Business cycles and changes in regime

- 1. Motivating examples
- 2. Econometric approaches
- 3. Incorporating into theoretical models

1. Motivating examples

- Many economic series exhibit dramatic breaks:
 - recessions
 - financial panics
 - currency crises
- Questions:
 - how handle econometrically?
 - how incorporate into economic theory?

An example of change in regime

Model of structural change:

$$y_t - \mu_1 = \phi(y_{t-1} - \mu_1) + \varepsilon_t$$
 $t \le t_0$
 $y_t - \mu_2 = \phi(y_{t-1} - \mu_2) + \varepsilon_t$ $t > t_0$

Questions:

- 1) How forecast with this model?
- 2) What caused change at t_0 ?
- 3) What is probability law for $\{y_t\}$?

$$s_t^* = 1$$
 $t = 1, 2, ..., t_0$
 $s_t^* = 2$ $t = t_0 + 1, t_0 + 2, ...$
 $y_t - \mu_{s_t^*} = \phi(y_{t-1} - \mu_{s_{t-1}^*}) + \varepsilon_t$

Need: probability law for s_t^*

Markov chain:

$$P(s_t^* = j | s_{t-1}^* = i, s_{t-2}^* = k, ...)$$

$$= P(s_t^* = j | s_{t-1}^* = i)$$

$$= p_{ij}$$

Transition from 1 to 2 is permanent

$$\Rightarrow p_{21} = 0$$

Economic recessions as changes in regime

```
y_t = \text{real GDP growth in quarter } t
s_t = 1 \text{ when economy is in expansion}
s_t = 2 \text{ when economy is in recession}
y_t = m_{s_t} + \varepsilon_t
\varepsilon_t \sim N(0, \sigma^2)
\text{Prob}(s_t = j | s_{t-1} = i, s_{t-2} = k, \dots, y_{t-1}, y_{t-2}, \dots)
= p_{ij}
```

If s_t is observed, $m_{s_t} \sim AR(1)$

$$m_{s_t} = a + \lambda m_{s_{t-1}} + v_t$$

 $a = p_{21}m_1 + p_{12}m_2$
 $\lambda = p_{11} - p_{21}$

 $v_t \sim$ martingale difference sequence

$$E(m_{s_t}|s_{t-1} = 1) = p_{21}m_1 + p_{12}m_2 + (p_{11} - p_{21})m_1$$

$$= p_{12}m_2 + p_{11}m_1 \quad \checkmark$$

$$E(m_{s_t}|s_{t-1} = 2) = p_{21}m_1 + p_{12}m_2 + (p_{11} - p_{21})m_2$$

$$= p_{21}m_1 + (p_{12} + p_{11} - p_{21})m_2$$

$$= p_{21}m_1 + (1 - p_{21})m_2$$

$$= p_{21}m_1 + p_{22}m_2 \quad \checkmark$$

If only $\Omega_t = \{y_t, y_{t-1}, \dots, y_1\}$ is observed, $\operatorname{Prob}(s_t = 1 | \Omega_t)$ is nonlinear in Ω_t . Given $\operatorname{Prob}(s_{t-1} = j | \Omega_{t-1})$, can calculate $\operatorname{Prob}(s_t = j | \Omega_t)$ (and likelihood $f(y_t | \Omega_{t-1})$) recursively:

$$\begin{aligned} \mathsf{Prob}(s_{t} = j | \Omega_{t-1}) &= p_{1j} \mathsf{Prob}(s_{t-1} = 1 | \Omega_{t-1}) \\ &+ p_{2j} \mathsf{Prob}(s_{t-1} = 2 | \Omega_{t-1}) \\ f(y_{t} | s_{t} = i, \Omega_{t-1}) &= \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{(y_{t} - m_{i})^{2}}{2\sigma^{2}}\right) \\ f(y_{t} | \Omega_{t-1}) &= \sum_{i=1}^{2} \mathsf{Prob}(s_{t} = i | \Omega_{t-1}) f(y_{t} | s_{t} = i, \Omega_{t-1}) \\ \mathsf{Prob}(s_{t} = j | \Omega_{t}) &= \frac{\mathsf{Prob}(s_{t} = j | \Omega_{t-1}) f(y_{t} | s_{t} = j, \Omega_{t-1})}{f(y_{t} | \Omega_{t-1})} \end{aligned}$$

Could choose population parameters $\theta = (m_1, m_2, \sigma, p_{11}, p_{22})'$ by maximizing likelihood.

