Heterogeneity and Unemployment Dynamics (Hie Joo Ahn and James D. Hamilton)

- Theme: Cannot understand unemployment dynamics using representative worker model
- New inflows of individuals who have unusual difficulty finding jobs is key characteristic of economic recessions

Key fact: very different unemployment continuation probabilities

- If someone has been unemployed for only one month, there is a very good chance they will not be unemployed next month
- If someone has been unemployed for 4 months or more, they are extremely likely to still be unemployed next month

It is better to be an average newly unemployed in Great Recession than someone who has been unemployed for more than 4 months in the very best times

Unemployment continuation probabilities (all workers)

Differences in continuation probabilities between newly

 unemployed and long-term unemployed still dramatic when condition on any observable characteristic

Possible explanations

- Genuine duration dependence: The process of being unemployed changed the person (lost human capital, discrimination by employers)
- Dynamic sorting (unobserved heterogeneity): Some people had lower probability of exiting unemployment to begin with and those are the only ones left after 6 months

Illustration of dynamic sorting

What happens when fraction of type L increases?

Data used in the analysis

$U_{t}^{1}=$ number of people newly unemployed in month t (S.A.)
$U_{t}^{2.3}=$ number of people unemployed for 2-3 months
$U_{t}^{4.6}=4-6$ months
$U_{t}^{7.12}=7-12$ months
$U_{t}^{13 .+}=$ more than 1 year
$y_{t}=\left(U_{t}^{1}, U_{t}^{2.3}, U_{t}^{4.6}, U_{t}^{7.12}, U_{t}^{13 .+}\right)^{\prime}$ for $t=1976: \mathrm{M} 1-2013: \mathrm{M} 12$

Unemployment counts by duration

Intuition for identification

What can we learn from historical average $\bar{y}=T^{-1} \sum_{t=1}^{T} y_{t}$?

- Suppose 2 unobserved types and all parameters are constant over time.
- Unemployed person of type L has probability p_{L} of still being unemployed next month.
- Type H has probability p_{H} of still being unemployed next month.
- On average there are w_{L} and w_{H} newly unemployed individuals of each type each month.
$\bar{U}^{1}=w_{L}+w_{H}$
$\bar{U}^{n+1}=w_{L} p_{L}^{n}+w_{H} p_{H}^{n}$

Given observation of \bar{U}^{n} for four different n we can infer average values of $\left(w_{L}, w_{H}, p_{L}, p_{H}\right)$

Sample calculations

For example, to fit historical averages $\bar{U}^{1}, \bar{U}^{2.3}, \bar{U}^{4.6}, \bar{U}^{7.12}$ we would use

$$
\begin{gathered}
w_{H}=2.53 \text { million } \\
w_{L}=0.68 \text { million } \\
p_{L}=0.85 \\
p_{H}=0.36
\end{gathered}
$$

For these data, the unused 5th observation is predicted almost perfectly

predicted value for $\bar{U}^{13 .+}=\sum_{n=13}^{48}\left(w_{L} p_{L}^{n}+w_{H} p_{H}^{n}\right)=614,000$ observed value for $\bar{U}^{13 .+}=636,000$

Model with both heterogeneity and genuine duration dependence

Katz and Meyer (1990) (proportional hazards with positive hazard function)

$$
\begin{gathered}
p_{i}(\tau)=\exp \left\{-\exp \left[x_{i}+d_{\tau}\right]\right\} \\
U^{k+1}=\sum_{i=L, H} w_{i} p_{i}(1) p_{i}(2) \cdots p_{i}(k)
\end{gathered}
$$

If could represent d_{τ} with a single parameter, e.g. $d_{\tau}=\delta(\tau-1)$, we could choose values for the 5 parameters $x_{L}, x_{H}, w_{L}, w_{H}, \delta$ to exactly match the observed values of the five averages $\bar{U}^{1}, \bar{U}^{2.3}, \bar{U}^{4.6} \bar{U}^{7.12}, \bar{U}^{13 .+}$.

