III. Linear state-space models

A. State-space representation of a dynamic system
B. Kalman filter
C. Using the Kalman filter
D. Bayesian analysis of linear state-space models
E. Solutions to linear rational expectations models
F. Estimating DSGE models

instantaneous utility function:

$$
\begin{aligned}
& U_{t}=a_{t}^{b} {\left[\frac{1}{1-\lambda_{c}}\left(C_{t}-h C_{t-1}\right)^{1-\lambda_{c}}-\right.} \\
&\left.\frac{a_{t}^{L}}{1+\lambda_{\ell}}\left(\ell_{t}\right)^{1+\lambda_{l}}\right]
\end{aligned}
$$

$h>0 \Rightarrow$ habit persistence
$a_{t}^{b}=\rho_{b} a_{t-1}^{b}+\eta_{t}^{b} \quad \eta_{t}^{b} \sim$ i.i.d. $N\left(0, \sigma_{b}^{2}\right)$
\Rightarrow shock to intertemporal subs
$a_{t}^{L}=\rho_{L} a_{t-1}^{L}+\eta_{t}^{L}$
\Rightarrow shock to intratemporal subs

Let \widehat{C}_{t} denote deviation of $\log \left(C_{t}\right)$

 from its steady-state value(1) $\hat{C}_{t}=\left(\frac{h}{1+h}\right) \hat{C}_{t-1}+\left(\frac{1}{1+h}\right) E_{t} \widehat{C}_{t+1}$

$$
-\frac{(1-h)}{(1+h) \lambda_{c}}\left(\hat{R}_{t}-E_{t} \hat{\pi}_{t+1}\right)
$$

$$
+\frac{(1-h)}{(1+h) \lambda_{c}}\left(\hat{a}_{t}^{b}-E_{t} \hat{a}_{t+1}^{b}\right)
$$

capital evolution:

$$
\begin{aligned}
& K_{t}=K_{t-1}(1-\delta)+\left[1-S\left(a_{t}^{I} I_{t} / I_{t-1}\right)\right] I_{t} \\
& S(.)=\text { adjustment costs } \\
& a_{t}^{I}=\rho_{I} a_{t-1}^{I}+\eta_{t}^{I}
\end{aligned}
$$

(2) $\hat{K}_{t}=(1-\delta) \hat{K}_{t-1}+\delta \hat{I}_{t-1}$
(3) $\hat{I}_{t}=\left(\frac{1}{1+\beta}\right) \hat{I}_{t-1}+\left(\frac{\beta}{1+\beta}\right) E_{t} \hat{I}_{t+1}$

$$
+\frac{\varphi}{1+\beta} \hat{Q}_{t}-\frac{\beta E_{t} \hat{a}_{t+1}^{I}-\hat{a}_{t}^{I}}{1+\beta}
$$

$\varphi=1 / S^{\prime \prime}$
$Q_{t}=$ value of capital stock
(4) $\hat{Q}_{t}=-\left(\hat{R}_{t}-\hat{\pi}_{t+1}\right)+\frac{1-\delta}{1-\delta+\bar{r}_{k}} E_{t} \hat{Q}_{t+1}$

$$
+\frac{\bar{r}_{k}}{1-\delta+\bar{r}_{k}} E_{t} \hat{r}_{K, t+1}+\eta_{t}^{Q}
$$

$r_{K t}=$ rate of return to capital
$\eta_{t}^{Q}=$ tacked on
output from producer of intermediate good of type j
$y_{t}^{j}=a_{t}^{a} K_{t-1}(j)^{\alpha} L_{t}(j)^{1-\alpha}-\Phi$
$\Phi=$ fixed cost
$a_{t}^{a}=$ productivity shock
$a_{t}^{a}=\rho_{a} a_{t-1}^{a}+\eta_{t}^{a}$
$L_{t}(j)=$ aggregate of labor hired from each household τ
$L_{t}(j)=\left\{\int_{0}^{1}\left[\ell_{t}(\tau)\right]^{1 /\left(1+\lambda_{w, t}\right)} d \tau\right\}^{1+\lambda_{w, t}}$
$\lambda_{w, t}=\lambda_{w}+\eta_{t}^{w}$
$\eta_{t}^{w}=$ shock to workers' market
power
wage stickiness:
a fraction ξ_{w} of workers are not allowed to change their wage but instead have their wage increase from the previous value by
$\left(P_{t-1} / P_{t-2}\right)^{\gamma_{w}}$
$\gamma_{w}=$ degree of indexing

