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VII. Model selection

A. Marginal likelihood

Suppose we’re trying to choose

among a series of models:

Model 1: p�y|�1�

�

Model M: p�y|�M�

where �m are possibly of

different dimension
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The Bayesian might think in

terms of an unobserved

random variable:

s � 1 if Model 1 is true

�

s � M if Model M is true

and assign prior probabilities

�1 � Pr�s � 1�

�

�M � Pr�s � M�

with associated priors on the

parameters

p��1 |s � 1�

�

p��M|s � M�

From such a perspective, the

probability that Model m is true

given the data is

p�s � m|y� �
�m �p�y|�m�p��m |s � m�d�m

�
j�1
M

�j �p�y|�j�p�� j|s � j�d�j

� �mpm�y�

�
j�1
M

�jpj�y�
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The expression

pm�y� � �p�y|�m�p��m |s � m�d�m

is sometimes called the "marginal

likelihood" of Model m

The Bayesian would say that the data

favor the model for which p�s � m|y�

is biggest. With uniform priors ��m � 1/M�,

this is equivalent to choosing the

model with the highest marginal

likelihood.

VII. Model selection

A. Marginal likelihood
B. Schwarz criterion
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First let’s examine the behavior of

pm�y� � �p�y|�m�p��m |s � m�d�m

as the sample size T gets large

Suppose

logp�y|�� � �
t�1
T logp�yt |��

and let �� T denote the MLE

�� T � arg max logp�y|��

Recall Taylor’s Theorem:

log p�y|�� � log p�y|�� T� � 1
2 T �� � �� T� � �

T�1 �
t�1
T Ht��� T� T �� � �� T�

�� T � �T� ��1 � �T��� T

Ht��� � � �2 logp�yt|��

���� �
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If �2T is smallest eigenvalue of

T�1 �t�1
T Ht��� T� then

log p�y|�� � logp�y|�� T� � 1
2 T �� � �� T� � �

T�1 �
t�1
T Ht��� T� T �� � �� T�

� log p�y|�� T� � T�2T

2 �� � �� T���� � �� T�

If also there exists B such that

B � p���, we should have

p�y� � �p�y|��p���d�

� � exp log p�y|�� T� �
T�2T

2 �� � �� T� ��� � �� T� Bd�

� Bp�y|�� T� � exp � T�2T

2 �� � �� T���� � �� T� d�

But

�exp � T�2T

2 �� � �� T���� � �� T� d�

� 2�
T�2T

k/2
�

� T�2T

2�

k/2
exp � T�2T

2 �� � �� T���� � �� T� d�

� 2�
T�2T

k/2

for k the dimension of �
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Conclusion:

p�y� � �p�y|��p���d�

� Bp�y|�� T� 2�
T�2T

k/2

logp�y� � log p�y|�� T� � �k/2� log T � R2kT

R2kT � log B 2�
�2T

k/2

Also �� T
p
� ��

T�1 �
t�1
T Ht��� T� � �T�1 �

t�1
T �2 logp�yt |��

����� ���� T

p
� �E

�2 logp�yt |��

����� ����
� ��

R2kT � log B 2�
�2T

k/2

p
� log B 2�

�2
�

k/2

for �2
� smallest eigenvalue of ��

Similar argument reasons that

logp�y|�� � logp�y|�� T� � 1
2 T �� � �� T� � �

T�1 �t�1
T Ht��� T� T �� � �� T�

� log p�y|�� T� � T�1T

2 �� � �� T���� � �� T�

for �1T biggest eigenvalue of

T�1 �t�1
T Ht��� T�



7

log p�y� � log p�y|�� T� � �k/2� log T � R1kT

log p�y� � log p�y|�� T� � �k/2� log T � R2kT

Implication: for large T we have the

approximation

log p�y� 	 log p�y|�� T� � �k/2� log T

for k the dimension of �

Choosing the model m for which

log p�y|��mT� � �km/2� log T

is biggest is known as the using the

Schwarz Information Criterion (SIC)

or Bayesian Information Criterion (BIC)

