V. Nonlinear state-space models

A. Extended Kalman filter
B. Particle filter
C. Solution and estimation of nonlinear dynamic stochastic general equilibrium models

1. Motivation
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\mathbf{x}_{t}=$ vector of exogenous variables
$\boldsymbol{\varepsilon}_{t}=$ vector of exogenous disturbances
$\mathbf{f}\left(\mathbf{x}_{t+1}, \mathbf{x}_{t}, \boldsymbol{\varepsilon}_{t+1}\right)=\mathbf{0}$
(equation of motion for \mathbf{x}_{t})
$\mathbf{z}_{t}=$ vector of endogenous variables
$E_{t} \mathbf{a}\left(\mathbf{z}_{t+1}, \mathbf{z}_{t}, \mathbf{x}_{t}\right)=\mathbf{0}$
(equations derived from econ theory)

Approach we discussed earlier:
(1) Log-linearize system.

$$
\begin{gathered}
\mathbf{A} E_{t} \mathbf{z}_{t+1}=\mathbf{B} \mathbf{z}_{t}+\mathbf{C} \mathbf{x}_{t} \\
\mathbf{x}_{t+1}=\boldsymbol{\Phi} \mathbf{x}_{t}+\boldsymbol{\varepsilon}_{t+1}
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(2) Find rational-expectations solution. predetermined component: $\mathbf{z}_{1 t}$

$$
\mathbf{z}_{1, t+1}=\mathbf{H}_{11} \mathbf{z}_{1 t}+\mathbf{H}_{12} \mathbf{x}_{t}
$$

forward-looking component: $\mathbf{z}_{2 t}$

$$
\mathbf{z}_{2 t}=\mathbf{H}_{21} \mathbf{z}_{1 t}+\mathbf{H}_{22} \mathbf{x}_{t}
$$

(3) Recognize as state-space system.
$\mathbf{y}_{t}=$ observed elements of $\left\{\mathbf{z}_{t}, \mathbf{x}_{t}\right\}$
$\xi_{t}=$ unobserved elements of $\left\{\mathbf{z}_{t}, \mathbf{x}_{t}\right\}$
$\boldsymbol{\xi}_{t+1}=\boldsymbol{\Phi} \boldsymbol{\xi}_{t}+\mathbf{v}_{t+1}$
$\mathbf{y}_{t}=\mathbf{a}+\mathbf{H}^{\prime} \boldsymbol{\xi}_{t}+\mathbf{w}_{t}$
(4) Estimate parameters by MLE or Bayesian methods. \qquad
\qquad

Things we lose from linearization:
(1) Statistical representation of recessions. Recall that a discrete Markov chain can be viewed as $\operatorname{VAR}(1)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Things we lose from linearization: \qquad
(2) Economic characterization of risk aversion.
$1=E_{t}\left[\frac{\beta U^{\prime}\left(c_{t+1}\right)\left(1+r_{j, t+1)}\right.}{U^{\prime}\left(c_{t}\right)}\right]$ for $r_{j, t+1}$ the real return on any asset.
Finance: different assets have different expected returns due to covariance between $r_{j, t+1}$ and c_{t+1}

$$
1=E_{t}\left[\frac{\beta U^{\prime}\left(c_{t+1}\right)\left(1+r_{j, t+1}\right)}{U^{\prime}\left(c_{t}\right)}\right]
$$

steady state:
$1=\frac{\beta U^{\prime}(c)\left(1+r_{j}\right)}{U^{\prime}(c)}$
$\beta\left(1+r_{j}\right)=1$ for all j

linearization around steady state
$U^{\prime}\left(c_{t}\right)=E_{t}\left[\beta U^{\prime}\left(c_{t+1}\right)\left(1+r_{j, t+1}\right)\right]$
$\simeq(1+r) \beta U^{\prime \prime}(c) E_{t}\left(c_{t+1}-c\right)$
$+\beta U^{\prime}(c) E_{t}\left(r_{j, t+1}-r\right)$
same for all j

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Things we lose from linearization:
(3) Role of changes in uncertainty, time-varying volatility.