$$
\begin{aligned}
& \text { (5) } \hat{w}_{t}=\frac{\beta}{1+\beta} E \widehat{w}_{t+1}+\frac{1}{1+\beta} \hat{w}_{t-1} \\
& +\frac{\beta}{1+\beta} E_{t} \hat{\pi}_{t+1}-\frac{1+\beta \gamma_{w}}{1+\beta} \hat{\pi}_{t}+\frac{\gamma_{w}}{1+\beta} \hat{\pi}_{t-1} \\
& -h_{w}\left[\widehat{w}_{t}-\lambda_{L} \hat{L}_{t}-\frac{\lambda_{c}}{1-h}\left(\widehat{C}_{t}-h \widehat{C}_{t-1}\right)\right. \\
& \left.\quad-\hat{a}_{t}^{L}-\hat{\eta}_{t}^{w}\right] \\
& h_{w}=\frac{1}{1+\beta} \frac{\left(1-\beta \xi_{w}\right)\left(1-\xi_{w}\right)}{\left[1+\left(1+\lambda_{w}\right) \lambda_{L} / \lambda_{w}\right] \xi_{w}}
\end{aligned}
$$

labor demand

$\frac{W_{t} L_{t}(j)}{r_{K, t} z_{t} K_{t-1}(j)}=\frac{1-\alpha}{\alpha}$
$z_{t}=$ capital utilization
(6) $\hat{L}_{t}=-\widehat{w}_{t}+(1+\psi) \hat{r}_{K, t}+\hat{K}_{t-1}$
$\psi=$ parameter based on cost
of utilizing capital
intermediate goods sold to
final goods producer with market power of firm j governed by

$$
\begin{aligned}
& \lambda_{p, t}=\lambda_{p}+\eta_{t}^{p} \\
& \xi_{p}=\text { fraction allowed to adjust }
\end{aligned}
$$

prices

$$
\gamma_{p}=\text { indexing parameter }
$$

$$
\begin{aligned}
& \text { (7) } \hat{\pi}_{t}=\frac{\beta}{1+\beta \gamma_{p}} E_{t} \hat{\pi}_{t+1}+\frac{\gamma_{p}}{1+\beta \gamma_{p}} \hat{\pi}_{t-1} \\
& +h_{p}\left[\alpha \hat{r}_{K, t}+(1-\alpha) \hat{w}_{t}-\hat{a}_{t}^{a}+\eta_{t}^{p}\right] \\
& h_{p}=\frac{1}{1+\beta \gamma_{p}} \frac{\left(1-\beta \xi_{p}\right)\left(1-\xi_{p}\right)}{\xi_{p}}
\end{aligned}
$$

goods market equilibrium
(8) $\widehat{Y}_{t}=[1-\delta(\bar{K} / \bar{Y})-(\bar{G} / \bar{Y})] \widehat{C}_{t}$

$$
+\delta(\bar{K} / \bar{Y}) \hat{I}_{t}+(\bar{G} / \bar{Y}) \hat{a}_{t}^{G}
$$

production function then determines $r_{K, t}$
(9) $\widehat{Y}_{t}=\phi \hat{a}_{t}^{a}+\phi \alpha \hat{K}_{t-1}+\phi \alpha \psi \hat{r}_{K, t}$

$$
+\phi(1-\alpha) \hat{L}_{t}
$$

$\phi=1+\frac{\Phi}{\text { s.s. costs }}$
monetary policy (Taylor Rule)
(10) $\hat{R}_{t}=\rho \hat{R}_{t-1}+(1-\rho)\left\{\bar{\pi}_{t}+\right.$
$\left.r_{\pi}\left(\hat{\pi}_{t-1}-\bar{\pi}_{t-1}\right)+r_{Y}\left(\widehat{Y}_{t}-\widehat{Y}_{t}^{P}\right)\right\}$
$+r_{\Delta \pi}\left(\hat{\pi}_{t}-\hat{\pi}_{t-1}\right)$
$+r_{\Delta Y}\left[\widehat{Y}_{t}-\widehat{Y}_{t}^{p}-\left(\widehat{Y}_{t-1}-\widehat{Y}_{t-1}^{p}\right)\right]+\eta_{t}^{R}$
$\bar{\pi}_{t}=$ inflation target
$\bar{\pi}_{t}=\rho_{\pi} \bar{\pi}_{t-1}+\eta_{t}^{\pi}$
$\widehat{Y}_{t}^{p}=$ output level if prices perfectly
flexible

$$
\begin{gathered}
\mathbf{y}_{t}=\left(\widehat{C}_{t}, \widehat{C}_{t-1}, \hat{R}_{t}, \hat{R}_{t-1}, \hat{K}_{t}, \hat{K}_{t-1}, \hat{I}_{t}, \hat{I}_{t-1}\right. \\
\left.\hat{Q}_{t}, \widehat{w}_{t}, \widehat{w}_{t-1}, \hat{L}_{t}, \hat{\pi}_{t}, \hat{\pi}_{t-1}, \widehat{Y}_{t}, \hat{r}_{K, t}\right)^{\prime}
\end{gathered}
$$

