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1. Importance sampling



Generic Bayesian problem:

p�Y|�� � likelihood (known)

p��� � prior (known)

goal: calculate

p��|Y� �
p�Y|��p���

G

for G � � p�Y|��p���d�



Analytical approach: choose p���

from a family such that G can be found

with clever algebra.

Numerical approach: satisfied to be

able to generate draws

��1�,��2�, . . . ,��D�

from the distribution p��|Y� without

ever knowing the distribution (i.e.,

without calculating G)



Importance sampling:

Step (1): Generate ��j� from

an (essentially arbitrary) “importance

density” g���.

Step (2): Calculate

��j� �
p�Y|��j��p���j��

g���j��
.

Step (3): Weight the draw ��j� by

��j� to simulate distribution of p��|Y�.



Examples:

E��|Y� � � �p��|Y�d�
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How does this work?
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D ��j���j�
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Numerator:

D�1 �
j�1

D

��j���j� p
� E���j���j��

� � �����g���d�

� � � p�Y|��p���
g���

g���d�

� � �p�Y|��p���d�



Denominator:

D�1 �
j�1

D

��j� p
� E���j��

� � ����g���d�

� � p�Y|��p���
g���

g���d�

� � p�Y|��p���d�

� p�Y�



Conclusion:

�j�1
D ��j���j�

�j�1
D

��j�

p
�

� �p�Y|��p���d�

p�Y�

� � �p��|Y�d�



Example: � � �0, 1�

Importance density g���: � � U�0, 1�



Draws from uniform importance 
density
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Reweighted draws
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• Algorithm will converge faster the more the 
importance density resembles the target



Draws from the importance 
density g(x) = 3x2
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Reweighted draws
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What’s required of g�. �?

��j���j� �
��j�p�Y|��j��p���j��

g���j��
should

satisfy Law of Large Numbers.



Khintchine’s Theorem: If �xj�j�1
D is i.i.d.

with finite mean �, then D�1 �
j�1
D xj

p
� �

Note:

	 does not require xj to have

finite variance

	 ��j� are drawn i.i.d. from g���

by construction



So we only need

E��|Y� � �
�
�p��|Y�d� exists

p��|Y� � kp�Y|��p���

support of g��� includes �



However, convergence may be very

slow if variance of
��j�p�Y|��j��p���j��

g���j��

is infinite.

Practical observations:

	 works best if g��� has fatter

tails than p�Y|��p���

	 works best when g��� is good

approximation to p��|Y�



Always produces an answer, good

idea to check it.

(1) Try special cases where result

is known analytically.

(2) Try different g�. � to see if get

the same result.

(3) Use analytic results for components

of � in order to keep dimension that must

be importance-sampled small.
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F.  Numerical Bayesian methods
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2. The Gibbs sampler



Suppose the parameter vector �

can be partitioned as �
�

� ��1
�

,�2
�

,�3
�

�

with the property that p��|Y� is of

unknown form but

p��1|Y,�2,�3�

p��2|Y,�1,�3�

p��3|Y,�1,�2�

are of known form (same idea works for

2, 4, or n blocks)



(1) Start with arbitrary initial guesses

�1
�j�,�2

�j�,�3
�j� for j � 1.

(2) Generate:

�1
�j�1� from p��1 |Y, �2

�j�,�3
�j��

�2
�j�1� from p��2 |Y, �1

�j�1�,�3
�j��

�3
�j�1� from p��3 |Y, �1

�j�1�,�2
�j�1��



(3) Repeat step (2) for j � 1, 2, . . . ,D

Notice the sequence ��j�
j�1

D is a

Markov chain with transition kernel

����j�1�|��j�� � p��3
�j�1�|Y,�1

�j�1�,�2
�j�1��

p��2
�j�1�|Y,�1

�j�1�,�3
�j��

p��1
�j�1�|Y,�2

�j�,�3
�j��



Under quite general conditions, the

realizations from a Markov chain for

D � 
 converge to draws from the

ergodic distribution of the chain

���� satisfying

����j�1�� � �
�k

����j�1�|��j������j��d��j�



Claim: the ergodic distribution of

this chain corresponds to the posterior

distribution:

���� � p��|Y�



Proof:

�
�k

����j�1�|��j������j��d��j�

� �
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� �
�k

p���j�1�,��j�|Y�d��j�

� p���j�1�|Y�



Implication: if we throw out the first

D0 draws (for D0 large), then ��D0�1�,��D0�2�,

. . . ,��D� represent draws from the posterior

distribution p��|Y�.



Checks:

(1) Change � �1� � same answer?

(2) Change D0, D � same answer?

(3) Plot elements of ��j� as function of j

to see if it looks same across blocks.



Example of bad mixing
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Checks:

(4) Calculate autocorrelations of

elements of ��j�

– Note: throwing out observations

does not "cure" the problem

(5) Do formal statistical tests for

stability



Geweke’s diagnostic:

Test whether mean of � i for first 10%

of draws is same as for last 50%.

Repeat for each parameter i.



(1) Calculate mean of parameter i over

first subsample:

q1 � N1
�1 �

j�1
N1 � i

�j�

for say N1 � 0. 1D

(2) Estimate ŝ1 � 2� times spectrum at

frequency 0 over this subsample



(3) Do same for second subsample, e.g.

q2 � N2
�1 �

j�J2�1
D

� i
�j�

for J2 � N2 � 0. 5D

(4) Calculate
q1�q2

ŝ1/N1�ŝ2/N2

d
� N�0, 1�,

e.g., reject stability if exceeds �1. 96



Popular approach to estimate s

(e.g., Dynare):

(a) Divide subsample into 100 blocks

(i.e., block 1 � first 1% of draws)

(b) Calculate mean over each block and

autocovariances of these means

(c) Use Newey-West with 4, 8, or 15 lags

(� 4%, 8%, or 15% of sample) to get ŝ1
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Suppose �s t� t�1
T is an ergodic

K-state Markov chain,

s t � �1,2, . . . , K�



with transition probabilities

pij � Pr�s t � j|s t�1 � i�

�
j�1
K pij � 1 for i � 1, . . . , K

pij � 0 for i, j � 1, . . . , K



The ergodic or unconditional

probabilities satisfy

Pr�s t � j� � �
i�1
K Pr�s t � j, s t�1 � i�

�j � �
i�1
K pij�i



Proposition: Suppose we can find

a set of numbers f1 , f2, . . , fK such that

f j � 0 for j � 1, . . . , K

�
j�1
K f j � 1

f i pij � f jpji

Then f j � �j



Proof: We’re given that

f i pij � f jpji

sum over i:

�
i�1
K f ipij � f j�i�1

K pji � f j

which satisfy definitions of �i ,

�
i�1
K

�ipij � �j



Works also for continuous-valued

Markov chains.

If xt � �k is Markov with

transition kernel p�x,y� (meaning that):

Pr�xt � A|xt�1 � x�

� �
A

p�x, y�dy



then the ergodic density ��y�, which

signifies that

Pr�xt � A� � �
A
��y�dy,

satisfies

��y� � �
�k

p�x, y���x�dx



Proposition: if

f�x� � 0 for all x

�
�k f�x�dx � 1

f�x�p�x,y� � f�y�p�y, x�
for all x,y

then

��x� � f�x�



Goal in Metropolis-Hastings:

We know how to calculate h��x�
(where h may be an unknown constant)

and want to sample from it.

Solution: generate a sample �xt�

from a Markov chain whose ergodic

density is ��x�



How MH works:

We previously generated xt�1 � x
We now generate a candidate

y from some known density q�x,y�
We’ll then set xt � y if ��y�/��x�

is big and otherwise keep xt � x



Let ��x,y� be probability we set

xt � y



If ��x�q�x,y� 	 0, then

��x, y� � min
��y�q�y, x�
��x�q�x,y�

, 1

otherwise

��x,y� � 1



When x � y, the transition kernel of

this chain is q�x,y���x, y�. To show

that ��y� is the ergodic density of

this chain, we must show that



��x���x,y�q�x, y�
� ��y���y,x�q�y, x�

But

��x���x,y�q�x, y�

� ��x�q�x,y�min ��y�q�y,x�
��x�q�x,y� , 1

� min���y�q�y,x�,��x�q�x, y��
� ��y���y,x�q�y, x�



Options for candidate density:

(1) independent q�y,x� � q�y�

e.g., y � N��,�� where � is our

guess of mean of ��y�



Options for candidate density:

(2) random walk

q�y,x� � q�y � x�
e.g.,

q�y,x� � �2���n/2 |�|�1/2


exp���1/2��y � x����1�y � x��


