II. Vector autoregressions

- A. Introduction
 - 1. VARs as forecasting models

Suppose we want to forecast y_{1t} based on:

$$y_{1,t-1}, y_{1,t-2}, \dots, y_{1,t-p}$$

 $y_{2,t-1}, y_{2,t-2}, \dots, y_{2,t-p}$
 \vdots
 $y_{n,t-1}, y_{n,t-2}, \dots, y_{n,t-p}$
deterministic functions of t
 $(1, t, \cos(\pi t/6), \text{seasonal dummies})$

Let
$$\mathbf{y}_{t} = (y_{1t}, y_{2t}, \dots, y_{nt})'$$

$$\mathbf{x}_{t} = (1, \mathbf{y}'_{t-1}, \mathbf{y}'_{t-2}, \dots, \mathbf{y}'_{t-p})'$$

$$k = np + 1$$

١		
	Suppose we consider linear forecast $\widehat{y}_{1t t-1} = \gamma_1' \mathbf{x}_t$ Best forecast within linear class: value of γ_1 that minimizes $E(y_{1t} - \gamma_1' \mathbf{x}_t)^2$	
_		1
	Proposition: If \mathbf{y}_t is covariance-stationary and $E(\mathbf{x}_t\mathbf{x}_t')$ is nonsingular, then optimal forecast uses $\mathbf{\gamma}_1^* = E(\mathbf{x}_t\mathbf{x}_t')^{-1}E(\mathbf{x}_ty_t)$	
	Definition: The optimal linear forecast, $\widehat{y}_{1t t-1} = {\pmb{\gamma}_1^*}' {\pmb{x}_t},$ is called the "population linear projection" of y_{1t} on ${\pmb{x}_t}$	

Proposition: If \mathbf{y}_t is stationary and ergodic, then

$$\hat{\mathbf{\gamma}}_1 \stackrel{p}{\to} \mathbf{\gamma}_1^*$$

Proof: (Law of Large Numbers)

$$\hat{\boldsymbol{\gamma}}_{1} = \left(T^{-1} \sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{'}\right)^{-1} \left(T^{-1} \sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{y}_{1t}\right)$$

$$\stackrel{p}{\to} E(\mathbf{x}_{t} \mathbf{x}_{t}^{'})^{-1} E(\mathbf{x}_{t} \mathbf{y}_{1t})$$

If form separate forecasting equation for each element of y_t and collect in vector,

$$y_{1t} = \mathbf{\gamma}_{1}' \mathbf{x}_{t} + \varepsilon_{1t}$$

$$\vdots$$

$$y_{nt} = \mathbf{\gamma}_{n}' \mathbf{x}_{t} + \varepsilon_{nt}$$

$$\mathbf{y}_{t} = \mathbf{\Gamma}' \mathbf{x}_{t} + \varepsilon_{t}$$

result is called vector autoregression:

$$\mathbf{y}_{t} = \mathbf{c} + \mathbf{\Phi}_{1} \mathbf{y}_{t-1} + \mathbf{\Phi}_{2} \mathbf{y}_{t-2} + \cdots + \mathbf{\Phi}_{p} \mathbf{y}_{t-p} + \mathbf{\varepsilon}_{t}$$

Above results imply we can consistently estimate coefficients for VAR by OLS equation by equation

$$\hat{\mathbf{\gamma}}_{1}' = \left(\sum_{t=1}^{T} y_{1t} \mathbf{x}_{t}'\right) \left(\sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}'\right)^{-1}$$

$$\vdots$$

$$\hat{\mathbf{\gamma}}_{n}' = \left(\sum_{t=1}^{T} y_{nt} \mathbf{x}_{t}'\right) \left(\sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}'\right)^{-1}$$

$$\hat{\mathbf{\Gamma}}' = \left(\sum_{t=1}^{T} \mathbf{y}_{t} \mathbf{x}_{t}'\right) \left(\sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}'\right)^{-1}$$

$$\hat{\mathbf{\Gamma}}' = \begin{bmatrix} \hat{\mathbf{c}} & \hat{\mathbf{\Phi}}_{1} & \hat{\mathbf{\Phi}}_{2} & \cdots & \hat{\mathbf{\Phi}}_{p} \end{bmatrix}$$

II. Vector autoregressions

- A. Introduction
 - 1. VARs as forecasting models
 - 2. Gaussian VARs as data-generating process

Consider the following process whereby the $(n \times 1)$ vector \mathbf{y}_t might have been generated:

$$\mathbf{y}_{t} = \mathbf{c} + \mathbf{\Phi}_{1} \mathbf{y}_{t-1} + \mathbf{\Phi}_{2} \mathbf{y}_{t-2} + \cdots + \mathbf{\Phi}_{p} \mathbf{y}_{t-p} + \mathbf{\varepsilon}_{t}$$
$$\mathbf{\varepsilon}_{t} \sim N(\mathbf{0}, \mathbf{\Omega})$$

			-
	ロレヘ	lihoo	ᄱ.
IUU	III	טטוווו	u.
3			

$$\mathcal{L} = \log p(\mathbf{y}_{1}, \mathbf{y}_{2}, \dots, \mathbf{y}_{T} | \mathbf{y}_{0}, \mathbf{y}_{-1}, \dots, \mathbf{y}_{-p+1}, \boldsymbol{\theta})$$

$$= \sum_{t=1}^{T} \log p(\mathbf{y}_{t} | \mathbf{y}_{t-1}, \dots, \mathbf{y}_{t-p}, \boldsymbol{\theta})$$

$$= -(Tn/2) \log(2\pi) - (T/2) \log|\mathbf{\Omega}|$$

$$-(1/2) \sum_{t=1}^{T} \mathbf{\varepsilon}_{t}' \mathbf{\Omega}^{-1} \mathbf{\varepsilon}_{t}$$

$$\mathbf{\varepsilon}_{t} = \mathbf{y}_{t} - \mathbf{c} - \mathbf{\Phi}_{1} \mathbf{y}_{t-1} - \mathbf{\Phi}_{2} \mathbf{y}_{t-2} - \dots - \mathbf{\Phi}_{p} \mathbf{y}_{t-p}$$

$$= \mathbf{y}_{t} - \mathbf{\Gamma}' \mathbf{x}_{t}$$

 $\boldsymbol{\theta} = \text{vector}$ containing elements of $\boldsymbol{c}, \boldsymbol{\Phi}_1, \boldsymbol{\Phi}_2, \dots, \boldsymbol{\Phi}_p, \boldsymbol{\Omega}$

Classical results for VARs:

(1) The MLE of Γ is OLS equation by equation:

$$\hat{\boldsymbol{\Gamma}}' = \left(\sum_{t=1}^{T} \mathbf{y}_{t} \mathbf{x}_{t}'\right) \left(\sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}'\right)^{-1}$$

(2) The MLE of Ω is average product of residuals:

$$\hat{\mathbf{\Omega}} = T^{-1} \sum_{t=1}^{T} \hat{\mathbf{\epsilon}}_t \hat{\mathbf{\epsilon}}_t'$$

$$\mathbf{\hat{\epsilon}}_t = \mathbf{y}_t - \mathbf{\hat{\Gamma}}' \mathbf{x}_t$$

(3) The asymptotic distribution of

$$\hat{\mathbf{\gamma}}_{(nk\times 1)} = \text{Vec}(\hat{\mathbf{\Gamma}}) = (\hat{\mathbf{\gamma}}_1', \hat{\mathbf{\gamma}}_2', \dots, \hat{\mathbf{\gamma}}_n')'$$

is given by

$$\sqrt{T} (\hat{\mathbf{\gamma}} - \mathbf{\gamma}) \stackrel{L}{\rightarrow} N(\mathbf{0}, \mathbf{\Omega} \otimes \mathbf{M})$$

$$\mathbf{M} = \mathsf{plim} \left(T^{-1} \sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}' \right)^{-1}$$

$$\mathbf{\Omega} \otimes \mathbf{M} = \begin{bmatrix} \sigma_{11} \mathbf{M} & \cdots & \sigma_{1n} \mathbf{M} \\ \vdots & \ddots & \vdots \\ \sigma_{n1} \mathbf{M} & \cdots & \sigma_{nn} \mathbf{M} \end{bmatrix}$$

II. Vector autoregressions

- A. Introduction
 - 1. VARs as forecasting models
 - 2. Gaussian VARs as data-generating process
 - 3. VARs as ad hoc dynamic structural models

6

Example:

 f_t = federal funds rate

 y_t = output growth

 $\pi_t = \text{inflation}$

 m_t = money growth rate

Represent Fed behavior by

$$f_t = \alpha_0 + \alpha_1 y_t + \alpha_2 \pi_t + \alpha_3 f_{t-1}$$

+ \alpha_4 y_{t-1} + \alpha_5 \pi_{t-1} + \alpha_6 m_{t-1} + \nu_t

Fed responds to current output and inflation but not current money growth

$$\mathbf{B}_{0} = \begin{bmatrix} 1 & -\alpha_{1} & -\alpha_{2} & 0 \\ & \ddots & \ddots & \ddots \\ & & \ddots & \ddots & \ddots \end{bmatrix}$$

$$\mathbf{B}_{1} = \begin{bmatrix} \alpha_{3} & \alpha_{4} & \alpha_{5} & \alpha_{6} \\ & \ddots & \ddots & \ddots & \ddots \\ & \ddots & \ddots & \ddots & \ddots \end{bmatrix}$$

If
$$\mathbf{v}_t \sim \text{i.i.d. } N(\mathbf{0}, \mathbf{D})$$
, log likelihood is
$$\mathcal{L} = \log f(\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_T | \mathbf{y}_0, \mathbf{y}_{-1}, \dots, \mathbf{y}_{-p+1}, \boldsymbol{\theta})$$

$$= -(Tn/2) \log(2\pi) - (T/2) \log |\mathbf{D}|$$

$$+ T \log |\mathbf{B}_0| - (1/2) \sum_{t=1}^T \mathbf{v}_t' \mathbf{D}^{-1} \mathbf{v}_t$$

$$\mathbf{D} = E(\mathbf{v}_t \mathbf{v}_t')$$

$$\mathbf{v}_t = \mathbf{B}_0 \mathbf{y}_t - \mathbf{k} - \mathbf{B}_1 \mathbf{y}_{t-1} - \mathbf{B}_2 \mathbf{y}_{t-2} -$$

$$\cdots - \mathbf{B}_p \mathbf{y}_{t-p}$$

$$\boldsymbol{\theta} = \text{vector containing elements of}$$

$$\mathbf{k}, \mathbf{B}_0, \mathbf{B}_1, \dots, \mathbf{B}_p, \mathbf{D}$$

If model is just-identified, the MLE's $\widehat{\mathbf{k}}, \widehat{\mathbf{B}}_0, \widehat{\mathbf{B}}_1, \dots, \widehat{\mathbf{B}}_p, \widehat{\mathbf{D}}$ are transformations of the VAR MLE's $\widehat{\mathbf{c}}, \widehat{\mathbf{\Phi}}_1, \widehat{\mathbf{\Phi}}_2, \dots, \widehat{\mathbf{\Phi}}_p, \widehat{\mathbf{\Omega}}$

II. Vector autoregressions

- A. Introduction
- B. Normal-Wishart priors for VARs

For univariate regression, $y_t = \mathbf{x}_t' \mathbf{\beta} + \varepsilon_t$ $\varepsilon_t \sim N(0, \sigma^2)$ we used Normal-Gamma for natural conjugate prior: $\mathbf{\beta} | \sigma^2 \sim N(\mathbf{m}, \sigma^2 \mathbf{M})$ $\sigma^{-2} \sim \Gamma(N, \lambda)$

From asymptotic distribution of MLE, $\sqrt{T}(\hat{\mathbf{\gamma}} - \mathbf{\gamma}) \stackrel{L}{\to} N(\mathbf{0}, \mathbf{\Omega} \otimes \mathbf{M})$ $\mathbf{M} = \text{plim} \left(T^{-1} \sum_{t=1}^{T} \mathbf{x}_t \mathbf{x}_t'\right)^{-1},$ we might guess that natural conjugate prior is of the form $\mathbf{\gamma} | \mathbf{\Omega} \sim N(\mathbf{m}, \mathbf{\Omega} \otimes \mathbf{M})$ $\mathbf{m} = \text{prior guess for } \mathbf{\gamma}$ $\mathbf{M} \text{ summarizes confidence}$

Prior for Ω : univariate regression $\sigma^2 = E(\epsilon_t^2)$ $Z_i \sim N(0, \lambda^{-1})$ $W = (Z_1^2 + Z_2^2 + \dots + Z_N^2)$ W has gamma distribution with parameters N, λ $\sigma^{-2} \sim \Gamma(N, \lambda)$

Vector autoregression:

$$\Omega = E(\mathbf{\varepsilon}_{t}\mathbf{\varepsilon}_{t}^{'})$$

$$\mathbf{z}_{i} \sim N(\mathbf{0}, \mathbf{\Lambda}^{-1})$$

$$n \times 1$$

$$\mathbf{W} = (\mathbf{z}_{1}\mathbf{z}_{1}^{'} + \mathbf{z}_{2}\mathbf{z}_{2}^{'} + \dots + \mathbf{z}_{N}\mathbf{z}_{N}^{'})$$
Where Wighert distribution