(4) Behavior of economy when

 interest rate is at zero lower bound $R_{t}=\min \left(R_{t}^{*}, \bar{R}\right)$Approaches to estimating nonlinear dynamic \qquad economic models.
Step 1: Find approximating nonlinear state-space representation using either
(1) perturbation methods (e.g., FernandezVillaverde and Rubio-Ramirez), or
(2) projection methods (e.g., Gust, Lopez-Salido, and Smith)
Step 2: Estimate parameters using particle filter or other nonlinear estimation (MLE or Bayesian)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

V. Nonlinear state-space models

\qquad
A. Extended Kalman filter \qquad
B. Unscented Kalman filter
C. Particle filter
D. Nonlinear DSGE's \qquad

1. Motivation
2. Perturbation methods \qquad
\qquad
\qquad

Example:

$$
\begin{aligned}
& \max _{\left\{c_{t}, k_{t+1}\right\}_{t=0}^{\infty}} E_{0} \sum_{t=0}^{\infty} \beta^{t} \log c_{t} \\
& \text { s.t. } c_{t}+k_{t+1}=e^{z_{t}} k_{t}^{\alpha}+(1-\delta) k_{t} \quad t=1,2, \ldots \\
& \quad z_{t}=\rho z_{t-1}+\sigma \varepsilon_{t} \quad t=1,2, \ldots \\
& \quad k_{0}, z_{0} \text { given } \\
& \quad \varepsilon_{t} \sim N(0,1)
\end{aligned}
$$

Approach: we will consider a continuum of economies indexed by σ and study
solutions as $\sigma \rightarrow 0$ (that is, as
economy becomes deterministic).
We seek decision rules of the form
$c_{t}=c\left(k_{t}, z_{t} ; \sigma\right)$
$k_{t+1}=k\left(k_{t}, z_{t} ; \sigma\right)$ \qquad
\qquad

Write F.O.C. as $E_{t} \mathbf{a}\left(k_{t}, z_{t} ; \sigma, \varepsilon_{t+1}\right)=\mathbf{0}$ $a_{1}\left(k_{t}, z_{t} ; \sigma, \varepsilon_{t+1}\right)=\frac{1}{c\left(k_{t}, z ; \sigma\right)}-$
$\beta \frac{\alpha k(k, z ; z ; \sigma)^{\alpha-1} \exp \left(\rho z_{t}+\sigma \varepsilon_{t+1}\right)}{c\left(k\left(k_{t}, z ; \tau ;\right), \rho z_{1}+\sigma \varepsilon_{t+1} ; \sigma\right)}$
$a_{2}\left(k_{t}, z_{t} ; \sigma, \varepsilon_{t+1}\right)=c\left(k_{t}, z_{t} ; \sigma\right)+k\left(k_{t}, z_{t} ; \sigma\right)$
$-e^{z_{t}} k_{t}^{\alpha}-(1-\delta) k_{t}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { Zero-order approximation } \\
& \text { (deterministic steady state) } \\
& \sigma=0 \\
& z_{t}=z=0 \\
& k_{t}=k \\
& \mathbf{a}(k, 0 ; 0)=\mathbf{0}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& a_{1}(k, 0 ; 0)=0 \\
& \quad \Rightarrow \frac{1}{c}-\beta \frac{\alpha k^{\alpha-1}}{c}=0 \\
& \quad \Rightarrow 1=\beta \alpha k^{\alpha-1} \\
& \begin{array}{l}
a_{2}(k, 0 ; 0)=0 \\
\quad \Rightarrow c+k-k^{\alpha}-(1-\delta) k \\
\quad \Rightarrow c=k^{\alpha}-\delta k
\end{array}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

First-order approximation:
Since $E_{t} \mathbf{a}\left(k_{t}, z_{t} ; \sigma, \varepsilon_{t+1}\right)=\mathbf{0}$ for all \qquad
$k_{t}, z_{t} ; \sigma$, it follows that
$E_{t} \mathbf{a}_{k}\left(k_{t}, z_{t} ; \sigma, \varepsilon_{t+1}\right)=\mathbf{0}$
for $\mathbf{a}_{k}\left(k_{t}, z_{t} ; \sigma, \varepsilon_{t+1}\right)=\frac{\partial \mathbf{a}\left(k_{t}, z ; ; \sigma, \varepsilon_{t+1}\right)}{\partial k_{t}}$
likewise

$$
E_{t} \mathbf{a}_{z}\left(k_{t}, z_{t} ; \sigma, \varepsilon_{t+1}\right)=E_{t} \mathbf{a}_{\sigma}\left(k_{t}, z_{t} ; \sigma, \varepsilon_{t+1}\right)=\mathbf{0}
$$

$$
\begin{aligned}
& E_{t}\left\{\left.\frac{\partial a_{1}\left(k_{t}, z ; ; \sigma, \varepsilon_{t+1}\right)}{\partial k_{t}}\right|_{k_{t}=k, z_{t}=0, \sigma=0}\right\}= \\
& \frac{-1}{c^{2}} c_{k}-\frac{\beta \alpha(\alpha-1) k^{\alpha-2}}{c} k_{k}+\frac{\beta \alpha k^{\alpha-1}}{c^{2}} c_{k} k_{k}
\end{aligned}
$$

Since c and k are known from previous step, setting this to zero gives us an equation in the unknowns c_{k} and k_{k} where for example $c_{k}=\left.\frac{\partial c\left(k_{t}, z_{t} ; \sigma\right)}{\partial k_{t}}\right|_{k_{t}=k, z_{t}=0, \sigma=0}$

$$
\begin{aligned}
& \left.\frac{\partial a_{2}\left(k_{t}, z_{t} ; \sigma\right)}{\partial k_{t}}\right|_{k_{t}=k, z_{t}=0, \sigma=0}= \\
& c_{k}+k_{k}-\alpha k^{\alpha-1}-(1-\delta)
\end{aligned}
$$

This is a second equation in c_{k}, k_{k}, which together with the first can now be solved for c_{k}, k_{k} as a function of c and k

$$
\begin{aligned}
& E_{t}\left\{\left.\frac{\partial a_{1}\left(k_{t}, z_{t} ; \sigma, \varepsilon_{t+1}\right)}{\partial z_{t}}\right|_{k_{t}=k, z_{t}=0, \sigma=0}\right\}= \\
& \quad \frac{-1}{c^{2}} c_{z}-\frac{\beta \alpha(\alpha-1) k^{\alpha-2}}{c} k_{z}-\frac{\beta \alpha k^{\alpha-1} \rho}{c} \\
& \quad+\frac{\beta \alpha k^{\alpha-1}}{c^{2}}\left(c_{k} k_{z}+\rho c_{z}\right) \\
& \left.\frac{\partial a_{2}\left(k_{t}, z, z ; \sigma\right)}{\partial z_{t}}\right|_{k_{t}=k, z_{t}=0, \sigma=0}= \\
& \quad c_{z}+k_{z}-k^{\alpha}
\end{aligned}
$$

setting these to zero allows us to solve for c_{z}, k_{z}

$$
\begin{aligned}
& \left.\frac{\partial a_{1}\left(k_{t}, z_{t} ; \sigma, \varepsilon_{t+1}\right)}{\partial \sigma}\right|_{k_{t}=k, z_{t}=0, \sigma=0}= \\
& \quad \frac{-1}{c^{2}} c_{\sigma}-\frac{\beta \alpha(\alpha-1) k^{\alpha-2}}{c} k_{\sigma}-\frac{\beta \alpha k^{\alpha-1} \varepsilon_{t+1}}{c} \\
& \quad+\frac{\beta \alpha k^{\alpha-1}}{c^{2}}\left(c_{k} k_{\sigma}+\varepsilon_{t+1} c_{z}+c_{\sigma}\right) \\
& \left.\frac{\partial a_{2}\left(k_{t}, z_{t} ; \sigma\right)}{\partial \sigma}\right|_{k_{t}=k, z_{t}=0, \sigma=0}= \\
& c_{\sigma}+k_{\sigma}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Taking expectations and setting to zero yields
$\frac{-1}{c^{2}} c_{\sigma}-\frac{\beta \alpha(\alpha-1) k^{\alpha-2}}{c} k_{\sigma}$

$$
\begin{aligned}
& +\frac{\beta \alpha k^{\alpha-1}}{c^{2}}\left(c_{k} k_{\sigma}+c_{\sigma}\right)=0 \\
& c_{\sigma}+k_{\sigma}=0
\end{aligned}
$$

which has solution $c_{\sigma}=k_{\sigma}=0$ \qquad
\Rightarrow volatility, risk aversion play \qquad no role in first-order approximation

Now that we've calculated derivatives, \qquad we have the approximate solutions \qquad $c\left(k_{t}, z_{t} ; \sigma\right) \simeq c+c_{k}\left(k_{t}-k\right)+c_{z} z_{t}+c_{\sigma} \sigma$ $k\left(k_{t}, z_{t} ; \sigma\right) \simeq k+k_{k}\left(k_{t}-k\right)+k_{z} z_{t}+k_{\sigma} \sigma$ where we showed that $c_{\sigma}=k_{\sigma}=0$ \qquad Thus, first-order perturbation is a way to find linearization or loglinearization \qquad
\qquad

But we don't have to stop here. Since $E_{t} \mathbf{a}\left(k_{t}, z_{t} ; \sigma, \varepsilon_{t+1}\right)=\mathbf{0}$ for all k_{t}, z_{t}, σ, second derivatives with respect to
\qquad
\qquad $\left(k_{t}, z_{t} ; \sigma\right)$ also have to be zero.

Differentiate each of the 6 equations
$E_{t} \mathbf{a}_{k}\left(k_{t}, z_{t} ; \sigma, \varepsilon_{t+1}\right)=\mathbf{0}$
$E_{t} \mathbf{a}_{z}\left(k_{t}, z_{t} ; \sigma, \varepsilon_{t+1}\right)=\mathbf{0}$
$E_{t} \mathbf{a}_{\sigma}\left(k_{t}, z_{t} ; \sigma, \varepsilon_{t+1}\right)=\mathbf{0}$
with respect to k_{t}, z_{t}, and σ.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Gives 18 linear equations in \qquad the 12 unknowns \qquad
$\left\{c_{i j}, k_{i j}\right\}_{i, j \in\{k, z, \sigma)}$ with 6 equations \qquad redundant by symmetry of second derivatives (e.g., $c_{k z}=c_{z k}$) and where coefficients on $c_{i j}, k_{i j}$ are known from previous step
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { We then have second-order } \\
& \text { approximation to decision functions, } \\
& c\left(k_{t}, z_{t} ; \sigma\right) \simeq c+\mathbf{c}_{1}^{\prime} \mathbf{s}_{t}+(1 / 2) \mathbf{s}_{t}^{\prime} \mathbf{C}_{2} \mathbf{s}_{t} \\
& k\left(k_{t}, z_{t} ; \sigma\right) \simeq k+\mathbf{k}_{1}^{\prime} \mathbf{s}_{t}+(1 / 2) \mathbf{s}_{t}^{\prime} \mathbf{K}_{2} \mathbf{s}_{t} \\
& \mathbf{c}_{1}^{\prime}=\left[\begin{array}{lll}
c_{k} & c_{z} & 0
\end{array}\right] \\
& \mathbf{s}_{t}=\left[\begin{array}{lll}
\left(k_{t}-k\right) & z_{t} & \sigma
\end{array}\right] \\
& \mathbf{k}_{1}^{\prime}=\left[\begin{array}{lll}
k_{k} & k_{z} & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{C}_{2}=\left[\begin{array}{lll}
c_{k k} & c_{k z} & c_{k \sigma} \\
c_{z k} & c_{z z} & c_{z \sigma} \\
c_{\sigma k} & c_{\sigma z} & c_{\sigma \sigma}
\end{array}\right] \\
& \mathbf{K}_{2}=\left[\begin{array}{lll}
k_{k k} & k_{k z} & k_{k \sigma} \\
k_{z k} & k_{z z} & k_{z \sigma} \\
k_{\sigma k} & k_{\sigma z} & k_{\sigma \sigma}
\end{array}\right]
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$c\left(k_{t}, z_{t} ; \sigma\right) \simeq c+\mathbf{c}_{1}^{\prime} \mathbf{s}_{t}+(1 / 2) \mathbf{s}_{t}^{\prime} \mathbf{C}_{2} \mathbf{s}_{t}$
$\mathbf{s}_{t}=\left[\begin{array}{lll}\left(k_{t}-k\right) & z_{t} & \sigma\end{array}\right]$
Note: term on σ^{2} in $\mathbf{s}_{t}^{\prime} \mathbf{C}_{2} \mathbf{s}_{t}$ acts \qquad
like another constant reflecting \qquad precautionary behavior left out of certainty-equivalence steadystate c
\qquad
\qquad
\qquad