Plot of Prob($s_t = 2|\Omega_{t+1}, \hat{\theta}_{t+1}$) with simulated real-time inference (historical real-time data sets from ALFRED) through 2005.

Plot of actual real-time inference (announced publicly at each date t+1) since 2005.

GDP-based Recession indicator index

Date of announcement	Announcement
Simulated (through June 2005)	
May 1970	recession began 1969:Q2
Aug 1971	recession ended 1970:Q4
May 1974	recession began 1973:Q4
Feb 1976	recession ended 1975:Q1
Nov 1979	recession began 1979:Q2
May 1981	recession ended 1980:Q2
Feb 1982	recession began 1981:Q2
Aug 1983	recession ended 1982:Q4
Feb 1991	recession began 1989:Q4
Feb 1993	recession ended 1991:Q4
Feb 2002	recession began 2001:Q1
Aug 2002	recession ended 2001:Q3
Actual real time (since July 2005)	
Jan 30, 2009	recession began 2007:Q4
Apr 30, 2010	recession ended 2009:Q2

2. Econometric treatment of changes in regime

- 2.1. Multivariate or non-Gaussian processes and multiple regimes
- 2.2. Time-varying transition probabilities
- 2.3. Processes that depend on current and past regimes
- 2.4. Latent-variable models with changes in regime
- 2.5. Analysis using Bayesian methods
- 2.6. Selecting the number of regimes
- 2.7. Deterministic breaks
- 2.8. Chib's multiple change-point model
- 2.9. Smooth transition models

2.1. Multivariate or non-Gaussian processes and multiple regimes

Previous recursion used

$$f(y_t|\Omega_{t-1}) = \sum_{i=1}^{2} \text{Prob}(s_t = i|\Omega_{t-1}) f(y_t|s_t = i,\Omega_{t-1})$$

for $f(y_t|s_t = i)$ the $N(m_i, \sigma^2)$ density.

But works same for $f(\mathbf{y}_t|s_t = i, \Omega_{t-1})$

any multivariate, non-Gaussian density.

Krolzig (1997) switching VAR:

$$f(\mathbf{y}_{t}|\Omega_{t-1};\boldsymbol{\theta}_{j}) = \frac{1}{(2\pi)^{n/2}|\Sigma_{j}|^{1/2}} \times \exp\left[-(1/2)(\mathbf{y}_{t}-\boldsymbol{\mu}_{jt})'\boldsymbol{\Sigma}_{j}^{-1}(\mathbf{y}_{t}-\boldsymbol{\mu}_{jt})\right]$$

$$\boldsymbol{\mu}_{it} = \mathbf{c}_{j} + \boldsymbol{\Phi}_{1j}\mathbf{y}_{t-1} + \boldsymbol{\Phi}_{2j}\mathbf{y}_{t-2} + \cdots + \boldsymbol{\Phi}_{rj}\mathbf{y}_{t-r}.$$

Dueker (1997): degrees of freedom on Student *t* change with regime.

In general, if s_t is a Markov chain taking on one of the values $s_t = 1, 2, ..., N$, let $p_{ij} = P(s_t = j | s_{t-1} = i)$. Collect in matrix $\mathbf{P} = [p_{ji}]$

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{21} & \cdots & p_{N1} \\ p_{12} & p_{22} & \cdots & p_{N2} \\ \vdots & \vdots & \cdots & \vdots \\ p_{1N} & p_{2N} & \cdots & p_{NN} \end{bmatrix}$$

Let $\xi_t = \mathbf{e}_i$ (the *i*th column of \mathbf{I}_N) when $s_t = i$. Then

$$E(\xi_{t+1}|\xi_t = \mathbf{e}_i) = \begin{bmatrix} P(s_{t+1} = 1|s_t = i) \\ P(s_{t+1} = 2|s_t = i) \\ \vdots \\ P(s_{t+1} = N|s_t = i) \end{bmatrix}$$

