Problem Set 1 Due Thursday, January 16

1.) Let \mathbf{X} be a $(T \times k)$ matrix whose columns are linearly independent, and let $\mathbf{M} = \mathbf{I}_T - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$. Show that \mathbf{M} is symmetric and idempotent. Calculate the eigenvalues and rank of \mathbf{M} , and show that it is positive semidefinite.

2.) Consider a regression of y_t on \mathbf{x}_t where the first element of \mathbf{x}_t is a constant term. The R^2 or coefficient of determination is defined as

$$R^{2} = 1 - \frac{\sum_{t=1}^{T} (y_{t} - \mathbf{x}_{t}' \mathbf{b})^{2}}{\sum_{t=1}^{T} (y_{t} - \overline{y})^{2}}$$

where **b** is the OLS regression coefficient and \overline{y} is the sample mean. Show that $0 \le R^2 \le 1$.

3.) Let **P** be a nonsingular symmetric $(k_1 \times k_1)$ matrix, **Q** a nonsingular symmetric $(k_2 \times k_2)$ matrix, and **R** an arbitrary $(k_1 \times k_2)$ matrix. Verify the following formula for the inverse of a partitioned matrix:

$$\begin{bmatrix} \mathbf{P} & \mathbf{R} \\ \mathbf{R}' & \mathbf{Q} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{W} & -\mathbf{W}\mathbf{R}\mathbf{Q}^{-1} \\ -\mathbf{Q}^{-1}\mathbf{R}'\mathbf{W} & (\mathbf{Q}^{-1} + \mathbf{Q}^{-1}\mathbf{R}'\mathbf{W}\mathbf{R}\mathbf{Q}^{-1}) \end{bmatrix}$$

for $\mathbf{W} = (\mathbf{P} - \mathbf{R}\mathbf{Q}^{-1}\mathbf{R}')^{-1}$.

4.) Consider a regression of y_t on \mathbf{x}_t , where we partition the regressors into two groups: $\mathbf{x}_t = (\mathbf{x}'_{1t}, \mathbf{x}'_{2t})'$ where k_1 of the variables are included in the subvector \mathbf{x}_{1t} and the remaining k_2 variables are in \mathbf{x}_{2t} :

$$y_{t} = \mathbf{x}_{1t}^{'} \boldsymbol{\beta}_{1} + \mathbf{x}_{2t}^{'} \boldsymbol{\beta}_{2} + \varepsilon_{t}.$$

The usual OLS regression coefficients are given by

$$\left[\begin{array}{c} \mathbf{b}_1\\ \mathbf{b}_2 \end{array}\right] = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

for $\mathbf{X} = [\mathbf{X}_1 \ \mathbf{X}_2]$ a $[T \times (k_1 + k_2)]$ matrix and \mathbf{X}_i the $(T \times k_i)$ matrix whose *t*th row is \mathbf{x}'_{it} . Use the results from question (3) to show that the OLS estimate \mathbf{b}_1 could equivalently be calculated as follows: (a) regress y_t on \mathbf{x}_{2t} alone and calculate the residuals e_{2t} , for e_{2t} the *t*th element of $\mathbf{e}_2 = \mathbf{M}_2 \mathbf{y}$ with $\mathbf{M}_2 = \mathbf{I}_T - \mathbf{X}_2(\mathbf{X}'_2\mathbf{X}_2)^{-1}\mathbf{X}'_2$; regress each element of \mathbf{x}_{1t} on \mathbf{x}_{2t} and calculate the residuals $\mathbf{\tilde{x}}_{1t}$, where $\mathbf{\tilde{x}}'_{1t}$ is the *t*th row of $\mathbf{M}_2\mathbf{X}_1$; (c) regress e_{2t} on $\mathbf{\tilde{x}}_{1t}$, to obtain a $(k_1 \times 1)$ vector $\hat{\boldsymbol{\beta}}_1$ that is numerically identical to \mathbf{b}_1 given above. Econ 220B, Winter 2020

5.) Consider a special case of the previous result when the second explanatory variable is the constant term in the regression, so that $x_{2t} = 1$ for t = 1, ..., T and $k_2 = 1$. Describe in words the interpretation of e_{2t} and $\tilde{\mathbf{x}}_{1t}$ for this case.

6.) Suppose you have performed an initial OLS regression of a scalar y_t on a $(k \times 1)$ vector of explanatory variables \mathbf{x}_t ,

$$y_t = \mathbf{x}_t' \boldsymbol{\beta} + \varepsilon_t$$

and obtained the OLS estimates **b**, s^2 , OLS residuals $\mathbf{e} = \mathbf{y} - \mathbf{X}\mathbf{b}$, and R^2 . You are asked to predict the consequences for OLS estimation where you regress y_t not on the original \mathbf{x}_t but instead on a linear transformation of the original regressors,

$$\mathbf{x}_t^* = \mathbf{Q}\mathbf{x}_t,$$

where **Q** is a nonsingular $(k \times k)$ matrix, and you now perform the OLS regression

$$y_t = \mathbf{x}_t^{*'} \boldsymbol{\beta}^* + \varepsilon_t^*.$$

a.) Write the simplest possible formulas for the OLS estimates on the transformed data \mathbf{b}^* , s^{*2} , \mathbf{e}^* , and R^{*2} as functions of the original \mathbf{b} , s^2 , \mathbf{e} , and R^2 .

b.) As a special case, consider the regression on a constant and a scalar x_t :

$$y_t = \beta_1 + \beta_2 x_t + \varepsilon_t.$$

What happens to the estimated values for b_1 and b_2 if you multiply x_t by 10 and regress

$$y_t = \beta_1^* + \beta_2^* x_t^* + \varepsilon_t^*$$

for $x_t^* = 10x_t$? What is the relation between the *t*-statistic for testing the null hypothesis $\beta_2 = 0$ using the original regression and the *t*-statistic for testing the null hypothesis $\beta_2^* = 0$ on the transformed regression?