We could in principle continue to as high an order approximation as we wanted
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

V. Nonlinear state-space models

\qquad
D. Nonlinear DSGE's

1. Motivation
2. Perturbation methods
3. Illustration

Using a particle filter to estimate a DSGE with second-order perturbation approximation (Fernandez-Villaverde and Rubio-Ramirez, REStud, 2007)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$C_{t}+I_{t}=A_{t} K_{t}^{\alpha} L_{t}^{1-\alpha}$
$K_{t+1}=(1-\delta) K_{t}+U_{t} I_{t}$
$\log A_{t}=\zeta+\log A_{t-1}+\sigma_{a t} \varepsilon_{a t}$
$\log U_{t}=\theta+\log U_{t-1}+\sigma_{v t} \varepsilon_{v t}$
$\log \sigma_{a t}=\left(1-\lambda_{a}\right) \log \bar{\sigma}_{a}$

$$
+\lambda_{a} \log \sigma_{a, t-1}+\tau_{a} \eta_{a t}
$$

\qquad
$\log \sigma_{v t}=\left(1-\lambda_{v}\right) \log \bar{\sigma}_{v}$

$$
+\lambda_{v} \log \sigma_{v, t-1}+\tau_{v} \eta_{v t}
$$

$$
\begin{aligned}
& E_{0} \sum_{t=0}^{\infty} \beta^{t}\left\{e^{d_{t}} \log C_{t}+\psi \log \left(1-L_{t}\right)\right\} \\
& d_{t}=\rho d_{t-1}+\sigma_{d t} \varepsilon_{d t} \\
& \log \sigma_{d t}=\left(1-\lambda_{d}\right) \log \bar{\sigma}_{d} \\
& \quad+\lambda_{d} \log \sigma_{d, t-1}+\tau_{d} \eta_{d t}
\end{aligned}
$$