 $= \mathbf{Pe}_i$

 $=\mathbf{P}\mathbf{\xi}_{t}$

$$\boldsymbol{\xi}_t = \mathbf{P}\boldsymbol{\xi}_{t-1} + \mathbf{v}_t$$

 $v_t \sim$ martingale difference sequence. In other words, *N*-state Markov chain can be represented using VAR(1). Suppose we had a set of observations $\Omega_t = \{\mathbf{y}_t, \mathbf{y}_{t-1}, \dots, \mathbf{y}_1\}$ that gave us an imperfect inference about s_t summarized as

$$\widehat{\boldsymbol{\xi}}_{t|t} = E(\boldsymbol{\xi}_t|\Omega_t) = egin{bmatrix} P(s_t = 1|\Omega_t) \\ P(s_t = 2|\Omega_t) \\ \vdots \\ P(s_t = N|\Omega_t) \end{bmatrix}$$

Then

$$\widehat{\boldsymbol{\xi}}_{t+1|t} = E(\boldsymbol{\xi}_{t+1}|\Omega_t) = \mathbf{P}\widehat{\boldsymbol{\xi}}_{t|t}$$

(e.g., row j states that

$$P(s_{t+1} = j|\Omega_t)$$

$$= p_{1j}P(s_t = 1|\Omega_t) + p_{2j}P(s_t = 2|\Omega_t)$$

$$+\dots + p_{Nj}P(s_t = N|\Omega_t)$$

Collect the densities that might be associated with each of the N states in an $(N \times 1)$ vector

$$egin{aligned} egin{aligned} p(y_t|s_t = 1,\Omega_{t-1}) \ p(y_t|s_t = 2,\Omega_{t-1}) \ dots \ p(y_t|s_t = N,\Omega_{t-1}) \end{aligned}$$

Recall that

$$\mathbf{P}\widehat{\mathbf{\xi}}_{t-1|t-1} = egin{bmatrix} P(s_t = 1|\Omega_{t-1}) \ P(s_t = 2|\Omega_{t-1}) \ dots \ P(s_t = N|\Omega_{t-1}) \end{bmatrix}$$

Thus

$$\eta_{t} \odot \mathbf{P}\widehat{\boldsymbol{\xi}}_{t-1|t-1} = \begin{bmatrix}
p(y_{t}|s_{t} = 1, \Omega_{t-1})P(s_{t} = 1|\Omega_{t-1}) \\
p(y_{t}|s_{t} = 2, \Omega_{t-1})P(s_{t} = 2|\Omega_{t-1}) \\
\vdots \\
p(y_{t}|s_{t} = N, \Omega_{t-1})P(s_{t} = N|\Omega_{t-1})
\end{bmatrix}$$

Summing the elements of this vector gives

$$\mathbf{1}'(\mathbf{\eta}_t \odot \mathbf{P}\widehat{\boldsymbol{\xi}}_{t-1|t-1})$$

$$= \sum_{j=1}^N p(y_t, s_t = j | \Omega_{t-1})$$

$$= p(y_t | \Omega_{t-1}),$$

the conditional likelihood of th observation.

The result of dividing the jth element of $(\eta_t \odot \mathbf{P} \hat{\boldsymbol{\xi}}_{t-1|t-1})$ by the conditional likelihood is

$$\frac{p(y_t, s_t = j | \Omega_{t-1})}{p(y_t | \Omega_{t-1})} = P(s_t = j | y_t, \Omega_{t-1})$$

$$\frac{(\mathbf{\eta}_t \odot \mathbf{P}\widehat{\boldsymbol{\xi}}_{t-1|t-1})}{\mathbf{1}'(\mathbf{\eta}_t \odot \mathbf{P}\widehat{\boldsymbol{\xi}}_{t-1|t-1})} = \widehat{\boldsymbol{\xi}}_{t|t}$$

$$\frac{(\mathbf{\eta}_t \odot \mathbf{P}\widehat{\boldsymbol{\xi}}_{t-1|t-1})}{\mathbf{1}'(\mathbf{\eta}_t \odot \mathbf{P}\widehat{\boldsymbol{\xi}}_{t-1|t-1})} = \widehat{\boldsymbol{\xi}}_{t|t}$$

Iterative algorithm similar to Kalman filter: Input for step *t*:

$$\widehat{oldsymbol{\xi}}_{t-1|t-1}$$

(an $N \times 1$ vector whose jth element is

$$P(s_t = j | y_t, y_{t-1}, ..., y_1)).$$

Output for step *t*:

$$\widehat{m{\xi}}_{t|t}$$

Options for initial value $\hat{\xi}_{0|0}$:

(1) If Markov chain is ergodic, use ergodic probabilities

$$\widehat{\boldsymbol{\xi}}_{0|0} = (\mathbf{A}'\mathbf{A})^{-1}\mathbf{A}'\mathbf{e}_{N+1}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{I}_N - \mathbf{P} \\ \mathbf{1}' \end{bmatrix}$$

(2) Set $\widehat{\xi}_{0|0} = \rho$, a vector of free parameters to be estimated by maximum likelihood or Bayesian methods along with the other parameters.

- (3) Set $\hat{\xi}_{0|0} = N^{-1} \mathbf{1}$.
- (4) Set $\widehat{\xi}_{0|0}$ based on prior beliefs.

Above assumed we knew parameters θ appearing in $\mathbf{\eta}_t = [p(y_t|s_t = j, \Omega_{t-1}; \theta]_{j=1}^N$ (in first example $\theta = (\phi, \mu_1, \mu_2, \sigma^2)'$) and \mathbf{p} appearing in \mathbf{P} (in this case $\mathbf{p} = (p_{11}, p_{22})'$).

However, as byproduct of step t of iteration we ended up calculating $p(y_t|\Omega_{t-1};\theta,\mathbf{p})$ and so we've calculated log likelihood

$$\mathcal{L}(\boldsymbol{\theta}, \mathbf{p}) = \sum_{t=1}^{T} \log p(y_t | \Omega_{t-1}; \boldsymbol{\theta}, \mathbf{p})$$

which can be maximized numerically with respect to θ and \mathbf{p} by numerical methods.

Note— during numerical search we'd want to be choosing λ_{11} and λ_{22} rather than p_{11} and p_{22} where

$$p_{11} = \frac{\lambda_{11}^2}{1 + \lambda_{11}^2}$$

$$p_{22} = \frac{\lambda_{22}^2}{1 + \lambda_{22}^2}$$

General case:

$$egin{aligned} oldsymbol{\eta}_t &= egin{bmatrix} p(\mathbf{y}_t | s_t = 1, \Omega_{t-1}) \ p(\mathbf{y}_t | s_t = 2, \Omega_{t-1}) \ & dots \ p(\mathbf{y}_t | s_t = N, \Omega_{t-1}) \end{bmatrix} \end{aligned}$$

$$p(\mathbf{y}_{t}|\Omega_{t-1}) = \mathbf{1}'(\mathbf{\eta}_{t} \odot \mathbf{P}\widehat{\boldsymbol{\xi}}_{t-1|t-1})$$

$$\mathcal{L}(\mathbf{y}_{1}, \dots, \mathbf{y}_{T}; \boldsymbol{\theta}) = \sum_{t=1}^{T} \log p(\mathbf{y}_{t}|\Omega_{t-1})$$

2.2. Time-varying transition probabilities

Simple recursion used

$$Prob(s_t = j | \Omega_{t-1}) = p_{1j} Prob(s_{t-1} = 1 | \Omega_{t-1}) + p_{2j} Prob(s_{t-1} = 2 | \Omega_{t-1}).$$

But works the same when p_{1j} is replaced by any known function $p_{1j}(\Omega_{t-1})$.

2.3. Processes that depend on current and past regimes

Simple example assumed density $f(\mathbf{y}_t|s_t,\Omega_{t-1})$ depends only on current regime s_t .

If instead depends on current and past regimes can simply stack regimes as in companion form for VAR(p).

$$s_{t}^{*} = \begin{cases} 1 & \text{when } s_{t} = 1 \text{ and } s_{t-1} = 1 \\ 2 & \text{when } s_{t} = 2 \text{ and } s_{t-1} = 1 \\ 3 & \text{when } s_{t} = 1 \text{ and } s_{t-1} = 2 \\ 4 & \text{when } s_{t} = 2 \text{ and } s_{t-1} = 2 \end{cases}$$

$$Prob(s_{t}^{*} = j | s_{t-1}^{*} = i) = p_{ij}^{*} \quad i, j = 1, \dots, 4.$$

2.4. Latent variable models with changes in regime

$$F_{t} = \alpha_{s_{t}} + \phi F_{t-1} + \eta_{t}$$

$$\mathbf{y}_{t} = \mathbf{\psi} F_{t} + \mathbf{q}_{t}$$

$$q_{jt} = \phi_{j} q_{j,t-1} + v_{jt}$$

- Can approximate likelihood function and optimal inference
 - Kim (1994)
- Useful for real-time inference
 - Chauvet and Hamilton (2006)
 - Chauvet and Piger (2008)
 - Camacho and Perez-Quiros (forthcoming)

2.5. Analysis using Bayesian methods

- Gibbs sampler
 - Albert and Chib (1993)
 - Kim and Nelson (1999)
- Time-varying transition probabilities
 - Filardo and Gordon (1998)
- Label-switching problem
 Frühwirth-Schnatter (2001)

2.6. Selecting the number of regimes

Smith, Naik and Tsai (2006):

$$y_t = \mathbf{x}_t' \mathbf{\beta}_{s_t} + \sigma_{s_t} \mathbf{\varepsilon}_t$$
 $\hat{T}_i = \sum_{t=1}^T \text{Prob}(s_t = i | \Omega_T; \hat{\mathbf{\theta}}_{MLE})$
 $MSC = -2\mathcal{L}(\hat{\mathbf{\theta}}_{MLE}) + \sum_{i=1}^N \frac{\hat{T}_i(\hat{T}_i + Nk)}{\hat{T}_{i-Nk-2}}$

- Calculate nonstandard properties of likelihood ratio test
 - Hansen (1992)
 - Garcia (1998)
- Use general specification tests of null of N regimes that have power against N +1
 - Hamilton (1996)
 - Carrasco, Hu and Ploberger (2014)

2.7. Deterministic breaks

- If breaks are deterministic, test as in Bai and Perron (1998, 2003)
- How forecast?
 - Pesaran and Timmermann (2007)

2.8. Chib's multiple change-point model

$$\mathbf{P} = \begin{bmatrix} p_{11} & 0 & 0 & \cdots & 0 & 0 \\ 1 - p_{11} & p_{22} & 0 & \cdots & 0 & 0 \\ 0 & 1 - p_{22} & p_{33} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & p_{N-1,N-1} & 0 \\ 0 & 0 & 0 & \cdots & 1 - p_{N-1,N-1} & 1 \end{bmatrix}$$

2.9. Smooth transition models

Teräsvirta (2004)

$$y_{t} = \frac{\exp[-\gamma(z_{t-1}-c)]}{1+\exp[-\gamma(z_{t-1}-c)]} \mathbf{x}'_{t-1} \mathbf{\beta}_{1} + \frac{1}{1+\exp[-\gamma(z_{t-1}-c)]} \mathbf{x}'_{t-1} \mathbf{\beta}_{2} + u_{t}$$

By contrast, in Markov-switching regression the switching weights $Prob(s_{t-1} = i | \Omega_{t-1})$ depend on $y_{t-1}, y_{t-2}, \dots, y_1$ not just z_{t-1} .

3. Economic theory and changes in regime

- 3.1. Closed-form solution of DSGE's and asset-pricing implications
- 3.2. Approximating the solution to DSGE's using perturbation methods
- 3.3. Linear rational expectations models with changes in regime
- 3.4. Multiple equilibria
- 3.5. Tipping points and financial crises
- 3.6. Currency crises and sovereign debt crises
- 3.7. Changes in policy as the source of changes in regime

3.1. Closed-form solution of DSGE's and asset-pricing implications

Lucas tree model with CRRA utility:

 P_t = price of stock

 $D_t = \text{dividend}$

 γ = coefficient of relative risk aversion

$$P_t = D_t^{-\gamma} \sum_{k=1}^{\infty} \beta^k E_t D_{t+k}^{(1+\gamma)}$$

Cecchetti, Lam and Mark (1990):

$$\log D_t - \log D_{t-1} = m_{s_t} + \varepsilon_t$$

$$P_t = \rho_{s_t} D_t$$

- Portfolio allocation
- Ang and Bekaert (2002a); Guidolin and Timmermann (2008)
- Financial implications of rare-event risk
 - Evans (1996); Barro (2006)
- Option pricing
 - Elliott, Chan and Siu (2005)
- Term structure of interest rates
- Ang and Bekaert (2002b); Bansal and Zhou (2002)

3.2. Approximating the solution to DSGE's using perturbation methods

$$E_t \mathbf{a}(\mathbf{y}_{t+1}, \mathbf{y}_t, \mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{\varepsilon}_{t+1}, \mathbf{\varepsilon}_t, \mathbf{\theta}_{s_{t+1}}, \mathbf{\theta}_{s_t}) = \mathbf{0}$$

 $\mathbf{y}_t = \text{control variables}$

 \mathbf{x}_t = predetermined variables

 ε_t = innovations to exogenous variables

 s_t follows an N-state Markov chain

Cecchetti, Lam and Mark:

$$y_t = P_t/D_t$$
 $x_t = \ln(D_t/D_{t-1})$
 $\theta_{S_t} = m_{S_t}$

In general we seek solutions of the form

$$\mathbf{y}_t = \mathbf{\rho}_{s_t}(\mathbf{x}_{t-1}, \mathbf{\varepsilon}_t)$$

$$\mathbf{x}_t = \mathbf{h}_{s_t}(\mathbf{x}_{t-1}, \mathbf{\varepsilon}_t)$$

Foerster, et. al. (2014):

Sequence of economies indexed by χ

 $\chi \to 0 \Rightarrow$ deterministic steady state

 $\chi \rightarrow 1 \Rightarrow$ previous solution

$$\mathbf{y}_t = \mathbf{\rho}_{s_t}(\mathbf{x}_{t-1}, \mathbf{\varepsilon}_t, \chi)$$

$$\mathbf{x}_t = \mathbf{h}_{s_t}(\mathbf{x}_{t-1}, \mathbf{\varepsilon}_t, \chi)$$

 $\mathbf{x}^*, \mathbf{y}^*$ are steady-state solution when $\chi = 0$, $\mathbf{\varepsilon}_t = \mathbf{0}$, $\mathbf{\theta}_{s_t} = \mathbf{\theta}^* = \text{ergodic}$ value from Markov chain.

$$\mathbf{y}_{t} = \mathbf{y}^{*} + \mathbf{R}_{s_{t}}^{x}(\mathbf{x}_{t-1} - \mathbf{x}^{*}) + \mathbf{R}_{s_{t}}^{\varepsilon} \mathbf{\varepsilon}_{t} + \mathbf{R}_{s_{t}}^{\chi}$$
$$\mathbf{x}_{t} = \mathbf{x}^{*} + \mathbf{H}_{s_{t}}^{x}(\mathbf{x}_{t-1} - \mathbf{x}^{*}) + \mathbf{H}_{s_{t}}^{\varepsilon} \mathbf{\varepsilon}_{t} + \mathbf{H}_{s_{t}}^{\chi}$$

3.3. Linear rational expectations models with changes in regime

$$\mathbf{A}_{s_t} E(\mathbf{y}_{t+1} | \Omega_t, s_t, s_{t-1}, \dots, s_1) = \mathbf{d}_{s_t} + \mathbf{B}_{s_t} \mathbf{y}_t + \mathbf{C}_{s_t} \mathbf{x}_t$$
 $\mathbf{A}_j = (n_y \times n_y)$ matrix of parameters
when $s_t = j$.

Davig and Leeper (2007): Let \mathbf{y}_{jt} = value of \mathbf{y}_{t} when $s_{t} = j$

$$\mathbf{Y}_{t} = \begin{bmatrix} \mathbf{y}_{1t} \\ (n_{y} \times 1) \\ \vdots \\ \mathbf{y}_{Nt} \\ (n_{y} \times 1) \end{bmatrix}$$

$$E(\mathbf{y}_{t+1}|s_t = i, \Omega_t) = \sum_{j=1}^{N} E(\mathbf{y}_{t+1}|s_{t+1} = j, s_t = i, \Omega_t) p_{ij}$$

Hence when $s_t = i$,

$$\mathbf{A}_{s_t}E(\mathbf{y}_{t+1}|s_t,\Omega_t) = (\mathbf{p}_i' \otimes \mathbf{A}_i)E(\mathbf{Y}_{t+1}|\mathbf{Y}_t)$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{p}_{1}^{'} \otimes \mathbf{A}_{1} \\ (1 \times N) & (n_{y} \times n_{y}) \end{bmatrix} \qquad \mathbf{d} = \begin{bmatrix} \mathbf{d}_{1} \\ (n_{y} \times 1) \\ \vdots \\ \mathbf{p}_{N}^{'} \otimes \mathbf{A}_{N} \\ (1 \times N) & (n_{y} \times n_{y}) \end{bmatrix}$$

$$\mathbf{B}_{(Nn_{y}\times Nn_{y})} = \begin{bmatrix} \mathbf{B}_{1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{B}_{2} & \cdots & \mathbf{0} \\ \vdots & \vdots & \cdots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{B}_{N} \end{bmatrix} \qquad \mathbf{C}_{(Nn_{y}\times n_{x})} = \begin{bmatrix} \mathbf{C}_{1} \\ (n_{y}\times n_{x}) \\ \vdots \\ \mathbf{C}_{N} \\ (n_{y}\times n_{x}) \end{bmatrix}$$

Consider non-regime-changing system

$$\mathbf{A}E(\mathbf{Y}_{t+1}|\mathbf{Y}_t) = \mathbf{d} + \mathbf{B}\mathbf{Y}_t + \mathbf{C}\mathbf{x}_t$$

If we can find a stable solution of the form

$$\mathbf{Y}_{t} = \mathbf{h} + \mathbf{H} \mathbf{x}_{t}$$

$$(Nn_{y} \times 1) \quad (Nn_{y} \times 1) \quad (Nn_{y} \times n_{x})_{(n_{x} \times 1)}$$

then the ith block

$$\mathbf{y}_{t} = \mathbf{h}_{s_{t}} + \mathbf{H}_{s_{t}} \mathbf{x}_{t}$$

$$(n_{y} \times 1) \quad (n_{y} \times 1) \quad (n_{y} \times n_{x})(n_{x} \times 1)$$

is a stable solution to our original equation of interest.

- However, even if we find a unique stable solution to the invariant system, there may be other stable solutions to the original system
 - Farmer, Waggoner, and Zha (2010)

3.4. Multiple equilibria

- Multiplicity of stable equilibria could itself be of interest
- Coordination externalities (Cooper and John, 1988; Cooper, 1994)
- Equilibria indexed by expectations (Kurz and Motolese, 2001)
- Regime-switching model could describe transitions between equilibria
 - Kirman (1993); Chamley (1999)

- Stock market bubbles
 - Hall, Psaradakis and Sola (1999)
- Difficult to distinguish from unobserved fundamentals
- Hamilton (1985); Driffill and Sola (1998); Gürkaynak (2008)

3.5. Tipping points and financial crises

- In other models, there is a unique equilibrium, but small change in fundamentals can cause big change in outcome
- Acemoglu and Scott (1997); Moore and Schaller (2002); Guo, Miao, and Morelle (2005); Veldkamp (2005); Startz (1998); Hong, Stein, and Yu (2007); Branch and Evans (2010)
- Financial crises
- Brunnermeier and Sannikov (2014); Hamilton (2005); Asea and Blomberg (1998); Hubrich and Tetlow (2013)

3.6. Currency crises and sovereign debt crises

- Currency crises
- Jeanne and Masson (2000); Peria (2002); Cerra and Saxena (2005)
- Sovereign debt crises
- Greenlaw, et. al. (2013); Davig, Leeper and Walker (2011); Bi (2012)

3.7. Changes in policy as the source of changes in regime

- Monetary policy: hawks vs. doves
 Owyang and Ramey (2004); Schorfheide (2005); Liu, Waggoner, and Zha (2011); Bianchi (2013)
- Unsustainable fiscal policy and inflation Ruge-Murcia (1995, 1999)