ll. Vector autoregressions

A. Introduction
1. VARs as forecasting models

Suppose we want to forecast yit
based on:
Yit-1,¥Y1t-2,-- -, Yit-p

Yoi-1,¥Y2t-2,-- -1 Y2t-p

Ynt-1,Ynt-2, -+, Ynt-p
deterministic functions of t
(1,t,cos(xt/6), seasonal dummies)

Let y, = (Yat, Y2t, -« -, Ynt)'

(nx1)

Xt = (1,Y£_1,y;_2, e 7y1/;_p)/
(kx1)

k=np+1




Suppose we consider linear forecast
o
Vigr = Y%t
Best forecast within linear class:
value of y, that minimizes

E(yw - y1X1)?

Proposition: If y, is covariance-stationary
and E(xx;) is nonsingular, then optimal
forecast uses

¥; = E&ex0) E(xyn)

Definition: The optimal linear forecast,
Viger = V1 Xt

is called the “population linear projection”

of y1t on X




Proposition: If y, is stationary and

ergodic, then

A P,
Yi = Y1

Proof: (Law of Large Numbers)

T -1 T
V= (Tl > xtx{) (Tl > XtYlt)
t=1 t=1

B Exox0)E(xiy)

If form separate forecasting equation
for each element of y, and collect in vector,

Yit = ’Y/lXt + &t

Yot =YXt + €nt
Y, = I'X¢ + &
result is called vector autoregression:
Yi = C+®@uy,; + D2y, + - + Ppy, + &t




Above results imply we can consistently
estimate coefficients for VAR by OLS
equation by equation

% = (27, yu) (ST xxt) ™

(1xK)

# = (20, yoxt) (2T, o)™

(1xK)

B = (o) (T xod)

(nxk)

F o ¢ b b by ]
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Consider the following process whereby
the (n x 1) vector y, might have been
generated:

Y = C+ @1y + @2y, + - + DpY, |, + &t
gt ~ N(O,Q)

log likelihood:
L =1ogp(y;, Yo, yT|y0,y_1,...,y_p+1,e)
= Zthl logp(YlYea:-+-+Yip:0)
= —(Tn/2)log(2r) — (T/2) log|Q|
~W2Y] Qe

& =Y —C— @1y, — P2y, — -~ PpYy
=Y~ 't

0 = vector containing elements of

Classical results for VARs:
(1) The MLE of T" is OLS
equation by equation:

I = (T yed) (Elxd)

(nxk)




(2) The MLE of Q is average
product of residuals:
Q=T1>" &8

(nxn) 8

A LY
(nx1)

(3) The asymptotic distribution of

A 2 A/ A A
§ = vecm) = G957,
(nkx1)

is given by
JT@-1) > NO.Q®M)
M = plim (T‘lztilxtxo_l
ocuM -+ oM
QM =
oM -+ oM

Il. Vector autoregressions

A. Introduction

1. VARs as forecasting models

2. Gaussian VARs as data-generating
process

3. VARs as ad hoc dynamic structural
models




Example:
fi = federal funds rate
Yt = output growth
7t = inflation
m; = money growth rate

Represent Fed behavior by

ft = ao+ a1yt + a2 + asfig
+04Yt-1 + As5T-1 + AeM-1 + Vi

Fed responds to current output

and inflation but not current

money growth

Vi = (oynmom)’ Boy, = K+ By, + Vi

Bo

B1

1 -1 —02 0

o3 04 05 O0Op




If vi ~i.i.d. N(O,D), log likelihood is

L =10gf(y1,Yo, - Y10 Yorr- 3 Y i1, 0)
= —(Tn/2) log(2r) — (T/2) log D]

+Tlog[Bo| - (2) 3, viD v,

D = E(vivy)

Vi = Boy; —kK—-B1y,; —Bay,,—
T prt—p

6 = vector containing elements of

k,Bo,B1,...,Bp,D

If model is just-identified, the MLE’s

~ N A 2NN

k,Bo,B1,...,Bp,D
are transformations of the VAR MLE's

A A A~ A
C,(I)l,q)z,...,(pp,g

Il. Vector autoregressions
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For univariate regression,

Vi = Xt + &t

Et ~ N(O,GZ)
we used Normal-Gamma for
natural conjugate prior:

Blo? ~ N(m,o2M)

o2 ~T(N,1)

From asymptotic distribution of MLE,
JTG-v > NO.Q®eM)

M = plim (T‘l > xtx{)fl,

we might guess that natural
conjugate prior is of the form

YIQ ~ N(M,Q ® M)

m = prior guess for y

M summarizes confidence

Prior for Q:

univariate regression

o? = E(ed)

Zi ~N(0,17Y)

