• Class Monday Nov 13 will meet at 11:00 rather than 8:00.

- A. Basic concepts
 - 1. Prices, yields, and logs

Loan \$1 today, get \$(1+r) next year

r =annual yield

$$r = 0.05 \Rightarrow 5\%$$
 return

Compounded quarterly:

$$(1 + r/4)^4$$

Continuous compounding:

$$\lim_{m\to\infty} (1+r/m)^m = e^r$$

e.g.
$$e^{0.05} = 1.051$$

Continuous compounding for *n* years:

$$e^r \cdot e^r \cdots e^r = e^{rn}$$

Let P_{nt} = price today for security that promises \$1 with certainty at t + n

$$P_{0t} \equiv 1$$

Called a pure discount bond

Continuously compounded return is characterized by value r for which

$$P_{nt}e^{nr} = 1$$

$$\log P_{nt} = -nr_{nt}$$

$$r_{nt} = -n^{-1}p_{nt}$$

for p_{nt} log of bond price and r_{nt} the annual yield to maturity on the bond

$$p_{nt} \uparrow \Rightarrow r_{nt} \downarrow$$

A. Basic concepts

- 1. Prices, yields, and logs
- 2. Holding period yield

My (continuously compounded) holding return is

$$p_{n-1,t+1} - p_{nt} = nr_{nt} - (n-1)r_{n-1,t+1}$$
$$= r_{nt} - (n-1)(r_{n-1,t+1} - r_{nt})$$

If rates rise $(r_{n-1,t+1} > r_{nt})$, then I earn less than r_{nt} .

Even though there is no default risk with the bond (it will be worth \$1 with certainty at t + n, there is interest-rate risk (I may earn more or less than r_{nt} if I hold for one year and then sell).

A. Basic concepts

- 1. Prices, yields, and logs
- 2. Holding period yield
- 3. Forward rate

Suppose I simultaneously sell \$1 in n-year bond (so I will have to pay $1/P_{nt}$ at t+n) and buy \$1 in (n+1)-year bond (so I will receive $1/P_{n+1,t}$ at t+n+1).

No cash flow between $t, t + 1, \dots, t + n - 1$.

I can thus lock in today a return on a 1-period bond that I will purchase at t + n $f_{nt} = n$ -year-ahead forward rate at t $f_{nt} = p_{nt} - p_{n+1,t}$

A. Basic concepts

- 1. Prices, yields, and logs
- 2. Holding period yield
- 3. Forward rate
- 4. Coupon bonds

Consider now a bond that will be worth \$1 at t + n but also pays a coupon of \$C at the end of $t, t+1, \ldots, t+n$. Can think of this as a set of n different pure-discount bonds whose price today should be $CP_{1t} + CP_{2t} + \cdots CP_{nt} + P_{nt}$.

A. Basic concepts

- 1. Prices, yields, and logs
- 2. Holding period yield
- 3. Forward rate
- 4. Coupon bonds
- 5. Yield curve

Gürkaynak, Sack and Wright (JME, 2007) Suppose we conjecture that for given t, the forward rate f_{nt} is a smooth function of n:

$$f_{nt} = \beta_{0t} + \beta_{1t} \exp(-n/\tau_{1t}) + \beta_{2t} (n/\tau_{1t}) \exp(-n/\tau_{1t}) + \beta_{3t} (n/\tau_{2t}) \exp(-n/\tau_{2t})$$

Different values of $(\beta_{0t}, \beta_{1t}, \beta_{2t}, \beta_{3t}, \tau_{1t}, \tau_{2t})$ for each t

Recalling that $f_{nt} = p_{nt} - p_{n+1,t}$ and $p_{0t} = 0$, we know $p_{n+1,t} = -f_{nt} - f_{n-1,t} - \cdots - f_{0t}$ so given $(\beta_{0t}, \beta_{1t}, \beta_{2t}, \beta_{3t}, \tau_{1t}, \tau_{2t})$ we could calculate predicted price of any bond and choose $(\beta_{0t}, \beta_{1t}, \beta_{2t}, \beta_{3t}, \tau_{1t}, \tau_{2t})$ to best fit observed bond prices at t.

Actually, GSW use instantaneous forward rates (I lend \$1 for one day beginning n years from now) instead of the one-year forward rates (I lend \$1 for one year beginning n years from now), in which case above formula is instead

$$p_{nt} = -\int_0^n f_{xt} dx$$

which is known analytically.

Yield curve as of November 18, 2013

Forward rates as of November 18, 2013

Yield curve often inverts before recessions

- A. Basic concepts
- B. Expectations hypothesis of the term structure

Let $r_t = r_{1t} = risk$ -free one-period interest rate.

Option 1: lend \$1 today, have e^{r_t} next year. Option 2: buy \$1 worth of n-year bonds (= $1/P_{nt}$ units), sell next year (for $P_{n-1,t+1}$ per unit) = $P_{n-1,t+1}/P_{nt}$ dollars next year.

Risk neutral: expected return same:

$$e^{r_t} = E_t(P_{n-1,t+1}/P_{nt})$$

 $P_{nt} = e^{-r_t}E_t(P_{n-1,t+1})$

$$P_{nt} = e^{-r_t} E_t(P_{n-1,t+1})$$

Claim: this implies

$$P_{nt} = E_t \{ \exp[-(r_t + r_{t+1} + \cdots + r_{t+n-1})] \}$$

Proof: induction

(1) Holds for n = 1 by definition of r_t :

$$P_{1t} = E_t \{ \exp[-r_t] \} = e^{-r_t}.$$

(2) If holds for n-1, then

$$P_{nt} = e^{-r_t} E_t(P_{n-1,t+1})$$

= $e^{-r_t} E_t[E_{t+1} \{ \exp[-(r_{t+1} + \dots + r_{t+n-1})] \}]$
= $E_t[\{ \exp[-(r_t + r_{t+1} + \dots + r_{t+n-1})] \}]$

$$P_{nt} = E_t[\{\exp[-(r_t + r_{t+1} + \cdots + r_{t+n-1})]\}$$

Jensen's Inequality:

$$P_{nt} \ge \exp[-E_t(r_t + r_{t+1} + \cdots + r_{t+n-1})]$$

e.g., if $\{r_{t+1}, \ldots, r_{t+n-1}\}$ are Gaussian,

$$P_{nt} = \exp \left[E_t \left(-\sum_{j=0}^{n-1} r_{t+j} \right) + (1/2) \operatorname{Var}_t \left(\sum_{j=0}^{n-1} r_{t+j} \right) \right]$$

$$p_{nt} = E_t \left(-\sum_{j=0}^{n-1} r_{t+j} \right) + (1/2) \text{Var}_t \left(\sum_{j=0}^{n-1} r_{t+j} \right)$$

$$p_{nt} = E_t \left(-\sum_{j=0}^{n-1} r_{t+j} \right) + (1/2) \text{Var}_t \left(\sum_{j=0}^{n-1} r_{t+j} \right)$$
or since $p_{nt} = -nr_{nt}$,
$$r_{nt} = n^{-1} E_t \left(\sum_{j=0}^{n-1} r_{t+j} \right) - (2n)^{-1} \text{Var}_t \left(\sum_{j=0}^{n-1} r_{t+j} \right)$$

$$r_{nt} = n^{-1} E_t \left(\sum_{j=0}^{n-1} r_{t+j} \right) - (2n)^{-1} \mathsf{Var}_t \left(\sum_{j=0}^{n-1} r_{t+j} \right)$$

Some researchers ignore the Jensen's Inequality term to interpret the Expectations Hypothesis of the term structure as

$$r_{nt} = n^{-1} E_t \left(\sum_{j=0}^{n-1} r_{t+j} \right)$$

or long rate is average expected future short rate (also called Log Pure Expectations Hypothesis).

Note that under LPEH,

short rate.

$$p_{nt} = E_t \left(-\sum_{j=0}^{n-1} r_{t+j} \right)$$
 $p_{n+1,t} = E_t \left(-\sum_{j=0}^{n} r_{t+j} \right)$
 $f_{nt} = p_{nt} - p_{n+1,t} = E_t (r_{t+n})$
or forward rate is expected future

- A. Basic concepts
- B. Expectations hypothesis of the term structure
- C. Response of the yield curve to news (Gürkaynak, Sack, and Swanson, AER, 2005)

- Money Market Services surveyed private forecasters for value expected for important economic news releases
- Question: how does forward rate for different maturities n change in relation to the news release?

$$f_{nt} - f_{n,t-1} = \beta_{0n} + \sum_{j=1}^{J} \beta_{jn} (x_{jt} - \hat{x}_{jt}) + \varepsilon_{nt}$$

 $f_{nt} - f_{n,t-1} = \text{change in } n\text{-year instantaneous}$ forward rate on day t

 \hat{x}_{jt} = market expectation of variable j

 x_{it} = actual released value

Plot β_{jn} as a function of n

Response of forward rates with 95% confidence intervals (significant response after 7 years)

- Difficult to explain such persistent effects in calibrated DSGE
- Implausible long-run variation in real interest rate or persistence of fundamental shocks

- Additional evidence: how does yield curve change on day of monetary policy
- Regress change in forward rate on the unanticipated change in Fed's target interest rate as inferred from fed funds futures

Response of forward rates to monetary policy surprises

- Surprising feature: long-term forward rate moves in opposite direction of short-term policy
- Fed raises short rate today but implies lower expected future short rates if we assume expectations hypothesis

GSS's explanation: Fed's long-run inflation target π_t^* is continually evolving.