$$
\mathbf{x}_{t}=\left(\hat{a}_{t}^{b}, \hat{a}_{t}^{I}, \eta_{t}^{Q}, \hat{a}_{t}^{L}, \eta_{t}^{w}, \hat{a}_{t}^{a}, \eta_{t}^{p}, \hat{a}_{t}^{G}, \bar{\pi}_{t}, \eta_{t}^{R}\right)^{\prime}
$$

equations (1)-(10) (along with
lag definitions) can be written as
$\mathbf{A} E_{t} \mathbf{y}_{t+1}=\mathbf{B} \mathbf{y}_{t}+\mathbf{C} \mathbf{x}_{t}$
while shocks satisfy
$\mathbf{x}_{t+1}=\boldsymbol{\Phi} \mathbf{x}_{t}+\boldsymbol{\varepsilon}_{t+1}$
(note also $E_{t} \mathbf{x}_{t+1}=\boldsymbol{\Phi} \mathbf{x}_{t}$)

Observed data:
OLS regression of log real consumption on constant and
time trend
residual $=z_{1 t}=\widehat{C}_{t}$
Same for log of investment yields \hat{I}_{t}

Other data: GDP, real wages, GDP deflator, nominal interest rate Treat $\hat{Q}_{t, \hat{r}_{K, t}, \hat{a}_{t}^{a}}$ as unobservable
state equation:

$$
\xi_{t+1}=\mathbf{F} \xi_{t}+\mathbf{v}_{t+1}
$$

(came from solution to DSGE model) observation equation:

$$
\mathbf{z}_{t}=\mathbf{H}^{\prime} \xi_{t}
$$

Let $\theta=$ parameters of structural model Use Kalman filter to evaluate
likelihood function
$p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{T} \mid \theta\right)$
prior $p(\boldsymbol{\theta})$
posterior $p(\theta \mid \mathbf{Z}) \propto p(\boldsymbol{\theta}) p(\mathbf{Z} \mid \boldsymbol{\theta})$
prior $p(\boldsymbol{\theta})$
posterior $p(\boldsymbol{\theta} \mid \mathbf{Z}) \propto p(\boldsymbol{\theta}) p(\mathbf{Z} \mid \boldsymbol{\theta})$
we can sample from posterior
using method such as Metropolis-
Hastings
$\lambda(\boldsymbol{\theta})=\log p(\boldsymbol{\theta})+\log p(\mathbf{Z} \mid \boldsymbol{\theta})$
$\lambda(\boldsymbol{\theta})=\log p(\boldsymbol{\theta})+\log p(\mathbf{Z} \mid \boldsymbol{\theta})$
(1) Find mode of posterior
distribution using numerical optimization
$\boldsymbol{\theta}^{*}=\arg \max \lambda(\boldsymbol{\theta})$
(2) Find Hessian of posterior distribution
$\mathbf{H}\left(\boldsymbol{\theta}^{*}\right)=-\left.\frac{\partial^{2} \lambda(\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\prime}}\right|_{\theta=\boldsymbol{\theta}^{*}}$
(3) Set $\theta^{(j)}=$ arbitrary starting value for $j=1$
(4) Generate $\tilde{\boldsymbol{\theta}}^{(j+1)} \sim N\left(\boldsymbol{\theta}^{(j)}, c \mathbf{H}\left(\boldsymbol{\theta}^{*}\right)\right)$
for choice of c described below (could experiment to see if
Student t works better)
(5) Generate $u^{(j+1)} \sim U[0,1]$
(6) Set $\boldsymbol{\theta}^{(j+1)}=\tilde{\boldsymbol{\theta}}^{(j+1)}$ if $u^{(j+1)}<\alpha^{(j+1)}$

$$
=\theta^{(j)} \text { if } u^{(j+1)} \geq \alpha^{(j+1)}
$$

$$
\alpha^{(j+1)}=\min \left\{1, \exp \left[\lambda\left(\boldsymbol{\theta}^{(j+1)}\right)-\lambda\left(\boldsymbol{\theta}^{(j)}\right)\right]\right\}
$$

(7) Repeat steps (4)-(6) for
$j=2,3, \ldots, 10,000$
Values of $\boldsymbol{\theta}^{(j)}$ for $j \in\{5,001, \ldots, 10,000\}$ represent sample from $p(\theta \mid \mathbf{Z})$
choose c so that have 20-30\% acceptance at step (6)