Inferred role of GDD is small $(\delta=-0.003)$

Fit of model without GDD to averages since 2007

Similar to earlier value for p_{L} Significantly bigger value for w_{L} \Rightarrow inflows of new type L workers were key in Great Recession.

Allowing for more general genuine duration dependence

Alternatively, if we wanted to use the two subsamples together and assumed a time-invariant function for genuine duration dependence, could estimate for a two-parameter representation of d_{τ}.

- 10 observations (value of five averages across two subsamples)
- 10 unknowns (values of $w_{L}, w_{H}, x_{L}, x_{H}$ for two subsamples plus two parameters for function d_{τ})
- Using full time-series sample can estimate a totally general function for time-invariant GDD or even allow simple time-variation $d_{t, \tau}$

Strategy for using full panel $y_{t}, t=1976:$ M1-2013:M12

(1) Assume driving variables evolve smoothly over time

- $w_{L t}=w_{L, t-1}+\epsilon_{L t}^{w}$
- $w_{H t}=w_{H, t-1}+\epsilon_{H t}^{w}$
- $x_{L t}=x_{L, t-1}+\epsilon_{L t}^{X}$
- $x_{H t}=x_{H, t-1}+\epsilon_{H t}^{X}$

Strategy for using full panel $y_{t}, t=1976:$ M1-2013:M12

(2) Observed variables depend on history of shocks plus measurement error

- $U_{t}^{2.3}=\sum_{i=H, L}\left[w_{i, t-1} P_{i, t}(1)+w_{i, t-2} P_{i, t}(2)\right]+r_{t}^{2.3}$
- $P_{i, t}(j)=p_{i, t-j+1}(1) p_{i, t-j+2}(2) \cdots p_{i, t}(j)$
- $p_{i, t}(\tau)=\exp \left[-\exp \left(x_{i, t}+d_{t, \tau}\right)\right]$

Strategy for using full panel $y_{t}, t=1976: \mathrm{M} 1-2013: \mathrm{M} 12$

(3) Write as nonlinear state-space model

- state vector: current and 47 lags of $\left(w_{L}, w_{H}, x_{L}, x_{H}\right)^{\prime}$
- observation vector: 5 elements of $y_{t}=\left(U_{t}^{1}, U_{t}^{2.3}, U_{t}^{4.6}, U_{t}^{7.12}, U_{t}^{13 .+}\right)^{\prime}$
- with one more observation than needed for the 4 shocks, can allow for completely different duration dependence for all τ if it is constant over time $\left(d_{t, \tau}=d_{\tau}\right)$
- can also allow for simple time variation in $d_{t, \tau}$, e.g., two different functions depending on extension of unemployment insurance

Summary of procedure

With nonlinear state-space model:

- can calculate likelihood function of observed data y_{1}, \ldots, y_{T}
- can maximize likelihood function with respect to population parameters
- variances of 4 shocks to $\left(w_{L}, w_{H}, x_{L}, x_{H}\right)$
- variances of 5 measurement errors
- parameters that characterize the function $d_{t, \tau}$
- can form optimal inference based on the data y_{1}, \ldots, y_{T} about unobserved variables $\left(w_{L}, w_{H}, x_{L}, x_{H}\right)$

Estimated number of newly unemployed workers of each type for each month

Estimated probability that a newly unemployed worker of each type will still be unemployed the following month

Could we corroborate this nonparametrically?

- Let $u_{t}^{4 .+}$ be number of people unemployed 4 months or longer in month t
- According to model, most of these are type L
- $u_{t+3}^{4.6}=$ new inflows into the $4+$ category between $t+1$ and $t+3$
- $u_{t+3}^{4 .+}=p_{t}^{4 .+} u_{t}^{4 .+}+u_{t+3}^{4.6}$
- $p_{t}^{4 .+}$ is the 3 -month continuation probability for the $4 .+$ group
- How much does cube root of $p_{t}^{4 .+}$ differ from model's type L continuation probability?