- Explains response to macro news:
 - Higher employment temporarily raises inflation
 - Market expects Fed will make this permanent
- Explains response to monetary policy shocks:
 - Fed tightening today signals lower long-run inflation

Treasury Inflation Protected Securities (TIPS)

- coupon and yield rise with CPI
- Market measure of real return

• Findings:

- Real long forward rates do not respond to macro news, but expected inflation component does
- Real long forward rates do not fall after monetary contraction, but expected inflation component does

Introduction to term structure of interest rates

- A. Basic concepts
- B. Expectations hypothesis of the term structure
- C. Response of the yield curve to news
- D. Risk aversion and the term structure

Although expectations hypothesis is convenient, it does not fit the data.

- (1) Term structure usually slopes up: investor better off with long maturity.
 - (2) Excess holding yields are predictable.

LPEH:

$$r_{2t} = (1/2)[r_{1t} + E_t(r_{1,t+1})]$$

$$2r_{2t} - r_{1t} = E_t(r_{1,t+1})$$

$$E_t(r_{1,t+1}) - r_{2t} = r_{2t} - r_{1t}$$

If 6-month yield is currently above 3-month $(r_{2t} - r_{1t} > 0)$, then next quarter's 3-month yield is expected to be higher than current 6 month $(r_{1,t+1} - r_{2t} > 0)$.

Opposite is usually observed

Regression of $r_{1,t+1} - r_{2t}$ on $r_{2t} - r_{1t}$ has wrong sign

We obtained expectations hypothesis by assuming risk-neutral investor.

Consider instead someone with objective

$$E_t \left\{ \sum_{j=0}^{\infty} \beta^j U(C_{t+j}) \right\}$$

Invest \$1 in some asset k whose current nominal price is Q_{kt} , sell next period for $Q_{k,t+1}$.

Give up today $(1/P_t)$ units of C_t where P_t is the dollar price of consumption good:

$$cost = U'(C_t)/P_t$$

Next period gain $Q_{k,t+1}/(Q_{kt}P_{t+1})$ units of C_{t+1}

$$gain = E_t \left\{ \frac{\beta U'(C_{t+1})Q_{k,t+1}}{Q_{kt}P_{t+1}} \right\}$$

Optimal choice by investor implies

$$\frac{U'(C_t)}{P_t} = E_t \left\{ \frac{\beta U'(C_{t+1})Q_{k,t+1}}{Q_{kt}P_{t+1}} \right\}$$

$$\frac{U'(C_t)}{P_t} = E_t \left\{ \frac{\beta U'(C_{t+1})Q_{k,t+1}}{Q_{kt}P_{t+1}} \right\}
1 = E_t \left\{ \frac{M_{t+1}Q_{k,t+1}}{Q_{kt}} \right\}
M_{t+1} = \frac{\beta U'(C_{t+1})P_t}{U'(C_t)P_{t+1}}$$

for every asset *k*.

Applied to term structure of interest rates, price of n-period pure discount bond at t is P_{nt} and price of that asset at t + 1 is $P_{n-1,t+1}$:

$$1 = E_t \left\{ \frac{M_{t+1} P_{n-1,t+1}}{P_{nt}} \right\}$$

for every maturity n.

 M_{t+1} is called "pricing kernel" or "stochastic discount factor"

$$1 = E_t \left\{ rac{M_{t+1} P_{n-1,t+1}}{P_{nt}}
ight\}$$
For $n=1$,
 $1 = E_t \left\{ rac{M_{t+1}}{P_{1t}}
ight\} = e^{r_t} E_t(M_{t+1})$
 $E_t(M_{t+1}) = e^{-r_t}$.

Risk-neutral investors (expectations hypothesis) is special case where

$$M_{t+1} = e^{-r_t}$$
.

We derived the expression

$$1 = E_t \left\{ \frac{M_{t+1} P_{n-1,t+1}}{P_{nt}} \right\}$$

by assuming a particular utility

function (namely
$$E_t \left\{ \sum_{j=0}^{\infty} \beta^j U(C_{t+j}) \right\}$$
)

which implied a particular value for

$$M_{t+1}$$
 (namely $M_{t+1} = \frac{\beta U'(C_{t+1})P_t}{U'(C_t)P_{t+1}}$).

Alternatively, one can also deduce that

$$1 = E_t \left\{ \frac{M_{t+1}P_{n-1,t+1}}{P_{nt}} \right\}$$

from a simple absence-of-arbitrage argument. If the equation does not hold for some M_{t+1} a function of the date t+1 state of the world, then there would be a way to buy some securities and sell others so as to generate positive cash flow at no cost.

Macro tradition: tries to look at particular model of investors to derive form for M_{t+1} . Finance tradition: takes as given that there is some M_{t+1} and tries to describe its properties.