Since it is asymptotically a Bayesian

decision rule, SIC inherits the properties

of being asymptotically admissible

and consistent
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However, note that this result required

the same regularity conditions needed

to get asymptotic Normality of MLE

VII. Model selection

A. Marginal likelihood
B. Schwarz criterion
C. Calculating the marginal likelihood with 

the Gibbs sampler

Goal: calculate

p�y� � �p�y|��p���d�

Couldn’t we get this by drawing

��j� j � 1, . . . , J from p��� and then

p��y� � J�1 �j�1
J p�y|��j��?

Answer: no, this algorithm is

badly behaved numerically.
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Chib’s idea: think of evaluating

at a point with a lot of mass

(say the posterior mean ��).

Note that for any �� we have

the identity

p���|y�p�y� � p�y|���p����

p�y� � p�y|���p����/p���|y�

In many applications, we know

p�y|��� and p���� analytically

(evaluating the likelihood and prior

at posterior mean, respectively), but

couldn’t calculate p���|y� explicitly

Suppose we’ve generated draws from

a two-block Gibbs sampler:

p��1 |�2, y� and p��2 |�1, y�

The object of interest is given by

p��1
�,�2

�|y� � p��1
�|�2

�,y�p��2
� |y�

where we may know p��1
�|�2

�, y�

analytically.
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We know that

p��2
�|y� � �p��2

�|�1, y�p��1 |y�d�1

and can therefore estimate

p���2
�|y� � G�1 �g�1

G p��2
�|�1

�g�,y�

that is, the average value of

p��2
�|�1,y� across Gibbs simulated

draws for �1

Conclusion: for a two-block Gibbs

sampler, we can estimate the

marginal likelihood from

p��y� �
p�y|�1

�,�2
��p��1

��p��2
��

p��1
�|�2

�, y�G�1 �
g�1
G p��2

� |�1
�g�, y�

How about 3 blocks? Now we want

to estimate the denominator of

p�y� � p�y|���p����/p��1
�,�2

�,�3
� |y�

p��1
�,�2

�,�3
�|y�

� p��1
�|y�p��2

�|�1
�,y�p��3

�|�1
� ,�2

�, y�



11

p��1
�,�2

�,�3
�|y�

� p��1
�|y�p��2

�|�1
�, y�p��3

�|�1
� ,�2

�, y�

First term can be estimated as before:

p���1
�|y� � G�1 �g�1

G p��1
�|�2

�g�,�3
�g�, y�

Third term p��3
�|�1

�,�2
�, y� is known

analytically

p��1
�,�2

�,�3
�|y�

� p��1
�|y�p��2

�|�1
�, y�p��3

�|�1
� ,�2

�, y�

Second term:

p��2
�|�1

�,y� � � p��2
�|�1

�,�3 , y�p��3|�1
�, y�d�3

But how do we generate a sample

from p��3|�1
�, y�?

Suppose we do a 2-block Gibbs

sampler between �2 and �3 with

�1
� fixed throughout:

p��2 |�1
�,�3, y�

p��3 |�1
�,�2, y�

The ergodic distribution of �3 determined

by this Markov chain (q � 1, . . . , Q�

is p��3 |�1
�, y�

p���2
� |�1

�,y� � Q�1 �q�1
Q

p��2
� |�1

�,�3
�q�, y�
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So we estimate p�y� from

p�y|�1
�,�2

�,�3
��p��1

��p��2
��p��3

��
p���1

� ,�2
�,�3

�|y�

p���1
�,�2

�,�3
�|y� �

G�1 �g�1
G

p��1
�|�2

�g�,�3
�g�,y� �

Q�1 �q�1
Q

p��2
�|�1

�,�3
�q�, y� �

p��3
�|�1

�,�2
�,y�


