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Pnt � price at t of pure-discount n-period bond

Pnt � Et�M t�1Pn�1,t�1�

One approach: specify M t�1 and derive

bond prices.

Today: reverse engineer– start with

convenient empirical model of risk and then

figure out what M t�1 this requires.

Later: will give a partial equilibrium

example which would imply this M t�1.
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Suppose there is an r � 1 vector � t

of possibly unobserved factors that

summarize everything that matters

for determining interest rates.

Suppose log of any bond price is affine

function of these factors:

pnt � �n � �n
� � t

e.g., r � 3 (level, slope, curvature).
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Conjecture that factors follow a first-

order homoskedastic Gaussian VAR:

� t�1 � c � �� t � �u t�1

u t�1 � i.i.d. N�0, I r�

� summarizes unpredictability of factors

and risk premia should be functions of �.
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Thus for � t the information set at t,

� t�1 |� t � N�� t,��
��

� t � Et� t�1 � c � �� t
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Consider asset that pays � i ,t�1 dollars

next period. How much would you pay

for each of these assets i � 1, . . , r today?

If risk neutral, price would be e�r t� it .
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If risk averse, maybe I would only pay e�r t� it
Q

�r�1�

�t
Q
�
�r�1�

�t �
�r�r�
�

�r�1�
�t

� it � price of factor i risk

If � it � 0, act as if column i of � � 0

(uncertainty about factor i does

not affect price of any security).



True distribution of factors

(sometimes called "historical

distribution" or "P measure")

� t�1 |� t
P� N�� t,��

��
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Risk-averse investors behave

the same way as a risk-neutral

investor would if that person believed

the distribution was instead the

"Q measure" or "risk-neutral distribution"

� t�1 |� t
Q� N�� t

Q,�� ��

� t
Q
� � t � �� t
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Question: what pricing kernel

M t�1 would imply this?

e�r t� t
Q
� Et�M t�1� t�1�

� �M t�1� t�1��� t�1;� t,��
��d� t�1

We would obtain desired answer if

M t�1��� t�1;� t,��
�� � e�r t��� t�1;� t

Q,�� ��
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��� t�1;� t
Q,�� �� �

1
�2��r /2 |�|

exp � �� t�1�� t
Q� ���� ���1��t�1�� t

Q�

2

�� t�1 � � t
Q� ���� ���1�� t�1 � � t

Q�

� �� t�1 � � t � �� t� ���� ���1�� t�1 � � t � �� t�

� �� t�1 � � t�
���� ���1�� t�1 � � t�

�� t
�

� t � 2� t
���1�� t�1 � � t�

11



Or since

� t�1 � c � �� t � �u t�1

��1�� t�1 � � t� � u t�1

��� t�1;� t
Q,�� ��

� ��� t�1;� t,��
�� exp���1/2�� t

�� t � � t
�u t�1 �
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Conclusion:

��� t�1;� t
Q,�� ��

� ��� t�1;� t,��
�� exp � � t

�
� t�2� t

���1�� t�1�� t�

2
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Summary:

M t�1��� t�1;� t,��
�� � e�r t��� t�1;� t

Q,�� ��

calls for specifying

M t�1 � exp��r t � �1/2�� t
�� t � � t

�u t�1 �
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Suppose we further conjecture that

price of risk is also affine function:

�r�1�
� t �

�r�1�
� �

�r�r�
�

�r�1�

� t
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Then

� t
Q
� � t � �� t

� c � �� t � �� � ��� t

� cQ � �Q� t

cQ � c � ��

�Q � � � ��
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P-measure dynamics:

� t�1 � c � �� t � �u t�1

u t�1
P� N�0, I r�

Q-measure dynamics:

� t�1 � cQ��Q� t � �u t�1
Q

u t�1
Q Q� N�0, I r�
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Investors act the way a risk-neutral

investor would who thought the factors

follow the Q-measure distribution, that is,

Pnt � Et
Q�e�r t Pn�1,t�1�

� Et�M t�1Pn�1,t�1 �
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Recall that if

z � N��,�2�

then

E�ez� � exp�� � �2/2�
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Thus if pnt � �n � �n
� � t, we require

epnt � Et
Q�e�r t epn�1,t�1 �

exp��n � �n
� � t � �

exp �r t � �n�1 � �n�1
� � t

Q
� �1/2��n�1

� �� ��n�1
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exp��n � �n
� � t � �

exp �r t � �n�1 � �n�1
� � t

Q
� �1/2��n�1

� �� ��n�1

Or since

� r t � p1t � �1 � �1
� � t

� t
Q
� cQ � �Q� t

we require

�n � �n
� � t � �1 � �1

� � t � �n�1

� �n�1
� �cQ � �Q� t� � �1/2��n�1

� �� ��n�1
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�n � �n
� � t � �1 � �1

� � t � �n�1

� �n�1
� �cQ � �Q� t� � �1/2��n�1

� �� ��n�1

�n
� � �n�1

� �Q � �1
�

�n � �n�1 � �n�1
� cQ � �1/2��n�1

� �� ��n�1 � �1
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Given cQ,�Q,�1,�1,� we can calculate

the log of the price of any bond pnt.

If cQ � c and �Q � � this would

correspond to the expectations

hypothesis of the term structure.
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Gives us a way of summarizing

dynamics of yield curve in terms

of separate contributions of risk

premia � t and expectations Et�r t�j�.
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Model implies

ynt � an � bn
� � t

for yield on any maturity n and

� t an �r � 1� vector. If number of

observed yields � r, system

is stochastically singular.
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B. Estimation by minimum chi square B. Estimation by minimum chi square B. Estimation by minimum chi square B. Estimation by minimum chi square 
(Hamilton and Wu)(Hamilton and Wu)(Hamilton and Wu)(Hamilton and Wu)



One solution: assume any observed

yield n differs from model prediction

by measurement or specification error:

ynt � an � bn
� � t � 	nt

26



Collect system for observed yields in a vector

�N�1�

y t � �yn1,t, yn2,t, . . . , ynN,t� �

y t � a � B� t � � t

� t � c � �� t�1 � v t

This is state-space system

observation equation: y t

state equation: � t

parameters a and B are highly

nonlinear functions of �c,�,�,�,�,�1,�1�.
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Alternative popular approach: assume that

model holds exactly for r of the observed ynt

y6t

y24,t

y120,t

�

a6

a24

a120

�

b6
�

b24
�

b120
�

� t

an � ��n/n

bn � ��n/n

�n
� � �n�1

� �Q � �1
�

�n � �n�1 � �n�1
� cQ � �1/2��n�1

� �� ��n�1 � �1

y1t � a1 � B 1� t
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For other yields, model holds with error

y2t � �y3t, y12,t, y36,t, y60,t, y84,t� �

y2t � a2 � B 2� t � �2t
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y1t � a1 � B 1� t

� t � c � �� t�1 � v t

� y1t � a1
� � �11

� y1,t�1 � �1t

a1
� � a1 � B 1c � B 1�B 1

�1a1

�11
� � B 1�B 1

�1

�1t � B 1v t

� y1t follows VAR(1)
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y2t � a2 � B 2� t � �2t

y1t � a1 � B 1� t

� y2t � a2
� � �21

� y1t � �2t

a2
� � a2 � B 2B 1

�1a1

�21
� � B 2B 1

�1
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y1t � a1
� � �11

� y1,t�1 � �1t

y2t � a2
� � �21

� y1t � �2t

� yt � �y1t
� ,y2t

� �� follows restricted

VAR(1) whose coefficients are

nonlinear functions of �c,�,�,�,�,�1,�1�.
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Can first estimate unrestricted

parameters �a1
�,�11

� ,a2
�,�21

� ,��� by

OLS, then find structural parameters

that make predicted values close to

observed (minimize chi square statistic for

test that restrictions are valid).

Asymptotically equivalent to MLE, but simpler.



Can easily generalize above to suppose

that there are r linear combinations of

y t for which model holds without error:

�r�1�

y1t �
�r�N�
H

�N�1�

y t

�r�1�

y1t �
�r�N�
H

�N�1�
a �

�r�N�
H

�N�r�
B � t

� y1t � a1
� � �11

� y1,t�1 � �1t

e.g., y1t � first r principal components

of y t ( H � � first r eigenvectors of

T�1 �
t�1
T �y t � y��y t � y� � )
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Note the model as written is unidentified.