W= (Z2+2Z3+ - +Z3)
Whas gamma distribution
with parameters N, 4

o2 ~T(N,A)




Vector autoregression:

Q= E(stst/)
zi ~N(O,A™)
nx1

W = (212, + Z2Z, + - + ZNZY)
W has Wishart distribution
with parameters N, A

Q1 ~WN,A)

W ~WN,A) =

p(w) = clAPN2w|ND2 expl — 5 tr(wA) |
c= [ZN”’ZH n(n-1)/4 erll F( N+21—j ) ]—1

so prior takes the form

pQ™) o [NV exp[ -5 QA ]

Yi = F/ Xt + €t
nx1 nxK  kx1  nx1
y = vec(I)

nkx1

first k components of y =
coefficients to explain yi;
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Prior for y:

univariate regression
Blo =2 ~ N(m,52M)

vector autoregression
yLQ‘l-N(m, Q® M)

nkx1 hxn kxk
P(YIQ ) o (27) ™22
exp[—+(y-m) @& M) y-m)]

p(y, Q7'Y) o p(y, Q1Y)

= p(Yly, Q HpriQ Hp@Q ™)
oc lQl—T/Z exp

[+ Xy~ T'x)'Q 7y, - T'x)]
Qe[ -+ (y-m) @ e M)y -m)]
Q- N2 exp[ ~ 4 tr(Q1A) ]

After a lot of algebra, this can be
rewritten as
p(y, Q7HY) o
Q2ep[-1@-m9)' @ M)y -m")]
pl—(T+N—n—l)/2 exp[— % tr(Q—l AY) :l
i.e., YL Y~Nm*,Q ® M*)
Q7Y ~WT+ N,A%)
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YQLY ~NmM*,Q @ M*)
M* = (M’1+Ztilxtxé)_l
m* = (I ® M*M1)m
+<|n® M*Ztilxtxt/)?
7 = vec(l)
= (Zxex) (S

Diffuse prior: M~ = 0

N -1
YRLY~N(7,. Qe[ X xx ] )
Estimate ith equation of VAR by OLS

Yi= (ZthlxtXt/yl(ZtT:l Xty”)

(corresponds to elements k(i — 1) + 1
through ki of 7)
v, is posterior mean of y; and

il (Ztil XiXt ) " is posterior

variance (conditional on Q)

QLY ~W(T + N,A*)
A*=A+S+0

S = Z:l(yt - F'xt) (yt - F'xt)

Q=V (X xix; ) MMV

vec( \Y, )— m —-¥
kxn

Diffuse prior: N = O, M = 0,A = 0
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Diffuse prior:
QY ~W(T,S)

~ ! —l
Yp_l’Y - N(Y! Q ®|:Z;I;1thti| )

To generate a draw from the posterior
distribution of (y, Q') with a diffuse
prior:

(1) Estimate ith equation of VAR by OLS

fori =1,2,...,n
Yi = (Z;tht’yl(Zletyit)
M* = (ZLxex)

(2) Calculate residual of ith equation

and sum of outer products of residuals:

it = Vit — ?iXt

AN T oA
S=2 ., €&
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(3) Generate an artificial sample of size
/\*l
T of (n x 1) vector z; where z; ~ N(O, S )

and calculate the (n x n) matrix

W :ZfT:l ZiZ;

(4) SetQ = W,
(5) Generate a draw for y from a
N(¥, Q ® M™) distribution.

The values of Q from step (4) and
y from step (5) represent a single
draw from the posterior distribution.
To generate a Monte Carlo sample
of D draws, repeat steps (3)-(5) D
times.

To get standard errors on impulse-
response functions, for each draw
calculate the impulse-response
function implied by that value of y.

14



Usual procedure: Q is fixed at

T-1S for all draws = asymptotic
classical distribution or approximation
to Bayesian distribution with diffuse
prior.

Example of using a non-diffuse prior
(Del Negro and Schorfheide, 2002).

They use a log-linearization of a real
business cycle model to get theoretical
values for VAR parameters:

Y, = ToXt + &

E(eier) = Qo

Suppose we had an artificial “sample
of observations {yf}g—:_ml and base m, M,

N, and A on a diffuse inference from this
sample:

15



We could then use these values of m, M,

N, and A together with the actual observed
data {yt};ml to form a posterior inference
using the earlier formulas, where choice of

T would reflect how much weight to put on
the “real business cycle prior.”

Actually, we can use the RBC’s implied
values of I'p and Qo not just to simulate a
few observations, but we can use them to
calculate analytically the moments:

E&%) = Ao

E(Xi§p) = Bo

(9 = Co
where Ay, Bp and Cy are functions of I'g
and Qo.
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2
=30 (ye-Tx) (yi-Txq) |
« T(Co-BoAg'Bo)

Del Negro and Schorfheide find that
putting equal weights on prior and data
(T = T) results in substantially better
forecasts than unrestricted VAR, and
better than Minnesota prior for horizons
greater than 1 quarter.

RBC = good simplification (shrinkage).

Problem with Normal-Wishart prior

yLQ‘1~N(m, Q® M)

nkx1 NxNn kxk

y1r1 = first element of x;
yor-1 = second element of x;

17



y|Q‘1~N(m, Q® M)

nkx1 Mxn kxk

confidence in y, = coefficient relating
Y1t 10 Y11 IS 011Mag
confidence in y = coefficient relating
Y1t 10 Yor 1 1S 011My

lel—-N(m, Qe M)

nkx<l XN kk
confidence in y .1 = coefficient relating
Yo 1O Y11 1S 022Myg
confidence in y.» = coefficient relating

Yor 10 Y211 IS 022Mp2

Problem: If o11m11 > o11my (pretty
confident variable 2 doesn’t matter
for variable 1), then must have
o22Mi1 > 022My (think variable 2
doesn’t matter for variable 2 either)

18



Ways to get around this problem:

(1) Assume that Q is diagonal. Then
single-equation methods are equivalent
to full-system inference, use different
M; for each equation.

(2) Drop natural conjugates, turn to
numerical Bayesian methods.

Il. Vector autoregressions

A. Introduction
B. Normal-Wishart priors for VARSs
C. Bayesian analysis of structural VARs
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Consider structural VAR:
A"y, = B xt+ v

- nxk  kx1 nx1
Xt = (yt—liyt—Z! s Yips 1)
k=np+1

Vil 1Yz Y-pa ~N(O, In)

P Y1 YiorY_pi1)

1
= PO 1Yz Y )| 22

%: N =1

R GY

p(yl,---,yTIA,B:yo,y_l,---,y_ml)
= (2r) 2T

exp[-3 T, Ay, - Bx) Ay, - B'x0 ]

Take transpose

YA = X;B +Vq
and stack rows on top of each other
fort=1,2,...,T:

Y A = X B+ V

Txn hxn Txk kxn Txn
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B :[bl bn]

kxn
bi = (kx 1) vector of coefficients

on the lags in the ith structural equation:
yiai = X{bi + Vit

The vec operator stacks the columns
of a (k x n) matrix on top of each other,

from left to right, to form a (kn x 1)vector:

b1

I
(o

vec(B) =
bn
So first k elements of the (nk x 1)

vector b correspond to the coefficients
on lags for the first equation in the VAR.

Y A = X B+ V
Txn hxn Txk kxn Txn
vec(XB)= (In ® X) vec(B)
Tnx1 nxn Txk kxn
=X b
Tnxnk  nkx1

for X = (I, ® X)
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Likewise define

¥ = vec(YA)
Thx1
for a =vec(A). First n elements of a
n?x1

correspond to coefficients on
contemporaneous variables in first
equation of VAR.

Y A = X B+ V
Txn Nxn Txk kxn Txn
Taking vec of full system,
g =Xb+¥

where V ~N(0O, |+,). Note that conditional
on a, this is a classical regression model
with unit variance for the residual.

p(Yla, b) = (27) ™A
exp[-4(§ - Xb) (7 — Xb) |
bla ~N(m(a), M(a))
p(bla) = (27) ™2 M(a)[
exp{-%[b - m(@)]'[M(a)] [b - m(a)]}
p(a) arbitrary

22



p(b, aly) = p(bla, Y)p(alY)
bla,Y ~N(m*(a),M*(a))

M*(@) = {[M@)] ™+ XX}
X = (I, ®X)
M*(@) = {M@)] ™+ [In® X'X]}

bla,Y ~N(m*(a),M*(a))
m*(@) = M*@{[M@] *m(@) + X'y}

X'y = (h®X)h® Ya
= (Ih® X'Y)a

Still, we need to “invert” (nk x nk) matrix
{M@]1 ™+ [l XX}

23



Suppose our prior for equation i takes
the form

bila ~ N(mi(a), M;(a))
for Mi(a) a (k x k) matrix, with priors
independent across equations.

{M@] "+ [ XX}

Mi(@)?t - 0
= : : : +
0 o Mp(@)™
-1
X'X .. 0
0 - X'X

{M@] "+ [ XX}
Mi(a) O

0 - Mp(a)
for Mf(a) = [Mi(a) ™t + X'X]™*

24



m*(a) = M*(@){[M@)]'m(a)

+(Ih® X'Y)a)
mi(a) Mi(a)q,(a)
mp(a) Mr(a)g,(a)

q;(@) =[Mi@]'mi() + X'Yay

Specification of p(bja):
expect each series to behave
like a random walk.