$\mathbf{v}_{t}=\left(\varepsilon_{a t}, \varepsilon_{v t}, \varepsilon_{d t}, \eta_{a t}, \eta_{v t}, \eta_{d t}\right)^{\prime}$
$\mathbf{v}_{t} \sim N\left(\mathbf{0}, \mathbf{I}_{6}\right)$
$\boldsymbol{\Omega}=\operatorname{diag}\left\{\bar{\sigma}_{a}^{2}, \bar{\sigma}_{v}^{2}, \bar{\sigma}_{d}^{2}, \tau_{a}^{2}, \tau_{v}^{2}, \tau_{d}^{2}\right\}$
perturbation method: Continuum of economies with variance $\chi \boldsymbol{\Omega}$,
take expansion around $\chi=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Transformations to find steadystate representation: \qquad
$Z_{t}=A_{t-1}^{1 /(1-\alpha)} U_{t-1}^{\alpha /(1-\alpha)}$
$\tilde{Y}_{t}=Y_{t} / Z_{t}, \tilde{C}_{t}=C_{t} / Z_{t}, \widetilde{I}_{t}=I_{t} / Z_{t}$
$\widetilde{U}_{t}=U_{t} / U_{t-1}, \tilde{A}_{t}=A_{t} / A_{t-1}, \tilde{K}_{t}=K_{t} / Z_{t} U_{t-1}$
$\tilde{k}=\log$ of steady-state value for \tilde{K}
$\widehat{\tilde{k}}_{t}=\log \tilde{K}_{t}-\tilde{k}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
state vector for economic model:
$\tilde{\mathbf{s}}_{t}=\left(\widehat{\tilde{k}}_{t}, \varepsilon_{a t}, \varepsilon_{v t}, \varepsilon_{d t}, d_{t-1}\right.$, $\left.\sigma_{a t}-\bar{\sigma}_{a}, \sigma_{v t}-\bar{\sigma}_{v}, \sigma_{d t}-\bar{\sigma}_{d}\right)^{\prime}$
second-order perturbation: \qquad
$\widehat{\tilde{k}}_{t+1}=\boldsymbol{\Psi}_{k 1}^{\prime} \tilde{\mathbf{s}}_{t}+(1 / 2) \tilde{\mathbf{s}}_{t}^{\prime} \boldsymbol{\Psi}_{k 2} \tilde{\mathbf{s}}_{t}+\psi_{k 0}$
$\widehat{i}_{t}=\boldsymbol{\Psi}_{i 1}^{\prime} \tilde{\mathbf{s}}_{t}+(1 / 2) \tilde{\mathbf{s}}_{t}^{\prime} \Psi_{i 2} \tilde{\mathbf{s}}_{t}+\psi_{i 0}$
$\widehat{\tilde{l}}_{t}=\Psi_{01}^{\prime} \tilde{\mathbf{s}}_{t}+(1 / 2) \tilde{\mathbf{s}}_{t}^{\prime} \Psi_{l 2} \tilde{\mathbf{s}}_{t}+\psi_{l 0}$
$\psi_{j 0}$ reflects precautionary effects

However, we will observe actual
GDP growth per capita \qquad
$\Delta \log Y_{t}=\Delta \log \tilde{Y}_{t}$
$+\frac{1}{1-\alpha}\left(\Delta \log A_{t-1}+\alpha \Delta \log U_{t-1}\right)+\sigma_{y \varepsilon} \varepsilon_{y t}$
$=h_{y}\left(\tilde{\mathbf{s}}_{t}, \tilde{\mathbf{s}}_{t-1}\right)+\sigma_{y \varepsilon} \varepsilon_{y t}$
$\varepsilon_{y t}=$ measurement error
\qquad
\qquad
\qquad
\qquad
\qquad

Also observe real gross investment per capita $\left(I_{t}\right)$, hours worked per \qquad capita $\left(\ell_{t}\right)$, and relative price of \qquad investment goods P_{t}
$\Delta \log I_{t}=h_{i}\left(\tilde{\mathbf{s}}_{t}, \tilde{\mathbf{s}}_{t-1}\right)+\sigma_{i \varepsilon} \varepsilon_{i t}$
$\log \ell_{t}=h_{\ell}\left(\tilde{\mathbf{s}}_{t}, \tilde{\mathbf{s}}_{t-1}\right)+\sigma_{\ell \varepsilon} \varepsilon_{\ell t}$
$\Delta \log P_{t}=-\Delta \log U_{t}$
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
\tilde{\mathbf{s}}_{t}= & \left(\widehat{\hat{k}}_{t}, \varepsilon_{a t}, \varepsilon_{v t}, \varepsilon_{d t}, d_{t-1},\right. \\
& \left.\sigma_{a t}-\bar{\sigma}_{a}, \sigma_{v t}-\bar{\sigma}_{v}, \sigma_{d t}-\bar{\sigma}_{d}\right)^{\prime} \\
\mathbf{v}_{t}= & \left(\varepsilon_{a t}, \varepsilon_{v t}, \varepsilon_{d t}, \eta_{a t}, \eta_{v t}, \eta_{d t}\right)^{\prime} \\
\mathbf{S}_{t}= & \left(\tilde{\mathbf{s}}_{t}^{\prime}, \tilde{\mathbf{s}}_{t-1}^{\prime}\right)
\end{aligned}
$$

state equation
$\mathbf{S}_{t}=\mathbf{f}\left(\mathbf{S}_{t-1}, \mathbf{v}_{t}\right)$
$f_{1}\left(\mathbf{S}_{t-1}, \mathbf{v}_{t}\right)=\boldsymbol{\Psi}_{k 1}^{\prime} \tilde{\mathbf{s}}_{t}+(1 / 2) \tilde{\mathbf{s}}_{t}^{\prime} \Psi_{k 2} \tilde{\mathbf{s}}_{t}+\psi_{k 0}$

$$
\begin{aligned}
& f_{2}\left(\mathbf{S}_{t-1}, \mathbf{v}_{t}\right)=\varepsilon_{a t} \\
& \quad \vdots \\
& f_{5}\left(\mathbf{S}_{t-1}, \mathbf{v}_{t}\right)=\rho d_{t-2}+\sigma_{d, t-1} \varepsilon_{d, t-1} \\
& f_{6}\left(\mathbf{S}_{t-1}, \mathbf{v}_{t}\right)=\exp \left[\left(1-\lambda_{a}\right) \log \bar{\sigma}_{a}\right. \\
& \left.\quad+\lambda_{a} \log \sigma_{a, t-1}+\tau_{a} \eta_{a t}\right]-\bar{\sigma}_{a} \\
& \quad \vdots \\
& \mathbf{f}_{9-16}\left(\mathbf{S}_{t-1}, \mathbf{v}_{t}\right)=\tilde{\mathbf{S}}_{t-1}
\end{aligned}
$$

$\mathbf{y}_{t}=\left(\Delta \log Y_{t}, \Delta \log I_{t}, \log \ell_{t}, \Delta \log P_{t}\right)^{\prime}$
observation equation:
$\mathbf{y}_{t}=\mathbf{h}\left(\mathbf{S}_{t}\right)+\mathbf{w}_{t}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

According to the set-up, $\varepsilon_{v t}$ is observed directly from the change in investment price each period $\log U_{t}=\theta+\log U_{t-1}+\sigma_{v t} \varepsilon_{v t}$ $\Delta \log P_{t}=-\Delta \log U_{t}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

We only need to generate a draw for
$\mathbf{v}_{1 t}=\left(\varepsilon_{a t}, \varepsilon_{d t}, \eta_{a t}, \eta_{v t}, \eta_{d t}\right)^{\prime}$
in order to have a value for $\sigma_{v t}$ and value for $\varepsilon_{v t}$
\qquad
\qquad
$\varepsilon_{v t}=-\frac{\Delta \log P_{t}+\theta}{\sigma_{v t}}$

Initialization:
$\mathbf{S}_{t}=\mathbf{f}\left(\mathbf{S}_{t-1}, \mathbf{v}_{t}\right)$
One approach is to set
$\mathbf{S}_{-N}=\mathbf{0}$, draw $\mathbf{v}_{-N+1}, \mathbf{v}_{-N+2}, \ldots, \mathbf{v}_{0}$ from $N\left(\mathbf{0}, \mathbf{I}_{6}\right)$ to obtain D draws (particles) for $\left\{\mathbf{S}_{0}^{(i)}\right\}_{i=1}^{D}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Estimation using bootstrap particle filter \qquad
As of date t we have calculated a set
$\left.\Lambda_{t}^{(i)}=\left\{\mathbf{S}_{t}^{(i)}, \mathbf{S}_{t-1}^{(i)}, \ldots, \mathbf{S}_{0}^{(i)}\right\}\right)$
for $i=1, \ldots, D$
To update for $t+1$ we do the following:

Step 1: generate $\mathbf{v}_{1, t+1}^{(i)} \sim N\left(\mathbf{0}, \mathbf{I}_{5}\right)$ for
$i=1, \ldots, D$
Step 2: generate $\mathbf{S}_{t+1}^{(i)}=\mathbf{f}\left(\mathbf{S}_{t}^{(i)}, \mathbf{v}_{t+1}^{(i)}\right)$
except for the third element $\varepsilon_{v, t+1}^{(i)}$
Step 3: calculate \qquad
$\mathbf{w}_{t+1}^{(i)}=\mathbf{y}_{t+1}-\mathbf{h}\left(\mathbf{S}_{t+1}^{(i)}\right)$ \qquad
and set third element of $\mathbf{S}_{t+1}^{(i)}$ equal to fourth element of $\mathbf{w}_{t+1}^{(i)}, \varepsilon_{v, t+1}^{(i)}=-\frac{\Delta \log P_{t+1}+\theta}{\sigma_{v, t+1}^{(i)}}$
\qquad
\qquad
\qquad
\qquad
\qquad

Step 4: calculate

$$
\begin{aligned}
\tilde{\omega}_{t+1}^{(i)} & =(2 \pi)^{-4 / 2}\left|\mathbf{D}_{t+1}^{(i)}\right| \\
& \times \exp \left(-(1 / 2)\left[\mathbf{w}_{t+1}^{(i)}\right]\left[\mathbf{D}_{t+1}^{(i)}\right]^{-1}\left[\mathbf{w}_{t+1}^{(i)}\right]\right) \\
\mathbf{D}_{t+1}^{(i)} & =\left[\begin{array}{cccc}
\sigma_{y \varepsilon}^{2} & 0 & 0 & 0 \\
0 & \sigma_{i \varepsilon}^{2} & 0 & 0 \\
0 & 0 & \sigma_{\ell \varepsilon}^{2} & 0 \\
0 & 0 & 0 & {\left[\sigma_{v, t+1}^{(i)}\right]^{2}}
\end{array}\right]
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Step 5: Contribution to likelihood is $\hat{p}\left(\mathbf{y}_{t+1} \mid \Omega_{t}\right)=D^{-1} \sum_{i=1}^{D} \tilde{\omega}_{t+1}^{(i)}=\bar{\omega}_{t+1}$
Step 6: Calculate $\hat{\omega}_{t+1}^{(i)}=\tilde{\omega}_{t+1}^{(i)} / \bar{\omega}_{t+1}$ and resample
\qquad $\Lambda_{t+1}^{(j)}=\left\{\begin{array}{cc}\Lambda_{t+1}^{(1)} & \text { with probability } \hat{\omega}_{t+1}^{(1)} \\ \vdots & \\ \Lambda_{t+1}^{(D)} & \text { with probability } \hat{\omega}_{t+1}^{(D)}\end{array}\right.$

Structural parameters:

\qquad
$\theta=\left(\alpha, \delta, \rho, \beta, \psi, \theta, \zeta, \tau_{a}, \tau_{v}, \tau_{d}\right.$, $\left.\bar{\sigma}_{a}, \bar{\sigma}_{v}, \bar{\sigma}_{d}, \lambda_{a}, \lambda_{v}, \lambda_{d}, \sigma_{y \varepsilon}, \sigma_{i \varepsilon}, \sigma_{\ell \varepsilon}\right)^{\prime}$
Fernandez-Villaverde and Rubio-
Ramirez estimate θ by maximizing

$$
\hat{\mathscr{L}}(\boldsymbol{\theta})=\sum_{t=1}^{T} \hat{p}\left(\mathbf{y}_{t} \mid \Omega_{t-1} ; \theta\right)
$$

