Problem Set 1
Due Thursday, January 19

1.) Let X be a $(T \times k)$ matrix whose columns are linearly independent, and let $M = I_T - X(X'X)^{-1}X'$. Show that M is symmetric and idempotent. Calculate the eigenvalues and rank of M, and show that it is positive semidefinite.

2.) Consider a regression of y_t on x_t where the first element of x_t is a constant term. The R^2 or coefficient of determination is defined as

$$R^2 = 1 - \sum_{t=1}^{T} \frac{(y_t - \bar{y})^2}{\sum_{t=1}^{T} (y_t - \bar{y})^2}$$

where b is the OLS regression coefficient and \bar{y} is the sample mean. Show that $0 \leq R^2 \leq 1$.

3.) Let P be a nonsingular symmetric $(k_1 \times k_1)$ matrix, Q a nonsingular symmetric $(k_2 \times k_2)$ matrix, and R an arbitrary $(k_1 \times k_2)$ matrix. Verify the following formula for the inverse of a partitioned matrix:

$$
\begin{bmatrix}
P & R \\
R' & Q
\end{bmatrix}^{-1} =
\begin{bmatrix}
W & -WRQ^{-1} \\
-W^{-1}R'W & (Q^{-1} + Q^{-1}R'WRQ^{-1})
\end{bmatrix}
$$

for $W = (P - RQ^{-1}R')^{-1}$.

4.) Consider a regression of y_t on x_t, where we partition the regressors into two groups: $x_t = (x'_{1t}, x'_{2t})'$ where k_1 of the variables are included in the subvector x_{1t} and the remaining k_2 variables are in x_{2t}:

$$y_t = x'_{1t}\beta_1 + x'_{2t}\beta_2 + \varepsilon_t.$$

The usual OLS regression coefficients are of course given by

$$
\begin{bmatrix}
b_1 \\
b_2
\end{bmatrix} = (X'X)^{-1}X'y
$$

for $X = [X_1 \ X_2]$ a $[T \times (k_1 + k_2)]$ matrix and X_i the $(T \times k_i)$ matrix whose tth row is x'_{it}. Use the results from question (3) to show that the OLS estimate b_1 could equivalently be calculated as follows: (a) regress y_t on x_{2t} alone and calculate the residuals ϵ_{2t}, for ϵ_{2t} the tth element of $e_2 = M_2y$ with $M_2 = I_T - X_2(X_2'X_2)^{-1}X_2'$; regress each element of x_{1t} on x_{2t} and calculate the residuals \tilde{x}_{1t}, where \tilde{x}'_{1t} is the tth row of M_2X_1; (c) regress ϵ_{2t} on \tilde{x}_{1t}, to obtain a $(k_1 \times 1)$ vector $\hat{\beta}_1$ that is numerically identical to b_1 given above.
5.) Consider a special case of the previous result when the second explanatory variable is the constant term in the regression, so that $x_{2t} = 1$ for $t = 1, ..., T$ and $k_2 = 1$. Describe in words the interpretation of e_{2t} and \tilde{x}_{1t} for this case.

6.) Suppose you have performed an initial OLS regression of a scalar y_t on a $(k \times 1)$ vector of explanatory variables x_t,

$$y_t = x_t'\beta + \varepsilon_t$$

and obtained the OLS estimates \hat{b}, \hat{s}^2, OLS residuals $\hat{e} = y - X\hat{b}$, and R^2. You are asked to predict the consequences for OLS estimation where you regress y_t not on the original x_t but instead on a linear transformation of the original regressors,

$$x^*_t = Qx_t,$$

where Q is a nonsingular $(k \times k)$ matrix, and you now perform the OLS regression

$$y_t = x^*_t'\beta^* + \varepsilon^*_t.$$

a.) Write the simplest possible formulas for the OLS estimates on the transformed data \hat{b}^*, \hat{s}^2, \hat{e}^*, and R^2 as functions of the original \hat{b}, \hat{s}^2, \hat{e}, and R^2.

b.) As a special case, consider the regression on a constant and a scalar x_t:

$$y_t = \beta_1 + \beta_2 x_t + \varepsilon_t.$$

What happens to the estimated values for \tilde{b}_1 and \tilde{b}_2 if you multiply x_t by 10 and regress

$$y_t = \beta^*_1 + \beta^*_2 x^*_t + \varepsilon^*_t$$

for $x^*_t = 10x_t$? What is the relation between the t-statistic for testing the null hypothesis $\beta_2 = 0$ using the original regression and the t-statistic for testing the null hypothesis $\beta^*_2 = 0$ on the transformed regression?