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V. Nonlinear state-space models

A. Extended Kalman filter
B. Particle filter
C. Solution and estimation of nonlinear 

dynamic stochastic general equilibrium 
models
1. Motivation

xt � vector of exogenous variables

�t � vector of exogenous disturbances

f�xt�1, x t,� t�1� � 0

(equation of motion for xt)

zt � vector of endogenous variables

Eta�z t�1,zt,x t� � 0

(equations derived from econ theory)

Approach we discussed earlier:

(1) Log-linearize system.

AEtz t�1 � Bzt � Cx t

xt�1 � �x t � � t�1



2

(2) Find rational-expectations solution.

predetermined component: z1t

z1,t�1 � H11z1t � H12xt

forward-looking component: z2t

z2t � H21z1t � H22xt

(3) Recognize as state-space system.

yt � observed elements of �zt, xt�

�t � unobserved elements of �z t,xt�

�t�1 � �� t � vt�1

yt � a � H �� t � w t

(4) Estimate parameters by MLE

or Bayesian methods.

Things we lose from linearization:

(1) Statistical representation of recessions.

Recall that a discrete Markov chain can

be viewed as VAR(1).
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Things we lose from linearization:

(2) Economic characterization of

risk aversion.

1 � Et
�U��ct�1��1�r j ,t�1�

U ��ct�

for r j,t�1 the real return on any asset.

Finance: different assets have

different expected returns due to

covariance between r j,t�1 and ct�1

1 � Et
�U��ct�1��1�r j,t�1�

U��ct�

steady state:

1 �
�U��c��1�r j �

U ��c�

��1 � r j� � 1 for all j

linearization around steady state

U ��ct� � Et��U ��ct�1��1 � r j,t�1��

� �1 � r��U ���c�Et�ct�1 � c�

��U ��c�Et�r j,t�1 � r�

same for all j
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Things we lose from linearization:

(3) Role of changes in uncertainty,

time-varying volatility.

(4) Behavior of economy when

interest rate is at zero lower bound

Rt � min�Rt
�,R� �

Approaches to estimating nonlinear dynamic 
economic models.

Step 1: Find approximating nonlinear state-space 
representation using either
(1) perturbation methods (e.g., Fernandez-
Villaverde and Rubio-Ramirez), or
(2) projection methods (e.g., Gust, Lopez-Salido, 
and Smith)

Step 2: Estimate parameters using particle filter or 
other nonlinear estimation (MLE or Bayesian)

V. Nonlinear state-space models

A. Extended Kalman filter
B. Unscented Kalman filter
C. Particle filter
D. Nonlinear DSGE’s

1. Motivation
2. Perturbation methods
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Example:

�ct ,kt�1�t�0
�

max E0 �
t�0

�

�t logct

s.t. ct � kt�1 � ezt kt
� � �1 � ��kt t � 1,2, . . .

zt � �zt�1 � �� t t � 1,2, . . .

k0,z0 given

� t � N�0,1�

Approach: we will consider a continuum

of economies indexed by � and study

solutions as � � 0 (that is, as

economy becomes deterministic).

We seek decision rules of the form

ct � c�kt,zt;��

kt�1 � k�kt,zt;��

Write F.O.C. as Eta�kt, zt;�,� t�1� � 0

a1�kt, zt;�,� t�1� � 1
c�kt ,zt;��

�

� �k�kt ,zt ;����1 exp��zt���t�1�
c�k�kt ,zt ;��,�zt���t�1;��

a2�kt, zt;�,� t�1� � c�kt ,zt;�� � k�kt ,zt;��

� eztkt
� � �1 � ��kt
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Zero-order approximation

(deterministic steady state)

� � 0

zt � z � 0

kt � k

a�k, 0; 0� � 0

a1�k, 0;0� � 0

� 1
c � � �k��1

c � 0

� 1 � ��k��1

a2�k, 0;0� � 0

� c � k � k� � �1 � ��k

� c � k� � �k

First-order approximation:

Since Eta�kt, zt;�,� t�1� � 0 for all

kt,zt;�, it follows that

Etak�kt,zt;�,� t�1� � 0

for ak�kt,zt;�,� t�1� �
�a�kt ,zt;�,�t�1�

�kt

likewise

Etaz�kt, zt;�,� t�1� � Eta��kt,zt;�,� t�1� � 0
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Et
�a1�kt ,zt ;�,�t�1�

�kt kt�k,zt�0,��0
�

�1
c2 ck �

�����1�k��2

c kk �
��k��1

c2 ckkk

Since c and k are known from

previous step, setting this to zero

gives us an equation in the unknowns

ck and kk where for example

ck �
�c�kt,zt;��

�kt kt�k,zt�0,��0

�a2�kt ,zt ;��
�kt kt�k,zt�0,��0

�

ck � kk � �k��1 � �1 � ��

This is a second equation in

ck,kk, which together with the

first can now be solved for

ck,kk as a function of c and k

Et
�a1�kt ,zt ;�,�t�1�

�zt kt�k,zt�0,��0
�

�1
c2 cz �

�����1�k��2

c kz �
��k��1�

c

�
��k��1

c2 �ckkz � �cz�
�a2�kt ,zt ;��

�zt kt�k,zt�0,��0
�

cz � kz � k�

setting these to zero allows us

to solve for cz,kz
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�a1�kt ,zt ;�,�t�1�
�� kt�k,zt�0,��0

�

�1
c2 c� �

�����1�k��2

c k� � ��k��1�t�1
c

�
��k��1

c2 �ckk� � �t�1cz � c��
�a2�kt ,zt ;��

�� kt�k,zt�0,��0
�

c� � k�

Taking expectations and setting

to zero yields
�1
c2 c� �

�����1�k��2

c k�

�
��k��1

c2 �ckk� � c�� � 0

c� � k� � 0

which has solution c� � k� � 0

� volatility, risk aversion play

no role in first-order approximation

Now that we’ve calculated derivatives,

we have the approximate solutions

c�kt,zt;�� � c � ck�kt � k� � czzt � c��

k�kt,zt;�� � k � kk�kt � k� � kzzt � k��

where we showed that c� � k� � 0

Thus, first-order perturbation

is a way to find linearization or log-

linearization



9

But we don’t have to stop here. Since

Eta�kt,zt;�,� t�1� � 0 for all kt ,zt,�,

second derivatives with respect to

�kt,zt;�� also have to be zero.

Differentiate each of the 6 equations

Etak�kt,zt;�,� t�1� � 0

Etaz�kt,zt;�,� t�1� � 0

Eta��kt,zt;�,� t�1� � 0

with respect to kt,zt, and �.

Gives 18 linear equations in

the 12 unknowns

�cij ,kij� i ,j��k,z,�� with 6 equations

redundant by symmetry of

second derivatives (e.g., ckz � czk�

and where coefficients on cij ,kij

are known from previous step
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We then have second-order

approximation to decision functions,

c�kt,zt;�� � c � c1
� s t � �1/2�s t

�C2s t

k�kt,zt;�� � k � k1
� s t � �1/2�s t

�K2s t

c1
� � ck cz 0

s t � �kt � k� zt �

k1
� � kk kz 0

C2 �

ckk ckz ck�

czk czz cz�

c�k c�z c��

K2 �

kkk kkz kk�

kzk kzz kz�

k�k k�z k��

c�kt,zt;�� � c � c1
� s t � �1/2�s t

�C2s t

s t � �kt � k� zt �

Note: term on �2 in s t
�C2s t acts

like another constant reflecting

precautionary behavior left out

of certainty-equivalence steady-

state c
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We could in principle continue to as high an 
order approximation as we wanted

V. Nonlinear state-space models

D.  Nonlinear DSGE’s
1. Motivation
2. Perturbation methods
3. Illustration

Using a particle filter to estimate a DSGE 
with second-order perturbation 
approximation (Fernandez-Villaverde and 
Rubio-Ramirez, REStud, 2007)

Ct � I t � AtK t
�Lt

1��

K t�1 � �1 � ��K t � UtI t

logAt � � � logAt�1 � �at�at

logUt � � � logU t�1 � �vt�vt

log�at � �1 � 	a� log � a

� 	a log�a,t�1 � 
a�at

log�vt � �1 � 	v� log � v

� 	v log�v,t�1 � 
v�vt
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E0 �
t�0

�

� t�edt logCt � � log�1 � Lt��

dt � �dt�1 � �dt�dt

log�dt � �1 � 	d� log � d

� 	d log�d,t�1 � 
d�dt

vt � ��at,�vt,�dt,�at,�vt,�dt��

vt � N�0, I6�

� � diag�� a
2, � v

2, � d
2,
a

2,
v
2 ,
d

2�

perturbation method: Continuum

of economies with variance �,

take expansion around  � 0

Transformations to find steady-

state representation:

Zt � At�1
1/�1���Ut�1

�/�1���

Y� t � Yt/Zt, C� t � Ct /Zt,
�
I t � I t/Zt

Ut � U t/Ut�1, Ãt � At /At�1, K� t � K t/ZtUt�1

k� � log of steady-state value for K�
	
k� t � log K� t � k�



13

state vector for economic model:

s� t � �
	
k� t,�at,�vt,�dt,dt�1,

�at � � a,�vt � � v,�dt � � d��

second-order perturbation:
	
k� t�1 � �k1

� s� t � �1/2�s� t
��k2s� t � �k0

	
i t � � i1

� s� t � �1/2�s� t
�� i2s� t � � i0

	
�� t � � �1

� s� t � �1/2�s� t
���2s� t � ��0

� j0 reflects precautionary effects

However, we will observe actual

GDP growth per capita

� logYt � � logY� t

� 1
1�� �� logAt�1 � �� logUt�1� � �y��yt

� hy�s� t, s� t�1� � �y��yt

�yt � measurement error

Also observe real gross investment

per capita �I t�, hours worked per

capita ��t�, and relative price of

investment goods Pt

� log I t � hi �s� t, s� t�1� � � i�� it

log �t � h��s� t, s� t�1� � �����t
� logPt � �� logU t
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s� t � �
	
k� t,�at,�vt,�dt,dt�1,

�at � � a,�vt � � v,�dt � � d��

vt � ��at,�vt,�dt,�at,�vt,�dt��

St � �s� t
�, s� t�1

� �

state equation

St � f�S t�1, vt�

f1�S t�1, vt� � �k1
� s� t � �1/2�s� t

��k2s� t � �k0

f2�S t�1,vt� � �at




f5�S t�1,vt� � �dt�2 � �d,t�1�d,t�1

f6�S t�1,vt� � exp��1 � 	a� log � a

� 	a log�a,t�1 � 
a�at� � � a




f9�16�S t�1,vt� � s� t�1

yt � �� logYt,� log I t, log � t,� logPt��

observation equation:

yt � h�S t� � wt
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According to the set-up, �vt is

observed directly from the change

in investment price each period

logUt � � � logU t�1 � �vt�vt

� logPt � �� logU t

We only need to generate a

draw for

v1t � ��at,�dt,�at,�vt,�dt��

in order to have a value for �vt and

value for �vt

�vt � � � logPt��
�vt

Initialization:

St � f�S t�1,vt�

One approach is to set

S�N � 0, draw v�N�1, v�N�2, . . . , v0

from N�0, I6� to obtain D draws

(particles) for �S0
�i�� i�1

D
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Estimation using bootstrap

particle filter

As of date t we have calculated

a set

	t
�i �

� �S t
�i �,St�1

�i � , . . . , S0
�i��)

for i � 1, . . . ,D

To update for t � 1 we do the following:

Step 1: generate v1,t�1
�i� � N�0, I5� for

i � 1, . . . ,D

Step 2: generate St�1
�i�

� f S t
�i�, vt�1

�i �

except for the third element �v,t�1
�i �

Step 3: calculate

wt�1
�i�

� yt�1 � h�St�1
�i� �

and set third element of St�1
�i� equal to

fourth element of wt�1
�i � , �v,t�1

�i�
� � � logPt�1��

�v,t�1
�i�

Step 4: calculate

�� t�1
�i�

� �2���4/2 |Dt�1
�i� |

� exp ��1/2� wt�1
�i � �Dt�1

�i � ��1 w t�1
�i�

Dt�1
�i �

�

�y�
2 0 0 0

0 � i�
2 0 0

0 0 � ��
2 0

0 0 0 �v,t�1
�i � 2
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Step 5: Contribution to likelihood is

p
�yt�1 |� t� � D�1 �
i�1

D

�� t�1
�i�

� � t�1

Step 6: Calculate �
 t�1
�i �

� �� t�1
�i� /� t�1

and resample

	t�1
�j�

�

	t�1
�1� with probability �
 t�1

�1�




	 t�1
�D� with probability �
 t�1

�D�

Structural parameters:

� � ��,�,�,�,�,�,�,
a,
v,
d,

� a, � v, � d,	a,	v,	d,�y�,� i�,� ����

Fernandez-Villaverde and Rubio-

Ramirez estimate � by maximizing

�
 ��� � �
t�1

T

p
�yt |� t�1;��


