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V. Nonlinear state-space models

A. Extended Kalman filter

Linear state-space model:

State equation:

r�1

�t�1 �
r�r
F

r�1

�t �
r�1

v t�1 vt�1 � N�0, Q�

Observation equation:

n�1

yt �
n�k
A�

k�1

x t �
n�r
H �

r�1

�t �
n�1

wt w t � N�0, R�

Nonlinear state-space model:

State equation:

r�1

� t�1 �

r�1

��� t� �
r�1

vt�1 v t�1 � N�0,Q�

Observation equation:

n�1

yt �
n�1

a�xt� �

n�1

h�� t� �
n�1

wt w t � N�0, R�
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Suppose at date t we have approximation

to distribution of � t conditional on

� t � �yt, yt�1, . . . , y1, xt ,xt�1, . . . , x1�

� t |� t ~ N�
�
� t|t,P t|t�

goal: calculate
�
� t�1|t�1, P t�1|t�1

State equation:

� t�1 � ��� t� � vt�1

���t� � � t � �t�� t � �� t|t�

r�1

� t� ���� t|t�

r�r
�t �

���� t�

��t
�

� t��
�

t|t

Forecast of state vector:

�t�1 � � t � �t�� t � �� t|t� � vt�1

�� t�1|t � � t � ���� t|t�

P t�1|t � � tP t|t� t
� � Q
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Observation equation:

yt � a�x t� � h��t� � w t

h�� t� � ht � Ht
��� t � �� t|t�1�

n�1

ht � h��� t|t�1�

n�r
Ht

� �
�h�� t�

��t
�

� t��
�

t|t�1

Note xt is observed so no need

to linearize a�xt�

Approximating state equation:

�t�1 � � t � �t�� t � �� t|t� � vt�1

Approximating observation equation:

yt � a�x t� � ht � H t
���t � �� t|t�1� � wt

A state-space model with time-varying

coefficients

Forecast of observation vector:

y t�1 � a�x t�1� � ht�1 �

Ht�1
� ��t�1 � �� t�1|t� � wt�1

�y t�1|t � a�x t�1� � ht�1

� a�x t�1� � h��� t�1|t�

E�y t�1 �
�y t�1|t��yt�1 �

�y t�1|t�
�

� Ht�1
� Pt�1|tHt�1 � R
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Updated inference:

�� t�1|t�1 � �� t�1|t � K t�1�yt�1 �
�y t�1|t�

K t�1 � Pt�1|tHt�1�Ht�1
� Pt�1|tHt�1 � R��1

Start from ��0|0 and P0|0 reflecting

prior information

Approximate log likelihood:

� Tn
2 log 2� � 1

2 � t�1
T log|� t |

� 1
2 �t�1

T �t
�� t

�1� t

� t � H t
�P t|t�1H t � R

�t � yt � a�xt� � h��� t|t�1�

V. Nonlinear state-space models

A. Extended Kalman filter
B. Particle filter
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State equation:

r�1

�t�1 �

r�1

� t��t,v t�1�

Observation equation:

n�1

yt �

n�1

ht�� t, wt�

�t�. � and ht�. � known functions

(may depend on unknown ��

�wt,v t� have known distribution (e.g.,

i.i.d., perhaps depend on ��

�t � �yt, yt�1, . . . , y1�

�t � �� t,�t�1, . . . ,�0�

output for step t:

p��t |� t�

represented by a series of particles:

��t
�i �,� t�1

�i� , . . . ,�0
�i�� i�1

D

Particle i is associated with weight �� t
�i�

such that particles can be used to

simulate draw from p��t |� t�, e.g.

E�� t�1 |� t� � �
i�1
D � t�1

�i� �� t
�i �
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Output of step t � 1:

p�� t�1 |� t�1�

keep particles �� t
�i�, � t�1

�i� , . . . . , �0
�i�� i�1

D

append �� t�1
�i� � i�1

D and recalculate

weights �� t�1
�i�

and as byproduct we get an estimate of

p�y t�1 |� t�

Method: Sequential Importance Sampling

At end of step t have generated

�t
�i�

� �� t
�i �,� t�1

�i � , . . . ,�0
�i ��

from some known importance density

gt�� t |� t� � g� t�� t |�t�1,� t�gt�1�� t�1 |� t�1�

We will also have calculated (up to a

constant that does not depend on � t�

the true value of pt�� t |� t�

so weight for particle i is proportional to

�t
�i�

�
pt��t

�i�|�t�

gt��t
�i�|�t�
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�t
�i�

�
pt��t

�i�|�t�

gt��t
�i�|�t�

Step t � 1:

pt�1�� t�1 |� t�1� �
p�y t�1|�t�1�p��t�1 |�t�pt��t |�t�

p�yt�1|�t�

�
known from obs eq

p�yt�1|� t�1�
known from state eq

p�� t�1 |� t�
known at t

pt�� t |� t�

�t�1
�i�

�
pt�1��t�1

�i� |�t�1�

gt�1��t�1
�i� |�t�1�

�
p�yt�1 |�t�1

�i� �p��t�1
�i� |� t

�i��pt��t
�i�|�t�

g� t�1�� t�1
�i� |�t

�i� ,�t�1�gt��t
�i� |�t�

�
p�yt�1 |�t�1

�i� �p��t�1
�i� |� t

�i��

g� t�1�� t�1
�i� |�t

�i� ,�t�1�

pt�� t
�i�|�t�

gt�� t
�i�|�t�

� �� t�1
�i� � t

�i�

�� t
�i�

�
� t

�i�

�
i�1
D

�t
�i�

Ê��t�1|� t� � �i�1
D �� t

�i��t�1
�i�

P� ��1,t � 0|� t� � �
i�1
D �� t

�i����1t�0�
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�� t�1
�i�

�
p�yt�1|� t�1

�i� �p�� t�1
�i� |�t

�i��

g� t�1��t�1
�i� |� t

�i�,�t�1�

p��yt�1 |� t� � �i�1
D �� t�1

�i � �� t
�i�

�� ��� � �
t�1
T logp��yt |� t�1�

Classical: choose � to max �� ���

Bayesian: draw � from posterior

which is proportional to

p���exp��� ����

How start algorithm for t � 0?

Draw �0
�i � from p��0�

(prior distribution or hypothesized

unconditional distribution)

How choose importance density

g� t�1�� t�1 |�t,� t�1�?

(1) Bootstrap filter

g� t�1�� t�1 |�t,� t�1� � p��t�1 |�t�

known from state equation

� t�1 � � t��t,v t�1�

But better performance from

adaptive filters that also use yt�1
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Note that for bootstrap filter

g� t�1�� t�1 |�t,� t�1� � p��t�1 |� t�

�� t�1
�i�

�
p�yt�1|� t�1

�i� �p�� t�1
�i� |�t

�i��

g� t�1��t�1
�i� |� t

�i�,�t�1�

� p�yt�1 |� t�1
�i� �

Separate problem for particle filter:

one history �t
�i� comes to dominate

the others (�� t
�i�

	 1 for some i�

Partial solution to degeneracy problem:

Sequential Importance Sampling

with Resampling

Before finishing step t, now resample

��t
�j�� j�1

D with replacement

by drawing from the distribution

�t
�j�

�

� t
�1� with probability �� t

�1�

�

� t
�D� with probability �� t

�D�
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Result: repopulate �� t
�j�� by

replicating most likely elements

(weights for � t
�j� are now �� t

��j�
� 1/D�.

(1) Resampling does not completely

solve degeneracy because

early-sample elements of

�t
�j�

� �� t
�j�,�t�1

�j� , . . . ,�0
�j�� will tend

to be the same for all j as t gets large

(2) Does help in the sense that have full

set of particles to grow from t forward

(3) Have good inference about

p�� t�k|� t�for small k

(4) Have poor inference about

p�� t�k|� t�for large k

(separate smoothing algorithm

can be used if goal is p��t |�T�)
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Summary of bootstrap particle filter

with resampling:

(1) Get initial set of D particles for date t � 0

(a) Set ��100
�j� � 0 for j � 1

(b) Generate � t
�j� � �0�� t�1

�j� , v t
�j��

for t � �99,�98, . . . , 0

(c) Value of �0
�j� is one value for particle

j � 1 for date 0

(d) repeat (a)-(c) for j � 1, . . . , D to

populate ��0
�1�, �0

�2�, . . . ,�0
�D��

For any given � set 
0��� � 0 and for each

t � 1, 2, . . . , T we then do the following:

(2) Compute �� t
�i�

� p�y t |� t
�i�� and update

estimate of log likelihood:


 t��� � 
 t�1��� � log�D�1 �
j�1
D �� t

�j��

(3) Resample particles:

(a) Calculate �� t
��j�

� �� t
�j�/ �

j�1
D �� t

�j�

(b) Draw u � U�0, 1� and define

u�j� � �u/D� � �j � 1�/D for j � 1, . . . , D.

(c) Find the indexes i 1, . . . , iD such

that �
k�1
i j�1 �� t

��k�
� u�j� � �

k�1
i j

�� t
��k�
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(4) Generate new particles:

Draw � t�1
�j� from � t�1�� t

i j
, v t�1

�j� �.

Repeat (2)-(4) for t � 1, . . , T.

What do we do with estimate of

log likelihood 
T���?

Best approach: embed within

random-walk Metropolis-Hastings

to generate draws of � from posterior

p��|Y� using prior p���.

(1) Generate initial draw ��m� for m � 1 and

calculate 
T���m�� and p���m��.

(2) Generate ��
�m�1�

� N���m�, c�� and calculate


T���
�m�1�

� and p���
�m�1�

�.
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(3) Set

��m�1� �
��
�m�1� with prob �

��m� with prob 1 � �

� � min

T���

�m�1�
�p���

�m�1�
�


T���m��p�� �m��
, 1 .

Also possible to improve a lot on

particle bootstrap by using better

proposal density.

Example: use extended Kalman filter

for proposal density in place of generating

� t�1
�j� from � t�� t

�j�, v t�1�.


