V. Nonlinear state-space models

A. Extended Kalman filter

Linear state-space model:

State equation:

$$
\begin{aligned}
& \boldsymbol{\xi}_{r+1}=\underset{r \times 1}{ }=\underset{r \times r}{ } \boldsymbol{F}_{t \times 1}+\underset{r \times 1}{\mathbf{v}_{t+1}} \quad \mathbf{v}_{t+1} \sim N(\mathbf{0}, \mathbf{Q}) \\
& \\
& \text { Observation equation: }
\end{aligned}
$$

$$
\underset{n \times 1}{\mathbf{y}_{t}}=\underset{n \times k_{k \times 1}}{\mathbf{A}^{\prime} \mathbf{x}_{t}}+\underset{n \times r}{\mathbf{H}^{\prime}} \boldsymbol{\xi}_{t \times 1}+\underset{n \times 1}{\mathbf{w}_{t}} \quad \mathbf{w}_{t} \sim N(\mathbf{0}, \mathbf{R})
$$

Nonlinear state-space model:
State equation:

$$
\underset{r \times 1}{\boldsymbol{\xi}_{t+1}}=\underset{r \times 1}{\phi}\left(\xi_{t}\right)+\underset{r \times 1}{\mathbf{v}_{t+1}} \quad \mathbf{v}_{t+1} \sim N(\mathbf{0}, \mathbf{Q})
$$

Observation equation:
$\underset{n \times 1}{\mathbf{y}_{t}}=\underset{n \times 1}{\mathbf{a}\left(\mathbf{x}_{t}\right)}+\underset{n \times 1}{\mathbf{h}\left(\xi_{t}\right)}+\underset{n \times 1}{\mathbf{w}_{t}} \quad \mathbf{w}_{t} \sim N(\mathbf{0}, \mathbf{R})$

Suppose at date t we have approximation to distribution of ξ_{t} conditional on
$\Omega_{t}=\left\{\mathbf{y}_{t}, \mathbf{y}_{t-1}, \ldots, \mathbf{y}_{1}, \mathbf{x}_{t}, \mathbf{x}_{t-1}, \ldots, \mathbf{x}_{1}\right\}$

$$
\xi_{t} \mid \Omega_{t} \sim N\left(\widehat{\xi}_{t \mid t}, \mathbf{P}_{t \mid t}\right)
$$

goal: calculate $\widehat{\xi}_{t+1 \mid t+1}, \mathbf{P}_{t+1 \mid t+1}$

State equation:

$$
\begin{aligned}
& \xi_{t+1}=\phi\left(\xi_{t}\right)+\mathbf{v}_{t+1} \\
& \phi\left(\xi_{t}\right) \simeq \phi_{t}+\Phi_{t}\left(\xi_{t}-\hat{\xi}_{t \mid t}\right) \\
& \phi_{t}=\phi\left(\hat{\xi}_{t \mid t}\right) \\
& r \times 1
\end{aligned}
$$

$$
\boldsymbol{\Phi}_{t}=\left.\frac{\partial \boldsymbol{\phi}\left(\boldsymbol{\xi}_{t}\right)}{\partial \boldsymbol{\xi}_{t}^{\prime}}\right|_{\boldsymbol{\xi}_{t}=\hat{\xi}_{t \mid t}}
$$

Forecast of state vector:

$$
\begin{aligned}
& \boldsymbol{\xi}_{t+1}=\phi_{t}+\boldsymbol{\Phi}_{t}\left(\boldsymbol{\xi}_{t}-\hat{\xi}_{t \mid t}\right)+\mathbf{v}_{t+1} \\
& \hat{\xi}_{t+1 \mid t}=\phi_{t}=\phi\left(\hat{\xi}_{t \mid t}\right) \\
& \mathbf{P}_{t+1 \mid t}=\boldsymbol{\Phi}_{t} \mathbf{P}_{t \mid t} \boldsymbol{\Phi}_{t}^{\prime}+\mathbf{Q}
\end{aligned}
$$

Observation equation:

$$
\begin{aligned}
& \mathbf{y}_{t}=\mathbf{a}\left(\mathbf{x}_{t}\right)+\mathbf{h}\left(\xi_{t}\right)+\mathbf{w}_{t} \\
& \mathbf{h}\left(\xi_{t}\right) \simeq \mathbf{h}_{t}+\mathbf{H}_{t}^{\prime}\left(\xi_{t}-\hat{\xi}_{t \mid t-1}\right) \\
& \mathbf{h}_{t}=\mathbf{h}\left(\hat{\xi}_{t \mid t-1}\right) \\
& n \times 1 \\
& {\underset{n}{t}+r}_{\prime}^{\mathbf{n}_{t}^{\prime}}=\left.\frac{\partial \mathbf{h}\left(\xi_{t}\right)}{\partial \xi_{t}^{\prime}}\right|_{\xi_{t}=\hat{\xi}_{|t|-1}}
\end{aligned}
$$

Note \mathbf{x}_{t} is observed so no need to linearize $\mathbf{a}\left(\mathbf{x}_{t}\right)$

Approximating state equation:
$\xi_{t+1}=\phi_{t}+\boldsymbol{\Phi}_{t}\left(\xi_{t}-\hat{\xi}_{t \mid t}\right)+\mathbf{v}_{t+1}$
Approximating observation equation:
$\mathbf{y}_{t}=\mathbf{a}\left(\mathbf{x}_{t}\right)+\mathbf{h}_{t}+\mathbf{H}_{t}^{\prime}\left(\xi_{t}-\hat{\xi}_{t \mid-1}\right)+\mathbf{w}_{t}$
A state-space model with time-varying coefficients

Forecast of observation vector:

$$
\begin{aligned}
& \mathbf{y}_{t+1}=\mathbf{a}\left(\mathbf{x}_{t+1}\right)+\mathbf{h}_{t+1}+ \\
& \mathbf{H}_{t+1}^{\prime}\left(\xi_{t+1}-\hat{\boldsymbol{\xi}}_{t+1 \mid t}\right)+\mathbf{w}_{t+1} \\
& \widehat{\mathbf{y}}_{t+1 \mid t}=\mathbf{a}\left(\mathbf{x}_{t+1}\right)+\mathbf{h}_{t+1} \\
& \quad=\mathbf{a}\left(\mathbf{x}_{t+1}\right)+\mathbf{h}\left(\hat{\xi}_{t+1 \mid t}\right) \\
& E\left(\mathbf{y}_{t+1}-\widehat{\mathbf{y}}_{t+1 \mid t}\right)\left(\mathbf{y}_{t+1}-\widehat{\mathbf{y}}_{t+1 \mid t}\right)^{\prime} \\
& \quad=\mathbf{H}_{t+1}^{\prime} \mathbf{P}_{t+1 \mid t \mathbf{H}_{t+1}}+\mathbf{R}
\end{aligned}
$$

Updated inference:

$\hat{\boldsymbol{\xi}}_{t+1 \mid t+1}=\hat{\boldsymbol{\xi}}_{t+1 \mid t}+\mathbf{K}_{t+1}\left(\mathbf{y}_{t+1}-\widehat{\mathbf{y}}_{t+1 \mid t}\right)$
$\mathbf{K}_{t+1}=\mathbf{P}_{t+1| |} \mathbf{H}_{t+1}\left(\mathbf{H}_{t+1}^{\prime} \mathbf{P}_{t+1 \mid t} \mathbf{H}_{t+1}+\mathbf{R}\right)^{-1}$
Start from $\hat{\xi}_{0 \mid 0}$ and $\mathbf{P}_{0 \mid 0}$ reflecting
prior information

Approximate log likelihood:

$$
\begin{aligned}
& -\frac{T n}{2} \log 2 \pi-\frac{1}{2} \sum_{t=1}^{T} \log \left|\boldsymbol{\Omega}_{t}\right| \\
& \quad-\frac{1}{2} \sum_{t=1}^{T} \boldsymbol{\varepsilon}_{t}^{\prime} \boldsymbol{\Omega}_{t}^{-1} \boldsymbol{\varepsilon}_{t}
\end{aligned}
$$

$$
\boldsymbol{\Omega}_{t}=\mathbf{H}_{t}^{\prime} \mathbf{P}_{t \mid t-1} \mathbf{H}_{t}+\mathbf{R}
$$

$$
\boldsymbol{\varepsilon}_{t}=\mathbf{y}_{t}-\mathbf{a}\left(\mathbf{x}_{t}\right)-\mathbf{h}\left(\hat{\xi}_{t \mid t-1}\right)
$$

V. Nonlinear state-space models

A. Extended Kalman filter
B. Particle filter

State equation:

$$
\underset{r \times 1}{\boldsymbol{\xi}_{t+1}}=\underset{r \times 1}{ } \boldsymbol{\phi}_{t}\left(\xi_{t}, \mathbf{v}_{t+1}\right)
$$

Observation equation:
$\mathbf{y}_{t}=\mathbf{h}_{t}\left(\xi_{t}, \mathbf{w}_{t}\right)$
$n \times 1 \quad n \times 1$
$\phi_{t}($.$) and \mathbf{h}_{t}($.$) known functions$
(may depend on unknown θ)
$\left\{\mathbf{w}_{t}, \mathbf{v}_{t}\right\}$ have known distribution (e.g.,
i.i.d., perhaps depend on θ)
$\Omega_{t}=\left\{\mathbf{y}_{t}, \mathbf{y}_{t-1}, \ldots, \mathbf{y}_{1}\right\}$
$\Lambda_{t}=\left\{\boldsymbol{\xi}_{t}, \boldsymbol{\xi}_{t-1}, \ldots, \boldsymbol{\xi}_{0}\right\}$
output for step t :

$$
p\left(\Lambda_{t} \mid \Omega_{t}\right)
$$

represented by a series of particles:

$$
\left\{\boldsymbol{\xi}_{t}^{(i)}, \boldsymbol{\xi}_{t-1}^{(i)}, \ldots, \xi_{0}^{(i)}\right\}_{i=1}^{D}
$$

Particle i is associated with weight $\hat{\omega}_{t}^{(i)}$ such that particles can be used to simulate draw from $p\left(\Lambda_{t} \mid \Omega_{t}\right)$, e.g.

$$
E\left(\xi_{t-1} \mid \Omega_{t}\right)=\sum_{i=1}^{D} \xi_{t-1}^{(i)} \hat{\omega}_{t}^{(i)}
$$

Output of step $t+1$:

$$
p\left(\Lambda_{t+1} \mid \Omega_{t+1}\right)
$$

keep particles $\left\{\boldsymbol{\xi}_{t}^{(i)}, \boldsymbol{\xi}_{t-1}^{(i)}, \ldots, \boldsymbol{\xi}_{0}^{(i)}\right\}_{i=1}^{D}$
append $\left\{\boldsymbol{\xi}_{t+1}^{(i)}\right\}_{i=1}^{D}$ and recalculate
weights $\hat{\omega}_{t+1}^{(i)}$
and as byproduct we get an estimate of

$$
p\left(\mathbf{y}_{t+1} \mid \Omega_{t}\right)
$$

Method: Sequential Importance Sampling At end of step t have generated
$\Lambda_{t}^{(i)}=\left\{\xi_{t}^{(i)}, \xi_{t-1}^{(i)}, \ldots, \xi_{0}^{(i)}\right\}$
from some known importance density
$g_{t}\left(\Lambda_{t} \mid \Omega_{t}\right)=\tilde{g}_{t}\left(\xi_{t} \mid \Lambda_{t-1}, \Omega_{t}\right) g_{t-1}\left(\Lambda_{t-1} \mid \Omega_{t-1}\right)$

We will also have calculated (up to a constant that does not depend on ξ_{t})
the true value of $p_{t}\left(\Lambda_{t} \mid \Omega_{t}\right)$ so weight for particle i is proportional to
$\omega_{t}^{(i)}=\frac{\left.p_{t}\left(\Lambda_{t}^{(i)}\right) \Omega_{t}\right)}{g_{t}\left(\Lambda_{t}^{(i)} \Omega_{t}\right)}$

$$
\omega_{t}^{(i)}=\frac{p_{t}\left(\Lambda_{t}^{(i)} \mid \Omega_{t}\right)}{g_{t}\left(\Lambda_{t}^{(i)} \mid \Omega_{t}\right)}
$$

Step $t+1$:

$$
\begin{aligned}
& p_{t+1}\left(\Lambda_{t+1} \mid \Omega_{t+1}\right)=\frac{p\left(\mathbf{y}_{t+1} \mid \boldsymbol{\xi}_{t+1}\right) p\left(\xi_{t+1} \mid \xi_{t}\right) p_{t}\left(\Lambda_{t} \mid \Omega_{t}\right)}{p\left(\mathbf{y}_{t+1} \mid \Omega_{t}\right)} \\
& \quad \propto \quad p\left(\mathbf{y}_{t+1} \mid \boldsymbol{\xi}_{t+1}\right) p\left(\boldsymbol{\xi}_{t+1} \mid \xi_{t}\right) p_{t}\left(\Lambda_{t} \mid \Omega_{t}\right)
\end{aligned}
$$

known from obs eq known from state eq known at t

$$
\begin{aligned}
\omega_{t+1}^{(i)} & =\frac{p_{t+1}\left(\Lambda_{t+1}^{(i)} \mid \Omega_{t+1}\right)}{g_{t+1}\left(\Lambda_{t+1}^{(i)} \mid \Omega_{t+1}\right)} \\
& \propto \frac{p\left(\mathbf{y}_{t+1} \mid \xi_{t+1}^{(i)}\right) p\left(\xi_{t+1}^{(i)} \mid \xi_{t}^{(i)}\right) p_{t}\left(\Lambda_{t}^{(i)} \mid \Omega_{t}\right)}{\tilde{g}_{t+1}\left(\xi_{t+1}^{(i)} \mid \Lambda_{t}^{(i)}, \Omega_{t+1}\right) g_{t}\left(\Lambda_{t}^{(i)} \mid \Omega_{t}\right)} \\
& =\frac{p\left(\mathbf{y}_{t+1} \mid \xi_{t+1}^{(i)}\right) p\left(\xi_{t+1}^{(i)} \mid \xi_{t}^{(i)}\right)}{\tilde{g}_{t+1}\left(\xi_{t+1}^{(i)} \mid \Lambda_{t}^{(i)}, \Omega_{t+1}\right)} \frac{p_{t}\left(\Lambda_{t}^{(i)} \mid \Omega_{t}\right)}{g_{t}\left(\Lambda_{t}^{(i)} \mid \Omega_{t}\right)} \\
& =\tilde{\omega}_{t+1}^{(i)} \omega_{t}^{(i)}
\end{aligned}
$$

$$
\hat{\omega}_{t}^{(i)}=\frac{\omega_{t}^{(i)}}{\sum_{i=1}^{D} \omega_{t}^{(i)}}
$$

$$
\hat{E}\left(\xi_{t-1} \mid \Omega_{t}\right)=\sum_{i=1}^{D} \hat{\omega}_{t}^{(i)} \xi_{t-1}^{(i)}
$$

$$
\hat{P}\left(\xi_{1, t}>0 \mid \Omega_{t}\right)=\sum_{i=1}^{D} \hat{\omega}_{t}^{(i)} \delta_{\left[\xi_{1 t}>0\right]}
$$

$\tilde{\omega}_{t+1}^{(i)}=\frac{p\left(\mathbf{y}_{t+1} \mid \xi_{t+1}^{(i)}\right) p\left(\xi_{t+1}^{(i)} \mid \xi_{t}^{(i)}\right)}{\tilde{g}_{t+1}\left(\xi_{t+1}^{(i)} \mid \Lambda_{t}^{(i)}, \Omega_{t+1}\right)}$
$\hat{p}\left(\mathbf{y}_{t+1} \mid \Omega_{t}\right)=\sum_{i=1}^{D} \tilde{\omega}_{t+1}^{(i)} \hat{\omega}_{t}^{(i)}$
$\hat{\mathscr{L}}(\boldsymbol{\theta})=\sum_{t=1}^{T} \log \hat{p}\left(\mathbf{y}_{t} \mid \Omega_{t-1}\right)$
Classical: choose θ to $\max \hat{\mathscr{L}}(\theta)$
Bayesian: draw θ from posterior
which is proportional to
$p(\boldsymbol{\theta}) \exp [\mathscr{L}(\boldsymbol{\theta})]$

How start algorithm for $t=0$?

 Draw $\xi_{0}^{(i)}$ from $p\left(\xi_{0}\right)$(prior distribution or hypothesized unconditional distribution)

How choose importance density

$\tilde{g}_{t+1}\left(\xi_{t+1} \mid \Lambda_{t}, \Omega_{t+1}\right)$?
(1) Bootstrap filter
$\tilde{g}_{t+1}\left(\xi_{t+1} \mid \Lambda_{t}, \Omega_{t+1}\right)=p\left(\xi_{t+1} \mid \xi_{t}\right)$
known from state equation

$$
\xi_{t+1}=\phi_{t}\left(\xi_{t}, \mathbf{v}_{t+1}\right)
$$

But better performance from adaptive filters that also use \mathbf{y}_{t+1}

Note that for bootstrap filter

$$
\begin{aligned}
& \tilde{g}_{t+1}\left(\xi_{t+1} \mid \Lambda_{t}, \Omega_{t+1}\right)=p\left(\xi_{t+1} \mid \xi_{t}\right) \\
& \tilde{\omega}_{t+1}^{(i)}=\frac{p\left(\mathbf{y}_{t+1} \mid \xi_{t+1}^{(i)}\right) p\left(\xi_{t+1}^{(i)} \mid \xi_{t}^{(i)}\right)}{\tilde{g}_{t+1}\left(\xi_{i+1}^{(i)} \mid \Lambda_{t}^{(i)} \Omega_{t+1}\right)} \\
& \quad=p\left(\mathbf{y}_{t+1} \mid \xi_{t+1}^{(i)}\right)
\end{aligned}
$$

Separate problem for particle filter: one history $\Lambda_{t}^{(i)}$ comes to dominate the others ($\hat{\omega}_{t}^{(i)} \rightarrow 1$ for some i)

Partial solution to degeneracy problem:
Sequential Importance Sampling
with Resampling
Before finishing step t, now resample
$\left.\left\{\Lambda_{t}^{(j)}\right\}\right\}_{j=1}^{D}$ with replacement
by drawing from the distribution
$\Lambda_{t}^{(j)}=\left\{\begin{array}{cl}\Lambda_{t}^{(1)} & \text { with probability } \hat{\omega}_{t}^{(1)} \\ \vdots & \\ \Lambda_{t}^{(D)} & \text { with probability } \hat{\omega}_{t}^{(D)}\end{array}\right.$

Result: repopulate $\left\{\Lambda_{t}^{(j)}\right\}$ by replicating most likely elements (weights for $\Lambda_{t}^{(j)}$ are now $\hat{\omega}_{t}^{*(j)}=1 / D$).
(1) Resampling does not completely solve degeneracy because early-sample elements of
$\Lambda_{t}^{(j)}=\left\{\xi_{t}^{(j)}, \xi_{t-1}^{(j)}, \ldots, \xi_{0}^{(j)}\right\}$ will tend
to be the same for all j as t gets large
(2) Does help in the sense that have full
set of particles to grow from t forward
(3) Have good inference about $p\left(\xi_{t-k} \mid \Omega_{t}\right)$ for small k
(4) Have poor inference about $p\left(\xi_{t-k} \mid \Omega_{t}\right)$ for large k
(separate smoothing algorithm
can be used if goal is $p\left(\xi_{t} \mid \Omega_{T}\right)$)