 ${f W}$ has Wishart distribution with parameters ${\it N}, {\bf \Lambda}$

$$\mathbf{\Omega}^{-1} \sim W(N, \mathbf{\Lambda})$$

$$\begin{aligned} \mathbf{W} &\sim W(N, \mathbf{\Lambda}) \Rightarrow \\ p(\mathbf{w}) &= c|\mathbf{\Lambda}|^{N/2}|\mathbf{w}|^{(N-n-1)/2}\exp\left[-\frac{1}{2}\operatorname{tr}(\mathbf{w}\mathbf{\Lambda})\right] \\ c &= \left[2^{Nn/2}\pi^{n(n-1)/4}\prod_{j=1}^n\Gamma\left(\frac{N+1-j}{2}\right)\right]^{-1} \\ \text{so prior takes the form} \\ p(\mathbf{\Omega}^{-1}) &\propto |\mathbf{\Omega}|^{-(N-n-1)/2}\exp\left[-\frac{1}{2}\operatorname{tr}(\mathbf{\Omega}^{-1}\mathbf{\Lambda})\right] \end{aligned}$$

$$\begin{aligned} \mathbf{y}_t &= & \mathbf{\Gamma}' & \mathbf{x}_t + \mathbf{\epsilon}_t \\ & _{n \times 1} & _{n \times k} & _{k \times 1} & _{n \times 1} \end{aligned}$$

$$\mathbf{\gamma} &= \text{vec}(\mathbf{\Gamma})$$

$$_{nk \times 1} \\ \text{first } k \text{ components of } \mathbf{\gamma} = \\ \text{coefficients to explain } y_{1t}$$

Prior for γ : univariate regression $\beta|\sigma^{-2} \sim N(\mathbf{m}, \sigma^2\mathbf{M})$ vector autoregression $\gamma|\Omega^{-1} \sim N\left(\begin{array}{c} \mathbf{m} \,, \; \Omega \otimes \mathbf{M} \\ _{nk\times 1} \,, \; _{n\times n} \, \Omega & \\ \end{array}\right)$ $p(\gamma|\Omega^{-1}) \propto (2\pi)^{-nk/2}|\Omega|^{-k/2}$ $\exp\left[-\frac{1}{2}(\gamma-\mathbf{m})'(\Omega\otimes\mathbf{M})^{-1}(\gamma-\mathbf{m})\right]$

$$p(\mathbf{\gamma}, \mathbf{\Omega}^{-1}|\mathbf{Y}) \propto p(\mathbf{\gamma}, \mathbf{\Omega}^{-1}, \mathbf{Y})$$

$$= p(\mathbf{Y}|\mathbf{\gamma}, \mathbf{\Omega}^{-1})p(\mathbf{\gamma}|\mathbf{\Omega}^{-1})p(\mathbf{\Omega}^{-1})$$

$$\propto |\mathbf{\Omega}|^{-T/2} \exp \left[-\frac{1}{2} \sum_{t} (\mathbf{y}_{t} - \mathbf{\Gamma}' \mathbf{x}_{t})' \mathbf{\Omega}^{-1} (\mathbf{y}_{t} - \mathbf{\Gamma}' \mathbf{x}_{t})\right]$$

$$|\mathbf{\Omega}|^{-k/2} \exp \left[-\frac{1}{2} (\mathbf{\gamma} - \mathbf{m})' (\mathbf{\Omega} \otimes \mathbf{M})^{-1} (\mathbf{\gamma} - \mathbf{m})\right]$$

$$|\mathbf{\Omega}|^{-(N-n-1)/2} \exp \left[-\frac{1}{2} \operatorname{tr}(\mathbf{\Omega}^{-1}\mathbf{\Lambda})\right]$$

After a lot of algebra, this can be rewritten as $p(\gamma, \Omega^{-1}|\mathbf{Y}) \propto \\ |\Omega|^{-k/2} \exp\left[-\frac{1}{2}(\gamma-\mathbf{m}^*)^{'}(\Omega\otimes\mathbf{M}^*)^{-1}(\gamma-\mathbf{m}^*)\right] \\ |\Omega|^{-(T+N-n-1)/2} \exp\left[-\frac{1}{2}\operatorname{tr}(\Omega^{-1}\Lambda^*)\right] \\ \text{i.e., } \gamma|\Omega^{-1}, \mathbf{Y} \sim N(\mathbf{m}^*, \Omega\otimes\mathbf{M}^*) \\ \Omega^{-1}|\mathbf{Y} \sim W(T+N, \Lambda^*)$

$$\begin{split} & \gamma | \boldsymbol{\Omega}^{-1}, \, \mathbf{Y} \sim N(\mathbf{m}^*, \boldsymbol{\Omega} \otimes \mathbf{M}^*) \\ & \mathbf{M}^* = \left(\mathbf{M}^{-1} + \sum_{t=1}^T \mathbf{x}_t \mathbf{x}_t' \right)^{-1} \\ & \mathbf{m}^* = (\mathbf{I}_n \otimes \mathbf{M}^* \mathbf{M}^{-1}) \mathbf{m} \\ & + \left(\mathbf{I}_n \otimes \mathbf{M}^* \sum_{t=1}^T \mathbf{x}_t \mathbf{x}_t' \right) \widehat{\boldsymbol{\gamma}} \\ & \widehat{\boldsymbol{\gamma}} = \text{vec}(\widehat{\boldsymbol{\Gamma}}) \\ & \widehat{\boldsymbol{\Gamma}} = \left(\sum_{t=1}^T \mathbf{x}_t \mathbf{x}_t' \right)^{-1} \left(\sum_{t=1}^T \mathbf{x}_t \mathbf{y}_t' \right) \\ & \text{Diffuse prior: } \mathbf{M}^{-1} = \mathbf{0} \end{split}$$

$$\mathbf{\gamma}|\mathbf{\Omega}^{-1}, \mathbf{Y} \sim N\left(\hat{\mathbf{\gamma}}, \mathbf{\Omega} \otimes \left[\sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{'}\right]^{-1}\right)$$
Estimate i th equation of VAR by OLS
$$\hat{\mathbf{\gamma}}_{i} = \left(\sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{'}\right)^{-1} \left(\sum_{t=1}^{T} \mathbf{x}_{t} y_{it}\right)$$
(corresponds to elements $k(i-1)+1$ through ki of $\hat{\mathbf{\gamma}}$)
$$\hat{\mathbf{\gamma}}_{i}$$
 is posterior mean of $\mathbf{\gamma}_{i}$ and
$$\sigma_{ii} \left(\sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{'}\right)^{-1}$$
 is posterior variance (conditional on $\mathbf{\Omega}$)

$$\begin{split} & \mathbf{\Omega}^{-1} | \mathbf{Y} \sim W(T+N, \mathbf{\Lambda}^*) \\ & \mathbf{\Lambda}^* = \mathbf{\Lambda} + \widehat{\mathbf{S}} + \mathbf{Q} \\ & \widehat{\mathbf{S}} = \sum_{t=1}^T \left(\mathbf{y}_t - \widehat{\boldsymbol{\Gamma}'} \mathbf{x}_t \right) \left(\mathbf{y}_t - \widehat{\boldsymbol{\Gamma}'} \mathbf{x}_t \right)^T \\ & \mathbf{Q} = \mathbf{V}' \left(\sum_{t=1}^T \mathbf{x}_t \mathbf{x}_t' \right) \mathbf{M}^* \mathbf{M}^{-1} \mathbf{V} \\ & \text{vec} \left(\mathbf{V} \right) = \mathbf{m} - \widehat{\mathbf{\gamma}} \\ & \text{Diffuse prior: } N = 0, \mathbf{M}^{-1} = \mathbf{0}, \mathbf{\Lambda} = \mathbf{0} \end{split}$$

Diffuse prior: $\boldsymbol{\Omega}^{-1} | \mathbf{Y} \sim W(T, \widehat{\mathbf{S}})$ $\boldsymbol{\gamma} | \boldsymbol{\Omega}^{-1}, \mathbf{Y} \sim N \Big(\widehat{\boldsymbol{\gamma}}, \boldsymbol{\Omega} \otimes \Big[\sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}' \Big]^{-1} \Big)$

To generate a draw from the posterior distribution of (γ,Ω^{-1}) with a diffuse prior:

(1) Estimate *i*th equation of VAR by OLS for i = 1, 2, ..., n

$$\widehat{\boldsymbol{\gamma}}_{i} = \left(\sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{'}\right)^{-1} \left(\sum_{t=1}^{T} \mathbf{x}_{t} y_{it}\right)$$

$$\mathbf{M}^{*} = \left(\sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{'}\right)^{-1}$$

(2) Calculate residual of *i*th equation and sum of outer products of residuals:

$$\widehat{\boldsymbol{\varepsilon}}_{it} = y_{it} - \widehat{\boldsymbol{\gamma}}_{i}^{'} \mathbf{x}_{t}$$

$$\widehat{\boldsymbol{S}} = \sum_{t=1}^{T} \widehat{\boldsymbol{\varepsilon}}_{t} \widehat{\boldsymbol{\varepsilon}}_{t}^{'}$$

(3) Generate an artificial sample of size T of $(n \times 1)$ vector $\mathbf{z}_{\tilde{t}}$ where $\mathbf{z}_{\tilde{t}} \sim N\left(\mathbf{0}, \widehat{\mathbf{S}}^{-1}\right)$ and calculate the $(n \times n)$ matrix $\mathbf{w} = \sum_{\tilde{t}=1}^{T} \mathbf{z}_{\tilde{t}} \mathbf{z}_{\tilde{t}}'$

- (4) Set $\Omega = \mathbf{W}^{-1}$.
- (5) Generate a draw for γ from a $N(\hat{\gamma}, \Omega \otimes \mathbf{M}^*)$ distribution.

The values of Ω from step (4) and γ from step (5) represent a single draw from the posterior distribution. To generate a Monte Carlo sample of D draws, repeat steps (3)-(5) D times.

To get standard errors on impulseresponse functions, for each draw calculate the impulse-response function implied by that value of γ .

Usual procedure: Ω is fixed at $T^{-1}\widehat{\mathbf{S}}$ for all draws = asymptotic classical distribution or approximation to Bayesian distribution with diffuse prior. Example of using a non-diffuse prior (Del Negro and Schorfheide, 2002). They use a log-linearization of a real business cycle model to get theoretical values for VAR parameters: $\mathbf{y}_{t} = \mathbf{\Gamma}_{0}^{'} \mathbf{x}_{t} + \mathbf{\varepsilon}_{t}$ $E(\mathbf{\varepsilon}_{t}\mathbf{\varepsilon}_{t}^{'})=\mathbf{\Omega}_{0}$ Suppose we had an artificial "sample" of observations $\{\tilde{\mathbf{y}}_{\tilde{i}}\}_{\tilde{i}=-p+1}^{\tilde{T}}$ and base \mathbf{m} , \mathbf{M} , N, and Λ on a diffuse inference from this sample:

$$\begin{split} \mathbf{M} &= \left(\sum_{\tilde{t}=1}^{\tilde{T}} \mathbf{\tilde{x}}_{\tilde{t}} \mathbf{\tilde{x}}_{\tilde{t}}^{'}\right)^{-1} \\ \tilde{\Gamma} &= \mathbf{M} \sum_{\tilde{t}=1}^{\tilde{T}} \mathbf{\tilde{x}}_{\tilde{t}} \mathbf{\tilde{y}}_{\tilde{t}}^{'} \\ \mathbf{m} &= \mathbf{vec}(\tilde{\Gamma}) \\ N &= \tilde{T} \\ \Lambda &= \sum_{\tilde{t}=1}^{\tilde{T}} \left(\mathbf{y}_{\tilde{t}} - \tilde{\Gamma}^{'} \mathbf{x}_{\tilde{t}}\right) \left(\mathbf{y}_{\tilde{t}} - \tilde{\Gamma}^{'} \mathbf{x}_{\tilde{t}}\right)^{'} \end{split}$$

We could then use these values of \mathbf{m} , \mathbf{M} , N, and Λ together with the actual observed data $\{\mathbf{y}_t\}_{t=-p+1}^T$ to form a posterior inference using the earlier formulas, where choice of \tilde{T} would reflect how much weight to put on the "real business cycle prior."

Actually, we can use the RBC's implied values of Γ_0 and Ω_0 not just to simulate a few observations, but we can use them to calculate analytically the moments:

$$E(\mathbf{\tilde{x}}_t\mathbf{\tilde{x}}_t') = \mathbf{A}_0$$

$$E(\mathbf{\tilde{x}}_{\tilde{t}}\mathbf{\tilde{y}}_{\tilde{t}}') = \mathbf{B}_0$$

$$E(\mathbf{\tilde{y}}_{t}\mathbf{\tilde{y}}_{t}^{'})=\mathbf{C}_{0}$$

where \mathbf{A}_0 , \mathbf{B}_0 and \mathbf{C}_0 are functions of $\mathbf{\Gamma}_0$ and $\mathbf{\Omega}_0$.

$$\begin{split} \mathbf{M} &= \left(\sum_{\tilde{t}=1}^{\tilde{T}} \mathbf{\tilde{x}}_{\tilde{t}} \mathbf{\tilde{x}}_{\tilde{t}}^{'}\right)^{-1} \leftrightarrow (\tilde{T} \mathbf{A}_{0})^{-1} \\ \tilde{\Gamma} &= \mathbf{M} \sum_{\tilde{t}=1}^{\tilde{T}} \mathbf{\tilde{x}}_{\tilde{t}} \mathbf{\tilde{y}}_{\tilde{t}}^{'} \leftrightarrow \mathbf{A}_{0}^{-1} \mathbf{B}_{0} \\ \mathbf{m} &= \mathbf{vec}(\tilde{\Gamma}) \\ N &= \tilde{T} \\ \Lambda &= \sum_{\tilde{t}=1}^{\tilde{T}} \left(\mathbf{y}_{\tilde{t}} - \tilde{\Gamma}^{'} \mathbf{x}_{\tilde{t}}\right) \left(\mathbf{y}_{\tilde{t}} - \tilde{\Gamma}^{'} \mathbf{x}_{\tilde{t}}\right)^{'} \\ &\leftarrow \tilde{T} (\mathbf{C}_{0} - \mathbf{B}_{0}^{'} \mathbf{A}_{0}^{-1} \mathbf{B}_{0}) \end{split}$$

Del Negro and Schorfheide find that putting equal weights on prior and data $(\tilde{T} = T)$ results in substantially better forecasts than unrestricted VAR, and better than Minnesota prior for horizons greater than 1 quarter.

RBC = good simplification (shrinkage).

Problem with Normal-Wishart prior

$$\gamma | \Omega^{-1} \sim N \left(\begin{array}{c} \mathbf{m} \\ n_{k \times 1} \end{array}, \begin{array}{c} \Omega \otimes \mathbf{M} \\ n_{k \times k} \end{array} \right)$$

 $y_{1,t-1}$ = first element of \mathbf{x}_t $y_{2,t-1}$ = second element of \mathbf{x}_t

$$\begin{split} \gamma | \Omega^{-1} \sim N \bigg(& \underset{nk \times 1}{\mathbf{m}} , \quad \underset{n \times n}{\Omega} \otimes \underset{k \times k}{\mathbf{M}} \bigg) \\ \text{confidence in } \gamma_1 = \text{coefficient relating} \\ y_{1t} \text{ to } y_{1,t-1} \text{ is } \sigma_{11} m_{11} \\ \text{confidence in } \gamma_2 = \text{coefficient relating} \\ y_{1t} \text{ to } y_{2,t-1} \text{ is } \sigma_{11} m_{22} \end{split}$$

$$\gamma | \Omega^{-1} \sim N \left(\begin{array}{l} \mathbf{m} \ , \quad \Omega \otimes \mathbf{M} \\ _{nk \times 1} \ \ \, _{n \times n} \end{array} \right)$$
 confidence in $\gamma_{k+1} =$ coefficient relating y_{2t} to $y_{1,t-1}$ is $\sigma_{22} m_{11}$ confidence in $\gamma_{k+2} =$ coefficient relating y_{2t} to $y_{2,t-1}$ is $\sigma_{22} m_{22}$

Problem: If $\sigma_{11}m_{11} > \sigma_{11}m_{22}$ (pretty confident variable 2 doesn't matter for variable 1), then must have $\sigma_{22}m_{11} > \sigma_{22}m_{22}$ (think variable 2 doesn't matter for variable 2 either)

Ways to get around this problem: (1) Assume that Ω is diagonal. Then single-equation methods are equivalent to full-system inference, use different M₁ for each equation.	
(2) Drop natural conjugates, turn to numerical Bayesian methods.	
	1
II. Vector autoregressions A. Introduction B. Normal-Wishart priors for VARs C. Bayesian analysis of structural VARs	

Consider structural VAR:

$$\mathbf{A}'_{n \times n} \mathbf{y}_{t} = \mathbf{B}'_{n \times k} \mathbf{x}_{t} + \mathbf{v}_{t}$$

$$\mathbf{x}'_{t} = (\mathbf{y}'_{t-1}, \mathbf{y}'_{t-2}, \dots, \mathbf{y}'_{t-p}, 1)$$

$$k = np + 1$$

$$\mathbf{v}_{t} | \mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \dots, \mathbf{y}_{-p+1} \sim N(\mathbf{0}, \mathbf{I}_{n})$$

$$p(\mathbf{y}_{t}|\mathbf{y}_{t-1},\mathbf{y}_{t-2},\ldots,\mathbf{y}_{-p+1})$$

$$= p(\mathbf{v}_{t}|\mathbf{y}_{t-1},\mathbf{y}_{t-2},\ldots,\mathbf{y}_{-p+1}) \left| \frac{\partial \mathbf{y}_{t}}{\partial \mathbf{v}_{t}'} \right|^{-1}$$

$$\frac{\partial \mathbf{y}_{t}}{\partial \mathbf{v}_{t}'} = \left(\mathbf{A}'\right)^{-1}$$

$$p(\mathbf{y}_{1},\ldots,\mathbf{y}_{T}|\mathbf{A},\mathbf{B};\mathbf{y}_{0},\mathbf{y}_{-1},\ldots,\mathbf{y}_{-p+1})$$

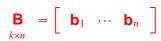
$$= (2\pi)^{-Tn/2}|\mathbf{A}|^{T}$$

$$\mathbf{exp}\left[-\frac{1}{2}\sum_{t=1}^{T}(\mathbf{A}'\mathbf{y}_{t} - \mathbf{B}'\mathbf{x}_{t})'(\mathbf{A}'\mathbf{y}_{t} - \mathbf{B}'\mathbf{x}_{t})\right]$$

Take transpose

$$\mathbf{y}_{t}^{'}\mathbf{A} = \mathbf{x}_{t}^{'}\mathbf{B} + \mathbf{v}_{t}^{'}$$

and stack rows on top of each other for t = 1, 2, ..., T:



 $\mathbf{b}_i = (k \times 1)$ vector of coefficients on the lags in the *i*th structural equation:

$$\mathbf{y}_{t}^{'}\mathbf{a}_{i}=\mathbf{x}_{t}^{'}\mathbf{b}_{i}+v_{it}$$

The vec operator stacks the columns of a $(k \times n)$ matrix on top of each other, from left to right, to form a $(kn \times 1)$ vector:

$$\operatorname{vec}(\mathbf{B}) = \begin{bmatrix} \mathbf{b}_1 \\ \vdots \\ \mathbf{b}_n \end{bmatrix} \equiv \mathbf{b}$$

So first k elements of the $(nk \times 1)$ vector **b** correspond to the coefficients on lags for the first equation in the VAR.

$$\mathbf{Y} \quad \mathbf{A} = \mathbf{X} \quad \mathbf{B} + \mathbf{V}$$

$$T \times n \quad n \times n = T \times k \quad k \times n \quad T \times n$$

$$\mathbf{Vec}(\mathbf{XB}) = (\mathbf{I}_n \otimes \mathbf{X}) \mathbf{Vec}(\mathbf{B})$$

$$T \times n \times n \quad r \times k \quad k \times n$$

$$= \mathbf{\tilde{X}} \quad \mathbf{b}$$

$$T \times n \times n \quad r \times k \times n$$
for $\mathbf{\tilde{X}} \equiv (\mathbf{I}_n \otimes \mathbf{X})$

Likewise define

$$\tilde{\mathbf{y}} \equiv \text{vec}(\mathbf{Y}\mathbf{A})$$

$$= (\mathbf{I}_n \otimes \mathbf{Y})\mathbf{a}$$

for $\mathbf{a} = \text{vec}(\mathbf{A})$. First n elements of \mathbf{a}

correspond to coefficients on contemporaneous variables in first equation of VAR.

$$\mathbf{Y}$$
 \mathbf{A} = \mathbf{X} \mathbf{B} + \mathbf{V} $T \times n$ $n \times n$ $T \times n$

Taking vec of full system,

$$\tilde{\mathbf{y}} = \tilde{\mathbf{X}}\mathbf{b} + \tilde{\mathbf{v}}$$

where $\tilde{\mathbf{v}} \sim N(\mathbf{0}, \mathbf{I}_{Tn})$. Note that conditional on \mathbf{a} , this is a classical regression model with unit variance for the residual.

$$\begin{split} p(\mathbf{Y}|\mathbf{a},\mathbf{b}) &= (2\pi)^{-Tn/2}|\mathbf{A}|^T \\ &= \exp\left[-\frac{1}{2}(\mathbf{\tilde{y}} - \mathbf{\tilde{X}b})'(\mathbf{\tilde{y}} - \mathbf{\tilde{X}b})\right] \\ \mathbf{b}|\mathbf{a} &\sim N(\mathbf{m}(\mathbf{a}), \mathbf{M}(\mathbf{a})) \\ p(\mathbf{b}|\mathbf{a}) &= (2\pi)^{-nk/2}|\mathbf{M}(\mathbf{a})|^{-1/2} \\ \exp\left\{-\frac{1}{2}[\mathbf{b} - \mathbf{m}(\mathbf{a})]'[\mathbf{M}(\mathbf{a})]^{-1}[\mathbf{b} - \mathbf{m}(\mathbf{a})]\right\} \\ p(\mathbf{a}) \text{ arbitrary} \end{split}$$

$$p(\mathbf{b}, \mathbf{a}|\mathbf{Y}) = p(\mathbf{b}|\mathbf{a}, \mathbf{Y})p(\mathbf{a}|\mathbf{Y})$$

$$\mathbf{b}|\mathbf{a}, \mathbf{Y} \sim N(\mathbf{m}^*(\mathbf{a}), \mathbf{M}^*(\mathbf{a}))$$

$$\mathbf{M}^*(\mathbf{a}) = \left\{ [\mathbf{M}(\mathbf{a})]^{-1} + \tilde{\mathbf{X}}'\tilde{\mathbf{X}} \right\}^{-1}$$

$$\tilde{\mathbf{X}} = (\mathbf{I}_n \otimes \mathbf{X})$$

$$\mathbf{M}^*(\mathbf{a}) = \left\{ [\mathbf{M}(\mathbf{a})]^{-1} + [\mathbf{I}_n \otimes \mathbf{X}'\mathbf{X}] \right\}^{-1}$$

$$\begin{aligned} \mathbf{b}|\mathbf{a}, \mathbf{Y} \sim N(\mathbf{m}^*(\mathbf{a}), \mathbf{M}^*(\mathbf{a})) \\ \mathbf{m}^*(\mathbf{a}) &= \mathbf{M}^*(\mathbf{a}) \left\{ [\mathbf{M}(\mathbf{a})]^{-1} \mathbf{m}(\mathbf{a}) + \tilde{\mathbf{X}}' \tilde{\mathbf{y}} \right\} \\ \tilde{\mathbf{X}}' \tilde{\mathbf{y}} &= (\mathbf{I}_n \otimes \mathbf{X}') (\mathbf{I}_n \otimes \mathbf{Y}) \mathbf{a} \\ &= (\mathbf{I}_n \otimes \mathbf{X}' \mathbf{Y}) \mathbf{a} \end{aligned}$$

Still, we need to "invert" $(nk \times nk)$ matrix $\{[\mathbf{M}(\mathbf{a})]^{-1} + [\mathbf{I}_n \otimes \mathbf{X}'\mathbf{X}]\}^{-1}$

Suppose our prior for equation i takes the form

$$\mathbf{b}_i | \mathbf{a} \sim N(\mathbf{m}_i(\mathbf{a}), \mathbf{M}_i(\mathbf{a}))$$
 for $\mathbf{M}_i(\mathbf{a})$ a $(k \times k)$ matrix, with priors independent across equations.

$$\left\{ \begin{bmatrix} \mathbf{M}(\mathbf{a}) \end{bmatrix}^{-1} + \begin{bmatrix} \mathbf{I}_n \otimes \mathbf{X}' \mathbf{X} \end{bmatrix} \right\}^{-1}$$

$$= \left\{ \begin{bmatrix} \mathbf{M}_1(\mathbf{a})^{-1} & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots \\ \mathbf{0} & \cdots & \mathbf{M}_n(\mathbf{a})^{-1} \end{bmatrix} + \begin{bmatrix} \mathbf{X}' \mathbf{X} & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots \\ \mathbf{0} & \cdots & \mathbf{X}' \mathbf{X} \end{bmatrix} \right\}^{-1}$$

$$\left\{ \begin{bmatrix} \mathbf{M}(\mathbf{a}) \end{bmatrix}^{-1} + \begin{bmatrix} \mathbf{I}_n \otimes \mathbf{X}' \mathbf{X} \end{bmatrix} \right\}^{-1}$$

$$= \begin{bmatrix} \mathbf{M}_1^*(\mathbf{a}) & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots \\ \mathbf{0} & \cdots & \mathbf{M}_n^*(\mathbf{a}) \end{bmatrix}$$
for $\mathbf{M}_i^*(\mathbf{a}) = \begin{bmatrix} \mathbf{M}_i(\mathbf{a})^{-1} + \mathbf{X}' \mathbf{X} \end{bmatrix}^{-1}$

$$\mathbf{m}^*(\mathbf{a}) = \mathbf{M}^*(\mathbf{a}) \{ [\mathbf{M}(\mathbf{a})]^{-1} \mathbf{m}(\mathbf{a}) + (\mathbf{I}_n \otimes \mathbf{X}' \mathbf{Y}) \mathbf{a} \}$$

$$\begin{bmatrix} \mathbf{m}_1^*(\mathbf{a}) \\ \vdots \\ \mathbf{m}_n^*(\mathbf{a}) \end{bmatrix} = \begin{bmatrix} \mathbf{M}_1^*(\mathbf{a}) \mathbf{q}_1(\mathbf{a}) \\ \vdots \\ \mathbf{M}_n^*(\mathbf{a}) \mathbf{q}_n(\mathbf{a}) \end{bmatrix}$$

$$\mathbf{q}_i(\mathbf{a}) = [\mathbf{M}_i(\mathbf{a})]^{-1} \mathbf{m}_i(\mathbf{a}) + \mathbf{X}' \mathbf{Y} \mathbf{a}_i$$

Specification of $p(\mathbf{b}|\mathbf{a})$: expect each series to behave like a random walk.