If � t � � t � q and � � � � �q, the model

would be observationally identical

Same if � t � Q� t, � � Q�Q�1, b1
� � b1

� Q�1
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(1) Sample normalization:

c � 0

�Q lower triangular


 ii
Q � 
 jj

Q for i � j

� � I r

elements of b1 nonpositive
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This normalization is internally inconsistent.

If observe � t � Hyt directly and yt � a � B� t, then

� t � Ha � HB� t requiring Ha � 0 and HB � I r .

Upside: in practice Ha turns out to be close to 0

and HB close to I r even without imposing.
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(2) Joslin, Singleton Zhu normalization

(Rev Financial Studies, 2011) as

implemented by Hamilton-Wu

(J. Econometrics, 2014):

unknown parameters are �c,�,	,�1,�2,�1�

	 ���1,�2, . . . ,�r�� are eigenvalues of �Q.
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�1�1�

�n�x� � n�1 �
j�0
n xj

�r�N�

K�	� �

�n1��1� �n2��1� � �nN��1�

�n1��2� �n2��2� � �nN��2�

� � � �

�n1��r� �n2��r� � �nN��r�

�r�r�

V�	� �

�1 � 0

� � �

0 � �r

�r�r�

�Q�� �K�	�H ���1�V�	���K�	�H ��

�1 � �K�	�H ���11r for 1r
� � �1,1, . . . . , 1�
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Then HB � I r .

A related calculation for the intercepts

guarantees Ha � 0.
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Benefits: c,�,� estimated by simple OLS:

� t � c � �� t�1 � �1t

E��1t�1t
� � � �� �

	,�2,�1 estimated by MCS on

y2t � a2
� � �21

� � t � �2t

E��2t�2t
� � � �2�2

�



C. Estimation by OLS

Simpler approach (Adrian, Crump, and

Moench, JFE 2013):

Don’t impose any restrictions, get

everything by OLS.

� t � first r � 5 principal components of

observed set of yields ynt for n � �

� � �6m, 12m, 18m, 24m, 30m, 36m, 42m,

48m, 54m, 60m, 7y, 10y�

� t�1 � c � �� t � v t�1

can estimate by OLS
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log price of n-period bond:

pnt � �n � �n
� � t

excess return of n-period bond:

xn�1,t�1 � pn�1,t�1 � pnt � r t

� pn�1,t�1 � pnt � p1t

� �n�1 � �n�1
� �c � �� t � �ut�1� � �n

� �n
� � t � �1 � �1

� � t
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xn�1,t�1 � �n�1 � �n�1
� �c � �� t � vt�1� � �n

� �n
� � t � �1 � �1

� � t

� an�1 � bn�1
� v t�1 � cn�1

� � t

an�1 � �n�1 � �n�1
� c � �n � �1

bn�1
� � �n�1

�

cn�1
� � �n�1

� � � �n
� � �1

�
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bn�1
� � �n�1

�

cn�1
� � �n�1

� � � �n
� � �1

�

Predicted coefficients: affine model implies

�n

�

� �n�1
� �� � ��� � �1

�

� cn�1
� � bn�1

� ��
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� cn�1
� � bn�1

� ��

Proposal: estimate

xn�1,t�1 � an�1 � bn�1
� v
 t�1 � cn�1

� � t � en�1,t�1

for v
 t�1 � � t�1 � ĉ � �
� t

by unrestricted OLS separately for each n � �
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Then estimate
�r�r�
�� � �� to minimize

sum of squared discrepancies between

ĉn�1 and ��
�
b
 n�1 across n

	 ��
�
� �

n�� ĉn�1b
 n�1
� �

n�� b
 n�1b
 n�1
� �1



48

Predicted intercepts:

an�1 � �n�1 � �n�1
� c � �n � �1

Affine model implies

�n � �n�1 � �n�1
� �c � ��� � �1

� �1/2���n�1
� �� ��n�1 � �2�

� an�1 � �n�1
� �� � �1/2���n�1

� �� ��n�1 � �2�
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� an�1 � �n�1
� �� � �1/2���n�1