Summary of bootstrap particle filter with resampling:
(1) Get initial set of D particles for date $t=0$
(a) Set $\xi_{-100}^{(j)}=\mathbf{0}$ for $j=1$
(b) Generate $\xi_{t}^{(j)}=\phi_{0}\left(\xi_{t-1}^{(j)}, \mathbf{v}_{t}^{(j)}\right)$
for $t=-99,-98, \ldots, 0$
(c) Value of $\xi_{0}^{(j)}$ is one value for particle
$j=1$ for date 0
(d) repeat (a)-(c) for $j=1, \ldots, D$ to
populate $\left\{\xi_{0}^{(1)}, \xi_{0}^{(2)}, \ldots, \xi_{0}^{(D)}\right\}$

For any given θ set $\ell_{0}(\theta)=0$ and for each $t=1,2, \ldots, T$ we then do the following:
(2) Compute $\tilde{\omega}_{t}^{(i)}=p\left(\mathbf{y}_{t} \mid \xi_{t}^{(i)}\right)$ and update estimate of log likelihood:
$\ell_{t}(\theta)=\ell_{t-1}(\theta)+\log \left\{D^{-1} \sum_{j=1}^{D} \tilde{\omega}_{t}^{(j)}\right\}$
(3) Resample particles:
(a) Calculate $\hat{\omega}_{t}^{*(j)}=\tilde{\omega}_{t}^{(j)} /\left\{\sum_{j=1}^{D} \tilde{\omega}_{t}^{(j)}\right\}$
(b) Draw $u \sim U(0,1)$ and define
$u^{(j)}=(u / D)+(j-1) / D$ for $j=1, \ldots, D$.
(c) Find the indexes i^{1}, \ldots, i^{D} such
that $\sum_{k=1}^{i^{j}-1} \hat{\omega}_{t}^{*(k)}<u^{(j)} \leq \sum_{k=1}^{i^{j}} \hat{\omega}_{t}^{*(k)}$
(4) Generate new particles:

Draw $\xi_{t+1}^{(i)}$ from $\phi_{t+1}\left(\xi_{t}^{i j}, \mathbf{v}_{t+1}^{(j)}\right)$.
Repeat (2)-(4) for $t=1, . ., T$.

What do we do with estimate of log likelihood $\ell_{T}(\theta)$?

Best approach: embed within random-walk Metropolis-Hastings
to generate draws of θ from posterior $p(\theta \mid \mathbf{Y})$ using prior $p(\theta)$.
(1) Generate initial draw $\boldsymbol{\theta}^{(m)}$ for $m=1$ and calculate $\ell_{T}\left(\boldsymbol{\theta}^{(m)}\right)$ and $p\left(\boldsymbol{\theta}^{(m)}\right)$.
(2) Generate $\tilde{\boldsymbol{\theta}}^{(m+1)} \sim N\left(\boldsymbol{\theta}^{(m)}, c \boldsymbol{\Lambda}\right)$ and calculate $\ell_{T}\left(\tilde{\boldsymbol{\theta}}^{(m+1)}\right)$ and $p\left(\tilde{\boldsymbol{\theta}}^{(m+1)}\right)$.

(3) Set

$$
\begin{aligned}
& \boldsymbol{\theta}^{(m+1)}=\left\{\begin{array}{cc}
\tilde{\boldsymbol{\theta}}^{(m+1)} & \text { with prob } \alpha \\
\boldsymbol{\theta}^{(m)} & \text { with prob } 1-\alpha
\end{array}\right. \\
& \alpha=\min \left\{\frac{\ell_{T}\left(\tilde{\boldsymbol{\theta}}^{(m+1)}\right) p\left(\tilde{\boldsymbol{\theta}}^{(m+1)}\right)}{\ell_{T}\left(\boldsymbol{\theta}^{(m)}\right) p\left(\boldsymbol{\theta}^{(m)}\right)}, 1\right\} .
\end{aligned}
$$

Also possible to improve a lot on particle bootstrap by using better proposal density.
Example: use extended Kalman filter for proposal density in place of generating
$\xi_{t+1}^{(j)}$ from $\phi_{t}\left(\xi_{t}^{(j)}, \mathbf{v}_{t+1}\right)$.