Structural equations:

$$\mathbf{Y}$$
 \mathbf{A} = \mathbf{X} \mathbf{B} + \mathbf{V} $T \times n$ $N \times n$ $N \times n$

Reduced form:

$$\mathbf{Y} = \mathbf{X} \quad \prod_{T \times n} + \mathbf{E}$$
 $T \times n \quad T \times k \quad k \times n \quad T \times n$
 $\mathbf{\Pi} = \mathbf{B} \mathbf{A}^{-1}$
 $\mathbf{E} = \mathbf{V} \mathbf{A}^{-1}$

Random walk:
$$\Pi_{k \times n} = \begin{bmatrix}
\mathbf{I}_{n} \\
\mathbf{0} \\
\vdots \\
\mathbf{0}
\end{bmatrix} = \mathbf{B} \quad \mathbf{A}^{-1} \\
k \times n \quad n \times n$$

$$E(\mathbf{B}|\mathbf{A}) = \begin{bmatrix}
\mathbf{A} \\
\mathbf{0} \\
\vdots \\
\mathbf{0}
\end{bmatrix}$$

$$\mathbf{b}_{i}|\mathbf{a} \sim N(\mathbf{m}_{i}(\mathbf{a}), \mathbf{M}_{i}(\mathbf{a}))$$

$$\mathbf{m}_{i}(\mathbf{a}) = \begin{bmatrix} \mathbf{a}_{i} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix}$$

Let $m_i^{(r)}$ denote the *r*th element of this vector (prior expectation of *r*th element of \mathbf{b}_i) and $M_i^{(r)}$ its variance:

$$b_i^{(r)}|\mathbf{a} \sim N(m_i^{(r)}, M_i^{(r)})$$

with priors across coefficients taken to be independent.

Multplying the likelihood by the prior density

$$p(b_i^{(r)}|\mathbf{a}) = (2\pi)^{-1/2} [M_i^{(r)}]^{-1/2} \exp \left[-\frac{[b_i^{(r)} - m_i^{(r)}]^2}{2M_i^{(r)}} \right]^{-1/2}$$

is numerically identical to acting as if I had observed a variable $q_i^{(r)}$ from the system

$$q_i^{(r)} = b_i^{(r)} / \sqrt{M_i^{(r)}} + v_i^{(r)}$$

where the observed value of $q_i^{(r)}$ is $m_i^{(r)}/\sqrt{M_i^{(r)}}$ and $v_i^{(r)}\sim N(0,1)$.

Or, since $m_i^{(r)}$ is the rth element of \mathbf{a}_i if $r \leq n$ and is zero otherwise, this is numerically identical to having observed the $(n \times 1)$ vector $\mathbf{y}_i^{(r)}$ and $(k \times 1)$ vector $\mathbf{x}_i^{(r)}$ from the following system:

$$[\mathbf{y}_i^{(r)}]' \mathbf{a}_i = [\mathbf{x}_i^{(r)}]' \mathbf{b}_i + v_i^{(r)}$$

$$\mathbf{y}_i^{(r)} = \begin{cases} \mathbf{e}_r(n) / \sqrt{M_i^{(r)}} & \text{if } r \leq n \\ \mathbf{0} & \text{otherwise} \end{cases}$$

$$\mathbf{X}_i^{(r)} = \mathbf{e}_r(k) / \sqrt{M_i^{(r)}}$$

for $\mathbf{e}_r(n)$ the *r*th column of \mathbf{I}_n $\mathbf{e}_r(k)$ the *r*th column of \mathbf{I}_k Stack these "dummy observations" for r = 1, 2, ..., k in matrices

$$\mathbf{Y}_{id} = \begin{bmatrix} \begin{bmatrix} \mathbf{y}_i^{(1)} \end{bmatrix}' \\ \vdots \\ \begin{bmatrix} \mathbf{y}_i^{(k)} \end{bmatrix}' \end{bmatrix} \quad \mathbf{X}_{id} = \begin{bmatrix} \begin{bmatrix} \mathbf{x}_i^{(1)} \end{bmatrix}' \\ \vdots \\ \begin{bmatrix} \mathbf{x}_i^{(k)} \end{bmatrix}' \end{bmatrix}$$

The posterior $p(\mathbf{b}_i|\mathbf{a},\mathbf{Y})$ is then:

$$\mathbf{b}_{i}|\mathbf{a}, \mathbf{Y} \sim N(\mathbf{m}_{i}^{*}(\mathbf{a}), \mathbf{M}_{i}^{*}(\mathbf{a}))$$

$$\mathbf{M}_{i}^{*}(\mathbf{a}) = [\mathbf{M}_{i}(\mathbf{a})^{-1} + \mathbf{X}'\mathbf{X}]^{-1}$$

$$= (\mathbf{X}_{id}'\mathbf{X}_{id} + \mathbf{X}'\mathbf{X})^{-1}$$

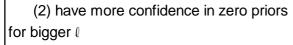
$$\mathbf{m}_{i}^{*}(\mathbf{a}) = \mathbf{M}_{i}^{*}(\mathbf{a})\{[\mathbf{M}_{i}(\mathbf{a})]^{-1}\mathbf{m}_{i}(\mathbf{a}) + \mathbf{X}'\mathbf{Y}\mathbf{a}_{i}\}$$

$$= (\mathbf{X}_{id}'\mathbf{X}_{id} + \mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}_{id}'\mathbf{Y}_{id} + \mathbf{X}'\mathbf{Y})\mathbf{a}_{i}$$

$$b_i^{(r)}|\mathbf{a} \sim N(m_i^{(r)}, M_i^{(r)})$$

Remaing question: how choose $M_i^{(r)}$. Let j(r) denote which variable the rth coefficient refers to $(j=1,2,\ldots,n)$ and $\ell(r)$ its lag $(\ell=1,2,\ldots,p)$ i.e., $b_i^{(r)}$ is the coefficient relating $\mathbf{y}_i'\mathbf{a}_i$ to $y_{j,t-\ell}$

(1) If units in which y_{jt} is measured
are doubled, value of $b_i^{(r)}$ is cut in half
\Rightarrow make $\sqrt{M_i^{(r)}}$ inversely proportional
to $\sigma_{\it j}$, the standard deviation of univariate
autoregression for y_{jt}