Benefits of having fully specified dynamic statistical model

- We have a model-implied s-month-ahead forecast of total unemployment U_{t+s} based on observation of $y_{t}, y_{t-1}, \ldots, y_{1}$ for any horizon s
- Variance decomposition: We can break down the mean-squared error of this forecast into parts coming from each of the 4 structural shocks
- Historical decomposition: We can break down the actual historical forecast error for any t and s into contributions coming from each of the 4 structural shocks

Variance decomposition: new inflows of type L workers are most important

Fraction of s-month-ahead MSE in forecasting total unemployment that comes from each shock plotted as a function of s

Historical decomposition of Great Recession: new inflows w_{L} most important

Contribution of each of the 4 shocks to total unemployment during and after the Great Recession

Nonparametric confirmation of interpretation of Great Recession

Nonparametric confirmation of importance of inflows

labor force L_{t}
inflow rate $x_{t} \simeq U_{t}^{1} / L_{t}$
outflow rate $f_{1}=1-p_{t}$
$u_{t+1}=p_{t} u_{t}+u_{t+1}^{1}$
$\Delta f_{t}=c_{f}+\phi_{f f, 1} \Delta f_{t-1}+\cdots+\phi_{f f, 8} \Delta f_{t-8}+\phi_{f x, 1} \Delta x_{t-1}+\cdots+\phi_{f x, 8} \Delta x_{t-8}+\varepsilon_{f t}$
$\Delta x_{t}=c_{x}+\phi_{x f, 1} \Delta f_{t-1}+\cdots+\phi_{x f, 8} \Delta f_{t-8}+\phi_{x x, 1} \Delta x_{t-1}+\cdots+\phi_{x x, 8} \Delta x_{t-8}+\varepsilon_{x t}$.
Variance decomposition: inflows account for 59% of the error forecasting outflows 3 years ahead

Historical decomposition of outflows in bivariate VAR

Contribution to outflows of level of inflows

Nonparametric confirmation of importance of composition of inflows

Add to VAR initial claims for unemployment insurance as percent of labor force.
Now explain 76\% of variance of outflows at 3-year horizon from shocks to level and composition of inflows.

Historical decomposition of outflows in 3-variable VAR

Who are the type L workers?

So far we argued that type L can be identified ex post by fact they're unemployed for long periods.

Can we predict who will be type L based on observable characteristics when they first enter unemployment?

1994-2013 average shares of unemployment by reason

- Green: share in newly unemployed
- Yellow: share in long-term unemployed

Where did the increase in U_{t}^{1} during the Great Recession come from?

March 2008 - March 2009:

- the number of newly unemployed U_{t}^{1} increased by 642,000
- the number of newly unemployed who indicated that permanent separation was the reason increased by 454,000
- $452 / 642=72 \%$ of the increase came from permanent separations

Total number of unemployed type L workers (red) and number of all unemployed workers who gave permanent separation as reason (dashed blue)

Model-based evidence on role of permanent separation

- Ahn (2014) estimated models like this one separately for individuals with same observed characteristic j
- e.g., estimated just using individuals who all gave permanent separation as reason
- identified type L and type H individuals as separate components of the observed total $U_{j t}$

Ahn's estimates of the number of type L individuals giving each separate reason for unemployment

Robustness checks

Broad conclusions of the paper are robust with respect to:

- alternative treatments of 1994 redesign
- just use post 1994 data
- allow GDD to vary with eligibility for unemployment insurance
- allow structural shocks to be contemporaneously correlated
- conceptually view transitions as occurring weekly instead of monthly

Conclusion

Unobserved heterogeneity is crucial for interpreting aggregate unemployment dynamics.

Once this is taken into account, changes in composition of inflows are key driver of recessions.

Involuntary permanent separations are seen to be the most important factor.

