V. Nonlinear state-space models

A. Extended Kalman filter

Linear state-space model:

State equation:
§t+l = F gt + Vi1 Vi ~ N(O,Q)
rx1 "Ml

Observation equation:

Yy, = A'x¢ +H'E + we  wi ~N@OR)

nx1 NxKkx1 nxrrxl nx1

Nonlinear state-space model:
State equation:
€ = O0E) + Vi1 Vi~ N(O,Q)
rx1 rx1 rx1
Observation equation:
Yy = ax) +hE) + we  wi~NOR)

nx1 nx1 nx1 nx1




Suppose at date t we have approximation
to distribution of &, conditional on

Qt = Yo Yigr-- Y Xt, Xt1,..., X1}
EJQt ~ N(& . Pyr)
goal: calculate EMM, Pt

State equation:
Eir = 9(&) + Vit
o(&) = o+ D&, - %tlt)

¢t: ¢(§t|t)
rx1

%]
1
rxr & &Sy

Forecast of state vector:
w1 = O+ Ou(§; - §t|t) T Vi

§t+1|t - ¢t - ¢(§t|t)
Puip = ®Py®; + Q




Observation equation:
Yi = a(Xt) + h(§) + wt
hE) = he+HiE - & )
hi= h(&y_y)

nx1
Hy = 222
nxr & &=t

Note x; is observed so no need
to linearize a(x;)

Approximating state equation:

&1 = O+ D, - éqt) + Vil
Approximating observation equation:
y, = a(xe) + he+ HiE — &y ) +we
A state-space model with time-varying
coefficients

Forecast of observation vector:
Y1 = aXt1) + b +
Hia(Gp — Eag) + Went
Vi = aXe1) + hea
= a(Xu1) + ()
E(yt+1 - yt+1|t)(yt+1 - yt+1|t)/
= H{1PuyHer + R




Updated inference:

Strapet = Sty T Kt Wea = Vo)

K +1 = Pt+1|tH t+1(H {+1 Pt+1|[H t+1 T R)_l
Start from &op and Py reflecting

prior information

Approximate log likelihood:
~T0jog2r — 137 loglQy|
- % Z:—:l Ségt_lst

Q¢ = HiPyaHt + R
& =Y~ a(xt) - h(éqt_]_)

V. Nonlinear state-space models

A. Extended Kalman filter
B. Particle filter




State equation:

2;t+:|_ = ¢t (gt V1)

rx1 rx1
Observation equation:

Y = ht(gt,Wt)

nx1 nx1
¢,(.) and h(.) known functions

(may depend on unknown 0)
{wt, vt} have known distribution (e.g.,
1.i.d., perhaps depend on 0)

Qt = Yo YeaYar
At = {E0&iar- - 8o)

output for step t:
P(ALQ1)
represented by a series of particles:

i @) @)
{E,s'gl)’ t-1---3%0 }|D=1

Particle i is associated with weight o

such that particles can be used to
simulate draw from p(A¢|Q+), €.9.

D (i) A
E(gtfllgt) = ZH &t(i)la)t(l)




Output of step t + 1:

P(Awt1]Qt1)
keep particles {¢", £ ,....,EDL D,
append {&",}2, and recalculate
weights &
and as byproduct we get an estimate of

p(yt+1 |Qt)

Method: Sequential Importance Sampling
At end of step t have generated

A = (g0 EL 80

from some known importance density
Ot(AtQ1) = 0t(&;|At-1, Q) 0t-1(At-1|Qt-1)

We will also have calculated (up to a
constant that does not depend on &,)
the true value of pi(At|Qt)

so weight for particle i is proportional to

O _ ey
A’




oh = Palio)
A

Stept+1:
P al8 )P, 1 )P (ALQ)
Ptr1(Atr1 |Qt+l) = )

o PVYu1l€ia) PEL1IE) Pr(ALQ)

known from obs eq known from state eq  known at t

(O pt+l(At(i+)1|Qt+l)
(Dt+1 - 0]
Ot1(A1 Q1)
Py 1 E0DPE M PH(A M 00
GeaEPIAY Ou)g (AL [r)
P, EEDPERED) pra®|Qn)
g A Q) gaPQn)

