becomes

Qt0 =
1− α1
1− n01

[(1− κ) + κζ](1− n1t0) +



α1
n01

��
X̂1t0

X̂0
1t0

�

n1t0

= (1− α1)[(1− κ) + κζ] + α1

�
X̂1t0

X̂0
1t0

�

.

Note this is identical to (C23) with χ replaced by ζ.
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Appendix D. Bounds on Jensen’s Inequality (online)
Proposition D1. Let

δt = log

�
exp(St)− exp(Rt)

St − Rt

�
−

�
St +Rt

2

�
(D1)

where δt = δ is constant along the steady-state growth path. If

[1− β(1− kX)]kU
βkπ

> δ, (D2)

then

α1 + τ (1− α1) < n01. (D3)

Proof of Proposition D1.

We first show that δt = δ is constant along the steady-state growth path:

δt+1 = log

�
[exp(St + g)− exp(Rt + g)]

St + g − (Rt + g)

�
−

�
St + g +Rt + g

2

�

= g + log

�
exp(St)− exp(Rt)

St −Rt

�
−

�
St +Rt

2

�
−
2g

2

= δt.

Let I0t =
�

j∈Jt
P 0
jtQ

0
jt/P

0
1t denote steady-state real national income. The specialized re-

ceive a total share (1− α1)(1− τ) and the nonspecialized α1 + τ (1−α1), and thus per capita

receive

Y 0
t =

(1− α1)(1− τ)

1− n01
I0t

Ȳ 0
1t =

α1 + τ (1− α1)

n01
I0t

Y 0
t − Ȳ 0

1t =
n01 − [α1 + τ(1− α1)]

n01(1− n01)
I0t

so (D3) holds whenever Y 0
t > Ȳ 0

1t. Note that Ȳ 0
1t could alternatively be calculated as

Ȳ 0
1t =

� St

logX∗
1t

exp(z)dz

St − Rt

+
C0
t

P 0
1t

� logX∗
1t

Rt

dz

St − Rt

.

Expression (37) and Proposition 3 established that

h0Y = logX∗0
1t − log(C

0
t /P

0
1t) > 0
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so

Ȳ 0
1t <

� St

logX∗
1t

exp(z)dz

St −Rt

+X∗
1t

� logX∗
1t

Rt

dz

St − Rt

= Ỹ 0
1t. (D4)

Thus if Y 0
t > Ỹ 0

1t, then also Y 0
t > Ȳ 0

1t. Thus the proof will be complete if we can show that

(D2) implies that Y 0
t > Ỹ 0

1t.

From (39) and (31),

h0Y = −kU + kπ

�
β

1− β(1− kX)

�
log Ỹ 0 (D5)

where from (34), log Ỹ 0 = log Y 0
t − log X̃0

1t. Since h0Y > 0, (D5) implies

log Ỹ 0 >
[1− β(1− kX)]kU

βkπ
.

Condition (D2) then establishes that log Ỹ 0 > δ meaning log Y 0
t > log X̃0

1t + δ. Thus we will

have succeeded in showing that log Y 0
t > log Ỹ 0

1t if we show that log Ỹ 0
1t < log X̃0

1t + δ. From

(D4) and (22), this means establishing

log

�� St

logX∗
1t

exp(z)dz

St − Rt

+X∗
1t

� logX∗
1t

Rt

dz

St −Rt




<

� St

logX∗
1t

zdz

St −Rt

+ logX∗
1t

� logX∗
1t

Rt

dz

St −Rt

+ δ.

(D6)

For z∗ = logX∗
1t define the functions

k(z∗) =

� S

z∗

exp(z)dz

S −R
+ exp(z∗)

� z∗

R

dz

S − R

Q(z∗) = log[k(z∗)]−

� S

z∗

zdz

S − R
− z∗

� z∗

R

dz

S −R

whose derivatives are

dk(z∗)

dz∗
=
− exp(z∗)

S − R
+
exp(z∗)

S − R
+ exp(z∗)

� z∗

R

dz

S − R
= exp(z∗)

� z∗

R

dz

S − R

dQ(z∗)

dz∗
=
exp(z∗)

k(z∗)

� z∗

R

dz

S − R
+

z∗

S − R
−

z∗

S − R
−

� z∗

R

dz

S −R

=

�� z∗

R

dz

S − R

� �
exp(z∗)

k(z∗)
− 1

�
.

Since k(z∗) ≥ exp(z∗), this derivative is negative, meaning this function reaches its maximum
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at the lowest possible value of z∗, namely z∗ = R,

Q(z∗) ≤ Q(R) = log

�� S

R

exp(z)dz

S −R

�
−

� S

R

zdz

S −R
= log

�
exp(S)− exp(R)

S −R

�
−

�
S +R

2

�
= δ,

which is logE(xit)−E[log xit] when log xit ∼ U(R,S). From the definition of Q(logX∗0
1t ), this

means

log

�� S

logX∗0
1t

exp(z)dz

S − R
+ exp(logX∗0

1t )

� logX∗0
1t

R

dz

S − R




−

� S

logX∗0
1t

zdz

S −R
−logX∗0

1t

� logX∗0
1t

R

dz

S − R
< δ

establishing (D6).

Note that (D2) is a sufficient, but not a necessary, condition to guarantee (D3). Typically

(D3) also holds even when (D2) does not.
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