� �� ��n�1 � �2�

Let �� � ��

ãn�1 � ân�1 � �1/2��b
 n�1
�

�
�

�
b
 n�1 � �	 2�

Estimate �� by minimizing difference between

ãn�1 and ��
�
b
 n�1

� �� � �
n�� b
 n�1b
 n�1

� �1
�

n�� b
 n�1ãn�1
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Summary: we have now estimated

c,�,�,�,�,�2 using only OLS regressions.

Can estimate �1 and �1 by OLS regression

r t � ��1 � �1
� � t � et

�1�

And then calculate �n and �n by recursion:

�n

�

� �n�1
� �� � ��� � �1

�

�n � �n�1 � �n�1
� �c � ��� � �1

� �1/2���n�1
� �� ��n�1 � �2�
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From these we can calculate the

predicted yield on any bond

ynt � �n�1��n � �n
� � t�.
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We can then redo the recursions setting

� � 0 and � � 0 to get predicted yields if

investors were risk neutral

�n
RF� � �n�1

RF�� � �1
�

�n
RF � �n�1

RF � �n�1
RF�c � �1

� �1/2���n�1
� �� ��n�1 � �2�

ynt
RF � �n�1��n

RF � �n
RF�� t�
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Can calculate the risk premium

as the difference ynt � ynt
RF



Updated daily at 
https://www.newyorkfed.org/medialibrary/media/
research/data_indicators/ACMTermPremium.xls
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10-year yield and term premium

term premium yield



Recall that we often summarize forward

curve at date t using function such as

fnt � 
0t � 
1t exp��n/�1t�

� 
2t�n/�1t� exp��n/�1t�

� 
3t�n/�2t� exp��n/�2t�

Nelson-Siegel: Describe forward

rate of any maturity n as smooth

function of three magnitudes at t

(level, slope, and curvature).
55

D. Dynamic Nelson-Siegel model 

(Christensen, Diebold, and Rudebusch)



Consider following special case of

GATSM normalization and additional

restrictions (Bauer, 2011, following

Christensen, Diebold, and Rudebusch):


Q �

1 0 0

0 � 1 � �

0 0 �

has eigenvalues �1,�,��

cQ � 0

b1 � �1, 1, 0� � 56



Implications:

� t�1 � cQ � �Q� t � v t�1
Q

r t � 1 1 0 � t

fnt � b1
� Et

Q� t�n � b1
� ��Q�n� t

� 1 1 0

1 0 0

0 �n n�n�1�1 � ��

0 0 �n

�1t

�2t

�3t

� �1t � �n�2t � n�n�1�1 � ���3t
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fnt � �1t � �n�2t � n�n�1�1 � ���3t

So forward rate fnt loads on

factor 1 with weight 1

factor 2 with weight �n�2t

factor 3 with weight n�n�1�1 � ��
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maturity (gamma = 0.98)
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59



60

Dynamic Nelson-Siegel: can then estimate

P-measure dynamics for state vector as

� t � c � �� t�1 � vt

which gives complete dynamic description

of process for all yields.



� t � c � �� t�1 � v t

Caution: for unrestricted OLS

estimation of �, eigenvalues biased

downard.

Implication: if � � 0, �
 n � 0 for large n
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E. Small-sample bias (Bauer, Rudebusch, Wu)



Empirical models want to attribute most

of fluctuation in ynt for large n to � (changes

in risk premium) not �n (expectations

component).

Bauer, Rudebusch and Wu (JBES, 2012).

Correct estimate of �
 for small-sample bias.
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4-year forward rates (black) and expected 4-year-ahead 
short rates with and without bias correction



4-year forward rates (black) and component attributed to 
risk premium with and without bias correction
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Big picture:

(1) Methods exist to decompose

long yield into expectations component

and risk premium.

(2) Identification comes from fact that

predictable excess returns attributed to

risk premium.

(3) Specific answer sensitive to

assumed underlying forecasting model.
65