Structural equations:

Y A = X B+ V

Txn Nxn Txk kxn Txn
Reduced form:

Y = X II+ E

Txn Txk kxn Txn

IT1 =BA!

E =VA!

25



Random walk:

|
0 -1
m - - B A
kxn . kxn ~ Nxn
0
_ A _
0
EBA) = | .
0

bila ~ N(mi(a),Mi(a))

a;i

mi(a) =

Let m" denote the rth element of this
vector (prior expectation of rth element
of b;) and M{" its variance:

b”fa ~N(m", M{")
with priors across coefficients taken to
be independent.
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Multplying the likelihood by the prior density

b _m®12
p(bFHa>::<2n>-”2Uwf”]-“2exp[—l4;j%rl-}

is numerically identical to acting as if |
had observed a variable g" from the
system

0 = BT )
where the observed value of g is

m®"/ JMT and v” ~N(0, 1).

Or, since mi(” is the rth element of
a; if r < nand is zero otherwise,

this is numerically identical to having
observed the (n x 1) vector y(” and
(k x 1) vector x" from the

following system:

[yi”1'a = )by +vi”

o ) e/ IMP ifr<n
0

Yi _
otherwise

x" = e/ MP

for e, (n) the rth column of |,
er (k) the rth column of Iy
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Stack these “dummy observations”
forr = 1,2,...,kin matrices

e [x]

kxn I:yl(k):ll kxk I:Xi(k):ll

The posterior p(bila,Y) is then:

bila, Y ~N(m{(a),M{(a))

Mi(a) = [Mi(@) ™"+ X'X] ™
= (X{gXig + X'X) ™

m;(a) = M (@<{[Mi(@]'mi(a) + X'Ya;}
= (XIgXig + X' X)H(X[gYia + X'Y)a,

b{”a ~ N(m”, M{")
Remaing question: how choose M.
Let j(r) denote which variable the
rth coefficient refersto (j = 1,2,...,n)
and ((r)itslag ({ = 1,2,...,p)
i.e., b is the coefficient relating
Yi@i 10 Yjr

28



(1) If units in which y;; is measured
are doubled, value of bi(r) is cut in half

= make JMfr) inversely proportional

to o}, the standard deviation of univariate
autoregression for yijt

(2) have more confidence in zero priors
for bigger (

= make 1/Mi(” inversely proportional to (42
(A3 >0)

bi”la ~ N(m{”, ;")
— 2 forr=12,... k-1

M_(l') _ ojmni(r)]*s
VWi

Aols forr = k

where 1o controls tightness of prior for a
and A1 controls tightness of random walk
prior

29



Distribution of a
p(a, blY) = p(bla, Y)p(alY)
bla, Y ~N(m*(a), M*(a))
p@alY) « p(@)|A["
It + (In ® X)M(@)(In ® X")[ 2
exp{-%[a'(lh® Y'V)a+
+m(a)'M(a)*m(a)

-m*(@)'(M*(a))"'m*(a)] »

What is this distribution p(alY)?
Use numerical methods.

Example: Sims-Zha, distribution
of palY):
p@alY) o p(@)|A["
lIitn + (In ® X)M(@)(In ® X")[¥2
exp{-%[a'(lh® Y'Y)a+
+m(a)'M(@)*m(a)
-m*(a)'(M*(a)) "'m*(a)] }
=q(a)
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Importance density g(a) should be
similar to g(a) but with fatter tails.
(1) Find
aop = arg max g(a)
a

_ 0%logq(a)]

Ho =
° daca' |,a,

(2) Let g(a) be n?-dimensional
Student tdistribution centered at ag
with scale matrix Hy* and 9 degreees

of freedom.

(3) Generate jth draw a® from g(a).
-.0., generate

u® ~N(O, 1 ,2)

v = Pgtu® + ag

Po is Cholesky factor of Ho

el ~N(O, 1)

v = (1/9)[eD]'[eD]

al) = v07 0
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(4) Calculate
g@?) =
c{l +[a® - ag] Het[a® - ao]}

choosing c so that max g(a®) is same
j=1,,.D

~(n?+9)/2

scale as max g(a®)
ji=1,,.D

(5) Calculate the weight

q(a(]))
g(a(]))

(6) Repeat steps (3)-(5) for
j=12,...,D.

0l =

(7) The sample a®,...,a®, when
weighted by K*o®, ... K1o® for
K=oW+. .. +0®, isasample
from p(alY), e.g.,
ijl w®ad

ZjD:lwm

E@lY) =
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(8) For each j, generate b’ from
the N(m*(a¥), M*(a®) distribution and
weight with K10 ? for a draw from
p(blY), e.g.

E(bY) =

D o
Hp®
E jzlw b
D }
@
21
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