 \Rightarrow make $\sqrt{M_i^{(r)}}$ inversely proportional to ℓ^{λ_3} $(\lambda_3>0)$

$$b_i^{(r)}|\mathbf{a} \sim N(m_i^{(r)}, M_i^{(r)})$$

$$\sqrt{M_i^{(r)}} = \begin{cases} \frac{\lambda_0 \lambda_1}{\sigma_{j(r)}[\ell(r)]^{\lambda_3}} & \text{for } r = 1, 2, \dots, k-1 \\ \lambda_0 \lambda_4 & \text{for } r = k \end{cases}$$

where λ_0 controls tightness of prior for a and λ_1 controls tightness of random walk prior

Distribution of a $p(\mathbf{a}, \mathbf{b}|\mathbf{Y}) = \mathbf{p}(\mathbf{b}|\mathbf{a}, \mathbf{Y})p(\mathbf{a}|\mathbf{Y})$ $\mathbf{b}|\mathbf{a}, \mathbf{Y} \sim N(\mathbf{m}^*(\mathbf{a}), \mathbf{M}^*(\mathbf{a}))$ $p(\mathbf{a}|\mathbf{Y}) \propto p(\mathbf{a})|\mathbf{A}|^T$ $|\mathbf{I}_{Tn} + (\mathbf{I}_n \otimes \mathbf{X})\mathbf{M}(\mathbf{a})(\mathbf{I}_n \otimes \mathbf{X}')|^{-1/2}$ $\exp\left\{-\frac{1}{2}[\mathbf{a}'(\mathbf{I}_n \otimes \mathbf{Y}'\mathbf{Y})\mathbf{a} + +\mathbf{m}(\mathbf{a})'\mathbf{M}(\mathbf{a})^{-1}\mathbf{m}(\mathbf{a}) - \mathbf{m}^*(\mathbf{a})'(\mathbf{M}^*(\mathbf{a}))^{-1}\mathbf{m}^*(\mathbf{a})]\right\}$

What is this distribution $p(\mathbf{a}|\mathbf{Y})$? Use numerical methods.

Example: Sims-Zha, distribution of $p(\mathbf{a}|\mathbf{Y})$: $p(\mathbf{a}|\mathbf{Y}) \propto p(\mathbf{a})|\mathbf{A}|^{T}$ $|\mathbf{I}_{Tn} + (\mathbf{I}_{n} \otimes \mathbf{X})\mathbf{M}(\mathbf{a})(\mathbf{I}_{n} \otimes \mathbf{X}')|^{-1/2}$ $\exp\left\{-\frac{1}{2}[\mathbf{a}'(\mathbf{I}_{n} \otimes \mathbf{Y}'\mathbf{Y})\mathbf{a} + + \mathbf{m}(\mathbf{a})'\mathbf{M}(\mathbf{a})^{-1}\mathbf{m}(\mathbf{a}) - \mathbf{m}^{*}(\mathbf{a})'(\mathbf{M}^{*}(\mathbf{a}))^{-1}\mathbf{m}^{*}(\mathbf{a})]\right\}$ $\equiv q(\mathbf{a})$

30

Importance density $g(\mathbf{a})$ should be similar to $q(\mathbf{a})$ but with fatter tails. (1) Find $\mathbf{a}_0 \equiv \arg \max_{\mathbf{a}} q(\mathbf{a})$ $\mathbf{H}_0 \equiv -\frac{\partial^2 \log q(\mathbf{a})|}{\partial \mathbf{a} \partial \mathbf{a}'} \bigg|_{\mathbf{a}=\mathbf{a}_0}$ (2) Let $g(\mathbf{a})$ be n^2 -dimensional Student tdistribution centered at a₀ with scale matrix \mathbf{H}_0^{-1} and 9 degreees of freedom. (3) Generate *j*th draw $\mathbf{a}^{(j)}$ from $g(\mathbf{a})$. E.g., generate $\mathbf{u}^{(j)} \sim N(\mathbf{0}, \mathbf{I}_{n^2})$ $\mathbf{v}^{(j)} = \mathbf{P}_0^{-1} \mathbf{u}^{(i)} + \mathbf{a}_0$ \mathbf{P}_0 is Cholesky factor of \mathbf{H}_0 $\mathbf{e}^{(j)} \sim N(\mathbf{0}, \mathbf{I}_9)$ $v^{(j)} = (1/9)[\mathbf{e}^{(j)}]'[\mathbf{e}^{(j)}]$

 $\mathbf{a}^{(j)} = \mathbf{v}^{(j)} / \sqrt{\mathbf{v}^{(j)}}$

(4) Calculate
$$g(\mathbf{a}^{(j)}) = c \left\{ 1 + \left[\mathbf{a}^{(i)} - \mathbf{a}_0 \right]^{'} \mathbf{H}_0^{-1} \left[\mathbf{a}^{(i)} - \mathbf{a}_0 \right] \right\}^{-(n^2+9)/2}$$
 choosing c so that $\max_{j=1,\dots,D} g(\mathbf{a}^{(j)})$ is same scale as $\max_{j=1,\dots,D} q(\mathbf{a}^{(j)})$

(5) Calculate the weight

$$\omega^{(j)} = \frac{q(\mathbf{a}^{(j)})}{g(\mathbf{a}^{(j)})}$$

j=1,,,D

(6) Repeat steps (3)-(5) for j = 1, 2, ..., D.

(7) The sample $\mathbf{a}^{(1)}, \dots, \mathbf{a}^{(D)}$, when weighted by $K^{-1}\omega^{(1)}, \dots, K^{-1}\omega^{(D)}$ for $K = \omega^{(1)} + \dots + \omega^{(D)}$, is a sample from $p(\mathbf{a}|\mathbf{Y})$, e.g.,

$$\widehat{E}(\mathbf{a}|\mathbf{Y}) = \frac{\sum_{j=1}^{D} \omega^{(j)} \mathbf{a}^{(j)}}{\sum_{j=1}^{D} \omega^{(j)}}$$

(8) For each <i>j</i> , generate b ^(j) from	
the $N(\mathbf{m}^*(\mathbf{a}^{(j)}), \mathbf{M}^*(\mathbf{a}^{(j)})$ distribution and	
weight with $K^{-1}\omega^{(j)}$ for a draw from	
$p(\mathbf{b} \mathbf{Y})$, e.g.	
$\widehat{E}(\mathbf{b} \mathbf{Y}) = \frac{\sum_{j=1}^{D} \omega^{(j)} \mathbf{b}^{(j)}}{\sum_{i=1}^{D} \omega^{(j)}}$	
$\sum_{j=1}^{D} \omega^{(j)}$	