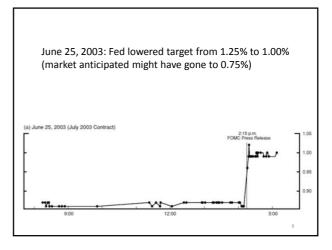

Forward guidance

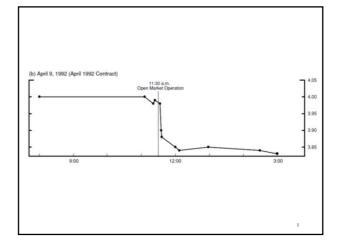
- A. A two-dimensional characterization of monetary shocks (Gürkynak, Sack, and Swanson, 2005)
- B. Odyssean versus Delphic foreign guidance (Campbell et al., 2012)
- C. A 3-dimensional characterization of monetary shocks (Bauer, 2015)

Fed funds target during 2004



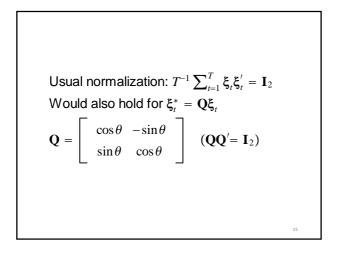
• FOMC Dec 9, 2003 meeting statement:

- "... However, with inflation quite low and resource use slack, the Committee believes that policy accommodation can be maintained for a considerable period."
- FOMC Jan 28, 2004 meeting statement:
 - "... With inflation quite low and resource use slack, the Committee believes that it can be patient in removing its policy accommodation."

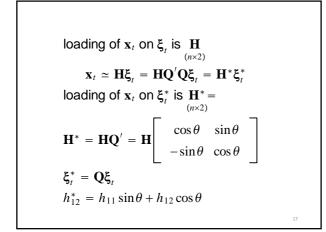

	Jan_27	Jan_28
Jan FF	0.995	0.995
Mar FF	1.005	1.01
Aug FF	1.185	1.27
2y Treasury	1.70	1.87
5 yr Treasury	3.07	3.22

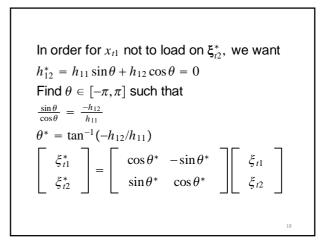
- Gürkaynak, Sack and Swanson (2005) focused on narrow window 10 minutes before to 20 minutes after a major Fed communication
- In recent data communication took the form of a statement issued at the close of FOMC meeting

• E.g., if Fed added reserves when the rate was below its previous target, market correctly inferred that Fed had lowered its target.

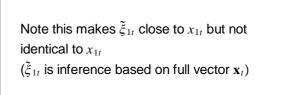


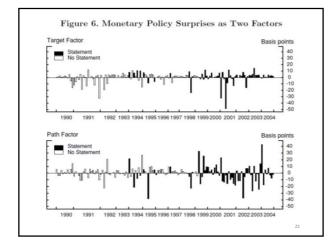
Collected observations on j = 1, ..., n changes in the price of n = 11 different assets in 30-minute interval around communication for t = 1, ..., T = 138 different communications. x_{t1} = Kuttner-adjusted change in current-month fed funds futures contract x_{t2} = change in 3-month-ahead fed funds futures Also change in 2-, 3-, and 4-quarter-ahead Eurodollar futures, 3m, 6m, 2y, 5y, 6y Treasury yields and S&P 500


$\hat{\mathbf{\Omega}}_{(n\times n)}$ row *i*, col *j* $\hat{\sigma}_{ij} = T^{-1} \sum (x_{it} - \bar{x}_i)(x_{jt} - \bar{x}_j)$ Factor structure: $\mathbf{\Omega} = \mathbf{\Lambda} \mathbf{\Lambda} \mathbf{\Lambda}' + \mathbf{\Sigma} = \mathbf{\Omega}(\mathbf{\theta})$ $\mathbf{\Sigma} \text{ diagonal}$ $\mathbf{\theta} = (\text{vec}(\mathbf{\Lambda})', \text{vec}(\text{diag}(\mathbf{\Sigma}))')'$ $(nr+n\times 1)$


Use minimum chi-square to test for number of factors r $T^{1/2}[\operatorname{vech}(\hat{\Omega}) - \operatorname{vech}(\Omega)] \xrightarrow{L} N(0, \mathbf{V})$ Element of \mathbf{V} corresponding to covariance between $\hat{\sigma}_{ij}$ and $\hat{\sigma}_{\ell m}$ can be estimated as $\hat{v}_{ij} = \hat{\sigma}_{i\ell}\hat{\sigma}_{jm} + \hat{\sigma}_{im}\hat{\sigma}_{j\ell}$ (Hamilton 1994, p. 301). GSS instead use $\hat{v}_{ij} = T^{-1}\sum_{t=1}^{T} \{[(x_{ti} - \bar{x}_i)(x_{tj} - \bar{x}_j) - \hat{\sigma}_{ij}] \times [(x_{t\ell} - \bar{x}_{\ell})(x_{tm} - \bar{x}_m) - \hat{\sigma}_{\ell m}]$

Minimum chi square: $\min_{\boldsymbol{\theta}} T[\operatorname{vech}(\hat{\boldsymbol{\Omega}}) - \operatorname{vech}(\boldsymbol{\Omega}(\boldsymbol{\theta}))]' \hat{\boldsymbol{V}}^{-1} \times \\ [\operatorname{vech}(\hat{\boldsymbol{\Omega}}) - \operatorname{vech}(\boldsymbol{\Omega}(\boldsymbol{\theta}))] \\ \text{minimum value achieved is asymptotically} \\ \chi^2(q) \text{ for } q = n(n+1)/2 - (nr+n) + r(r-1)/2 \\ (\text{last term from } r(r-1)/2 \text{ possible rotations} \\ \text{of } \boldsymbol{\Lambda})$ Result: reject H_0 : r = 1fail to reject H'_0 : r = 2Conclusion: monetary policy surprises are a 2-dimensional object. Can estimate space spanned by monetary policy surprises by $\xi_{1t}, \xi_{2t} =$ first two principal components of \mathbf{x}_t Useful alternative normalization: $\xi_t^* = \mathbf{Q}\xi_t$ where ξ_{2t}^* has no effect on x_{1t} and ξ_{2t}^* is uncorrelated with ξ_{1t}^*




x_{t1} = Kuttner-adjusted change in current-month
fed funds futures
= conventional measure of monetary policy
h_{11} = first element of first eigenvector of $\hat{\Omega}$
= loading of x_{t1} on ξ_{t1}
h_{12} = first element of second eigenvector of $\hat{\Omega}$
= loading of x_{t1} on ξ_{t2}
16

Can further normalize so that $h_{11}^* = 1$ $\tilde{\xi}_{1t} = \lambda \xi_{1t}^*$ (one-unit shock to $\tilde{\xi}_{1t}$ raises fed funds target by one basis point) Normalize $\tilde{\xi}_{2t}$ so that 1-year eurodollar futures increases by 0.55 bp (= response of 1-year eurodollar to $\tilde{\xi}_{1t}$) GSS call $\tilde{\xi}_{1t}$ the "target factor" and $\tilde{\xi}_{2t}$ the "path factor"

	One Factor				arget and Path Factors Two Factors		
	Constant (std. err.)	Target Factor (std. err.)	R^2	Constant (std. err.)	Target Factor (std. err.)	Path Factor (std. err.)	R^2
MP Surprise	-0.021*** (0.003)	1.000*** (0.047)	.91	-0.021*** (0.003)	1.000*** (0.048)	0.001 (0.026)	.91
One-Year-Ahead Eurodollar Future	-0.018*** (0.006)	0.555 (0.076)	.36	-0.017 (0.001)	0.551 (0.017)	0.551 (0.014)	.98
S&P 500	-0.008 (0.041)	-4.283*** (1.083)	.37	-0.008 (0.040)	-4.283*** (1.144)	-0.966 (0.594)	.40
Two-Year Note	-0.011** (0.005)	0.485*** (0.080)	.41	-0.011^{***} (0.002)	0.482*** (0.032)	0.411*** (0.023)	.94
Five-Year Note	-0.006 (0.005)	0.279*** (0.078)	.19	-0.006^{**} (0.002)	0.276*** (0.044)	0.369*** (0.035)	.80
Ten-Year Note	-0.004 (0.004)	0.130** (0.059)	.08	-0.004^{*} (0.002)	0.128*** (0.039)	0.283*** (0.025)	.74
Five-Year Forward Rate Five Years Ahead	0.001 (0.003)	-0.098** (0.049)	.06	$\begin{pmatrix} 0.001 \\ (0.003) \end{pmatrix}$	-0.099** (0.047)	0.157*** (0.028)	.34

B. Odyssean versus Delphic foreign guidance (Campbell et al., 2012)

- 2-year rate jumped 17 bp on Jan 28, 2004 when Fed replaced
 - "policy accommodation can be maintained for a considerable period"
- with
 - "the Committee believes that it can be patient in removing its policy accommodation."

Is this Odyssean? Fed is promising to raise rates soon

- Or is it Delphic?
 - Fed is predicting it is going to raise rates soon
- If Delphic
 - Is Fed predicting its future policy shock?
 - Or is Fed passing along its superior information about the economy?

- Campbell, et al. studied correlation between GSS "path" factor in 30-minute interval around FOMC statement and month-to-month change in Blue Chip forecast
- A statement that increased interest rates was associated with market expectations of increased inflation and decreased unemployment
- Interpretation: typically we observe Delphic component (Fed has superior information about economy)

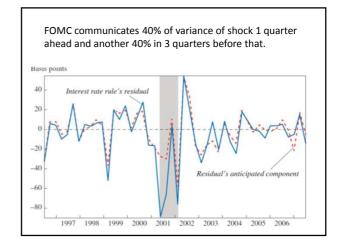
Foreast	February 1990-June 2007 sample			February 1994-June 2007 sample			
	Target factor	Path factor	Adjusted R ¹	Target factor	Path factor	Adjusted b	
Unemployment rate							
Current quarter	-0.21***	-0.08	0.07	-0.01	-0.08	0.01	
	(0.08)	(0.06)		(0.08)	(0.07)		
Next quarter	-0.18**	-0.12	0.05	0.07	-0.16**	0.03	
	(0.09)	(0.08)		(0.10)	(0.08)		
2 quarters hence	-0.27***	-0.13*	0.09	-0.06	-0.16*	0.03	
	(0.08)	(0.07)		(0.11)	(0.09)		
3 quarters hence	-0.26***	-0.08	0.07	-0.03	-0.19**	0.04	
	(0.09)	(0.08)		(0.09)	(0.08)		
CPI inflation							
Current quarter	0.25	0.47	0.02	-0.13	0.57*	0.02	
	(0.33)	(0.36)		(0.34)	(0.31)		
Next quarter	0.14	0.30	0.03	0.25**	0.12	0.03	
	(0.11)	(0.24)		(0.13)	(0.12)		
2 quarters hence	0.11	-0.06	0.01	0.14	-0.04	0.01	
	(0.14)	(0.13)		(0.10)	(0.16)		
3 quarters hence	0.13	0.07	0.01	0.04	0.27	0.03	
	(0.20)	(0.20)		(0.14)	(0.25)		

t quarterly $r_{t} = \mu + \rho_{1}r_{t-1} + \rho_{2}r_{t-2} + (1 - \rho_{1} - \rho_{2})[\psi_{\pi}(\pi_{t} - \pi^{*}) + \psi_{u}(u_{t} - u_{t}^{*})] + \sum_{j=0}^{M} v_{t-j,j}$ $v_{t,0} \text{ decided at } t$ $v_{t-1,1} \text{ decided at } t - 1$ \vdots $v_{t-M,M} \text{ decided at } t - M$ $\mathbf{v}_{t} = (v_{t0}, v_{t1}, \dots, v_{tM})' = \text{new decisions at } t$ $\mathbf{v}_{t} \text{ serially uncorrelated}$

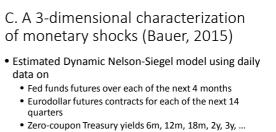
$$\begin{aligned} r_{t} &= \mu + \rho_{1}r_{t-1} + \rho_{2}r_{t-2} + (1 - \rho_{1} - \rho_{2})[\psi_{\pi}(\pi_{t} - \pi^{*}) \\ &+ \psi_{u}(u_{t} - u_{t}^{*})] + \sum_{j=0}^{M} v_{t-j,j} \end{aligned}$$

Expectation at $t - M$
 $\hat{r}_{t|t-M} &= \mu + \rho_{1}\hat{r}_{t-1|t-M} + \rho_{2}\hat{r}_{t-2|t-M} \\ &+ (1 - \rho_{1} - \rho_{2})[\psi_{\pi}(\hat{\pi}_{t|t-M} - \pi^{*}) \\ &+ \psi_{u}(\hat{u}_{t|t-M} - \hat{u}_{t|t-M}^{*})] + v_{t-M,M} \end{aligned}$

Expectation at t - M + 1 $\hat{r}_{t|t-M+1} = \mu + \rho_1 \hat{r}_{t-1|t-M+1} + \rho_2 \hat{r}_{t-2|t-M+1}$ $+ (1 - \rho_1 - \rho_2) [\psi_{\pi} (\hat{\pi}_{t|t-M+1} - \pi^*)$ $+ \psi_u (\hat{u}_{t|t-M+1} - \hat{u}_{t|t-M+1}^*)] + v_{t-M+1,M+1} + v_{t-M,M}$ Difference $\hat{r}_{t|t-M+1} - \hat{r}_{t|t-M} = \rho_1 (\hat{r}_{t-1|t-M+1} - \hat{r}_{t-1|t-M})$ $+ \rho_2 (\hat{r}_{t-2|t-M+1} - \hat{r}_{t-2|t-M+1})$ $+ (1 - \rho_1 - \rho_2) [\psi_{\pi} (\hat{\pi}_{t|t-M+1} - \hat{\pi}_{t|t-M})]$ $+ \psi_u (\hat{u}_{t|t-M+1} - \hat{u}_{t|t-M} - \hat{u}_{t|t-M+1}^* + \hat{u}_{t|t-M}^*)] + v_{t-M+1,M+1}$

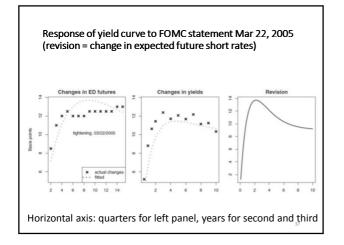

We observe:

 $\hat{r}_{t|t-j+1} - \hat{r}_{t|t-j}$ from change in fed funds futures $\hat{\pi}_{t|t-j+1} - \hat{\pi}_{t|t-j}$ and $\hat{u}_{t|t-j+1} - \hat{u}_{t|t-j}$ from revision in Blue Chip forecast \hat{u}^* from revision in Blue Chip long-

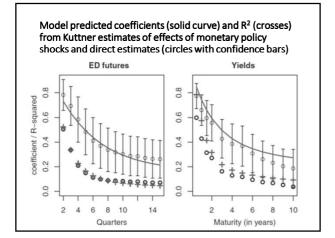

 $\hat{u}^*_{\imath_{l t-j+1}} - \hat{u}^*_{\imath_{l t-j}}$ from revision in Blue Chip long-run forecast

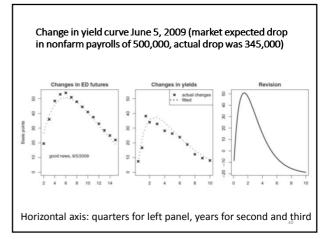
 \Rightarrow we observe $v_{t-j,j}$ for $j = 0, 1, \dots, M-1$

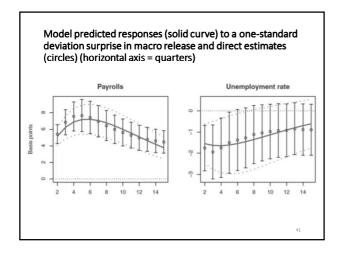
Estimate parameters by GMM $r_{t} = -0.05 + 1.60 \times r_{t-1} - 0.66 \times r_{t-2} \\ (0.02) \quad (0.02) \\ - (1 - 0.94) \times 1.10 \quad \tilde{u}_{t} + (1 - 0.94) \\ (0.28) \\ \times 2.32 \quad \pi_{t} + \sum_{j=0}^{4} v_{t-j,j}.$



Asset		Shock					Adjusted
	Constant	$V_{\xi 0}$	$V_{\xi 1}$	V_{L2}	V_{L3}	V_{c4}	R ₂
Treasuries							
2 years to maturity	5.90	1.08^{***}	1.98***	1.56***	0.70^{*}	0.89*	0.77
	(4.47)	(0.37)	(0.22)	(0.33)	(0.42)	(0.50)	
5 years to maturity	3.46	0.61*	1.83***	1.91***	1.43***	1.25**	0.78
	(4.31)	(0.36)	(0.21)	(0.32)	(0.40)	(0.49)	
10 years to maturity	1.57	0.38	1.48***	1.60***	1.41***	1.29***	0.70
	(4.44)	(0.37)	(0.22)	(0.33)	(0.42)	(0.50)	
Corporate bonds ^b							
Aaa/AAA-rated	0.60	0.19	0.65***	0.75**	0.86**	0.17	0.33
	(4.63)	(0.38)	(0.23)	(0.34)	(0.43)	(0.52)	
Baa/BBB-rated	0.57	0.13	0.69***	0.71**	1.00***	0.37	0.42
	(4.01)	(0.33)	(0.20)	(0.30)	(0.38)	(0.45)	




- Zero-coupon Treasury yields 6m, 12m, 18m, 2y, 3y, ... 10y
- Gives summary of entire yield curve for every day along with term premium and expectations components


- Allows for heteroscedasticity by grouping days by kind of news release (e.g., monetary policy release days have different variance matrix from others)
- Allows us to summarize how entire yield curve changes in response to any given day's news
- Example: FOMC statement March 22, 2005
- Fed announced 25 bp increase
 - This had been fully anticipated, current futures contract unchanged
- Added hawkish forward guidance
 - "pressures on inflation have picked up in recent months"