—-@ﬂﬂwF)

NOER Y
Ot = D
23#1“
A D ~ (i I
E(E_,t_llﬂt) = Zizlwt(l)gt(l—)l
A D A 1
P(S1t > 01Q0) = >, D18 z,00




o0 = p(~yt+1l«‘§§+:1)p((f§i’1I&t(”)

Ots1 (1A Qui1)
P(Yr11Q0) = ZiDzl Diady
£(8) = 2., 10gP(y,[Qu1)
Classical: choose 6 to max 56(9)
Bayesian: draw 6 from posterior

which is proportional to
p(6) exp[L(6)]

How start algorithm for t = 0?
Draw 58) from p(&,)

(prior distribution or hypothesized
unconditional distribution)

How choose importance density
Ot+1(&y, 1 IAL Qi) ?

(1) Bootstrap filter
gt+1(§t+1|At1Qt+l) = p(§t+1|§t)
known from state equation

E.>t+1 = ¢t(E_,t,Vt+1)

But better performance from
adaptive filters that also use y,




Note that for bootstrap filter

gt+1(§t+1|Ath+1) = p(E.»t+1|E.>t)

~ () PO B DREED)
Ol = —— 0 0

Otr1(Gen At 7 Qt1)

()

= p(yt-l,-ll%t—i-l

Separate problem for particle filter:

one history Af” comes to dominate

the others (cbt(i) — 1 for some i)

Partial solution to degeneracy problem:
Sequential Importance Sampling

with Resampling

Before finishing step t, now resample
{Afj)}j'il with replacement

by drawing from the distribution

AL with probability &

AD =

A® with probability &’




Result: repopulate {AP} by
replicating most likely elements
(weights for AL are now &;% = 1/D).

(1) Resampling does not completely
solve degeneracy because
early-sample elements of

= {&0,&Y,,...,€9y will tend
to be the same for all j as t gets large
(2) Does help in the sense that have full
set of particles to grow from t forward

(3) Have good inference about
P&, . [Qt)for small k
(4) Have poor inference about
P&, IQ0)for large k

(separate smoothing algorithm
can be used if goal is p(&,|Q21))
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Summary of bootstrap particle filter
with resampling:

(1) Getinitial set of D particles for datet = 0

(a) Set&Y,, =0forj=1

(b) Generate £9 = ¢, v{)
fort = -99,-98,...,0

(c) value of §g> is one value for particle
j = 1fordate O

(d) repeat (a)-(c) forj =1,...,D to
populate {€V,&2,... &P}

For any given 0 set (o(8) = 0 and for each
t=1,2,...,T we then do the following:

(2) Compute &” = p(y, ) and update
estimate of log likelihood:
((8) = 011(8) + log{D 237, &)

(3) Resample particles:
(a) Calculate &;9 = cbfj)/{zj'ilcbt(j)}
(b) Draw u ~ U(0,1) and define

u® = (ub)+(j-1)/Dforj=1,...,D.

(c) Find the indexes i?,...,i°P such
that 3} 1 oi® <u® < 3 o
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(4) Generate new particles:
Draw &0, from ¢ (), v).
Repeat (2)-(4) fort =1,..,T.

What do we do with estimate of
log likelihood (+(0)?

Best approach: embed within
random-walk Metropolis-Hastings

to generate draws of 6 from posterior
p(8|Y) using prior p(0).

(1) Generate initial draw 8™ for m = 1 and
calculate (+(0™) and p(6™).

(2) Generate ™" ~ N(®™, cA) and calculate
1+@™Y) and p@™Y).
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(3) Set

oM _ 6™ with prob «
0™  with prob 1-a

X (mel), & (ml)
o = mind L@ )p® ),1 .
(r(0™)p(6™)

Also possible to improve a lot on

particle bootstrap by using better

proposal density.

Example: use extended Kalman filter

for proposal density in place of generating
O from (P, vi1).
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