IV Estimation

A. Using instruments by augmenting VAR
B. Using instruments external to VAR (Stock and Watson, 2012)
C. Using IV for mixed-frequency inference:

Gertler and Karadi (2015)
D. Augmented VAR versus IV estimation
E. Natural experiments in macro (FuchsSchuendeln and Hassan, 2015)

A. Using instruments by augmenting VAR

Example: supply and demand

$$
\begin{aligned}
q_{t}= & \lambda^{d}+\beta^{d} p_{t}+b_{11}^{d} p_{t-1}+b_{12}^{d} q_{t-1}+b_{21}^{d} p_{t-2} \\
& +b_{22}^{d} q_{t-2}+\cdots+b_{m 1}^{d} p_{t-m}+b_{m 2}^{d} q_{t-m}+u_{t}^{d} \\
q_{t}= & \lambda^{s}+\alpha^{s} p_{t}+b_{11}^{s} p_{t-1}+b_{12}^{s} q_{t-1}+b_{21}^{s} p_{t-2} \\
& +b_{22}^{s} q_{t-2}+\cdots+b_{m 1}^{s} p_{t-m}+b_{m 2}^{s} q_{t-m}+u_{t}^{s}
\end{aligned}
$$

Textbook solution: find instrument (weather w_{t}) that shifts supply but not demand.

$$
\begin{aligned}
& \mathbf{A} \mathbf{y}_{t}=\lambda+\mathbf{B}_{1} \mathbf{y}_{t-1}+\cdots+\mathbf{B}_{m} \mathbf{y}_{t-m}+\mathbf{u}_{t} \\
& E\left(\mathbf{u}_{t} \mathbf{u}_{t}^{\prime}\right)=\mathbf{D} \text { (diagonal) } \\
& \mathbf{A}=\left[\begin{array}{ccc}
1 & -\beta^{d} & 0 \\
1 & -\alpha^{s} & -h^{s} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Algorithm 1: Find $\hat{\beta}_{M L E}^{d}, \hat{\alpha}_{M L E}^{s}, \hat{h}_{M L E}^{s}$ by maximizing log likelihood numerically
$(T / 2) \log |\mathbf{A}|^{2}-(T / 2) \log |\mathbf{D}|$
$-(T / 2) \operatorname{trace}\left\{\left(\mathbf{A}^{\prime} \mathbf{D}^{-1} \mathbf{A}\right) \hat{\boldsymbol{\Omega}}\right\}$
Estimates will satisfy
$\hat{\mathbf{D}}=\hat{\mathbf{A}} \hat{\mathbf{\Omega}} \hat{\mathbf{A}}^{\prime}$ (diagonal)
Algorithm 2: Find $\hat{\beta}_{I V}^{d}$ by IV regression of $\hat{\varepsilon}_{q t}$ on $\hat{\varepsilon}_{p t}$ using $\hat{\varepsilon}_{w t}$ as instrument:

$$
\hat{\beta}_{I V}^{d}=\frac{\sum_{t=1}^{T} \hat{\varepsilon}_{w t} \hat{\varepsilon}_{q t}}{\sum_{t=1}^{T} \hat{\varepsilon}_{w t} \hat{\varepsilon}_{p t}}=\frac{\hat{\sigma}_{w q}}{\hat{\sigma}_{w p}}
$$

Then find $\hat{\alpha}_{I V}^{s}, \hat{h}_{I V}^{s}$ by IV regression of $\hat{\varepsilon}_{q t}$ on $\hat{\varepsilon}_{p t}, \hat{\varepsilon}_{w t} u$ using $\hat{\varepsilon}_{w t}$ and $\hat{u}_{t}^{d}=\hat{\varepsilon}_{q t}-\hat{\beta}_{l V}^{d} \hat{\varepsilon}_{p t}$ as instruments:

$$
\begin{aligned}
{\left[\begin{array}{c}
\hat{\alpha}_{I V}^{s} \\
\hat{h}_{I V}^{s}
\end{array}\right]=} & {\left[\begin{array}{cc}
\sum \hat{u}_{t}^{d} \hat{\varepsilon}_{p t} & \sum \hat{u}_{t}^{d} \hat{\varepsilon}_{w t} \\
\sum \hat{\varepsilon}_{w t} \hat{\varepsilon}_{p t} & \sum \hat{\varepsilon}_{w t}^{2}
\end{array}\right]^{-1} } \\
& \times\left[\begin{array}{c}
\sum \hat{u}_{t}^{d} \hat{\varepsilon}_{q t} \\
\sum \hat{\varepsilon}_{w t} \hat{\varepsilon}_{q t}
\end{array}\right]
\end{aligned}
$$

B. Using instruments external to VAR (Stock and Watson, 2012)

Structural model:
$\mathbf{A} \mathbf{y}_{t}=\lambda+\mathbf{B}_{1} \mathbf{y}_{t-1}+\cdots+\mathbf{B}_{m} \mathbf{y}_{t-m}+\mathbf{u}_{t}$
$E\left(\mathbf{u}_{t} \mathbf{u}_{t}^{\prime}\right)=\mathbf{D}$ (diagonal)
Reduced form:
$\mathbf{y}_{t}=\mathbf{c}+\boldsymbol{\Phi}_{1} \mathbf{y}_{t-1}+\cdots+\boldsymbol{\Phi}_{m} \mathbf{y}_{t-m}+\boldsymbol{\varepsilon}_{t}$
$\boldsymbol{\varepsilon}_{t}=\mathbf{A}^{-1} \mathbf{u}_{t}$

Proposition: the estimates of the two algorithms are numerically identical.
Proof:
$\sum \hat{u}_{t}^{d} \hat{\varepsilon}_{w t}=0$ by definition of $\hat{\beta}_{I V}^{d}$
$\sum \hat{u}_{t}^{s} \hat{u}_{t}^{d}=\sum \hat{u}_{t}^{s} \hat{\varepsilon}_{w t}=0$ by definition of $\hat{\alpha}_{I V}^{s}, \hat{h}_{I V}^{s}$
$\hat{\mathbf{A}}_{I V} \hat{\mathbf{\Omega}} \hat{\mathbf{A}}_{I V}^{\prime}$ is diagonal

Suppose we have instrument $z_{i t}$ that is
relevant: $E\left(z_{i t} u_{i t}\right)=\alpha_{i} \neq 0$
valid: $E\left(z_{i t} u_{j t}\right)=0$ for $i \neq j$

Under the above assumptions,
$E\left(\boldsymbol{\varepsilon}_{t} z_{i t}\right)=\mathbf{A}^{-1} E\left(\mathbf{u}_{t} z_{i t}\right)=\mathbf{A}^{-1} \alpha_{i} \mathbf{e}_{i}$
$\mathbf{e}_{i}=\operatorname{col} i$ of \mathbf{I}_{n}
so can estimate i th column of
\mathbf{A}^{-1} (up to unknown constant) by
$\tilde{\mathbf{a}}^{(i)}=T^{-1} \sum_{t=1}^{T} \hat{\boldsymbol{\varepsilon}}_{t} z_{i t}$

Can normalize by defining shock $u_{i t}$ to be something that increases $y_{i t}$
by one unit: $\hat{\mathbf{a}}^{(i)}=\tilde{\mathbf{a}}^{(i)} / \tilde{a}_{i}^{(i)}$
$\widehat{\frac{\partial \mathbf{y}_{t+s}}{\partial u_{i t}}}=\hat{\Psi}_{s} \hat{\mathbf{a}}^{(i)}$

Can also estimate $\hat{u}_{i t}$ as follows.
Suppose we observed \mathbf{u}_{t} and
regressed $z_{i t}$ on \mathbf{u}_{t} :
$z_{i t}=\pi_{i}^{\prime} \mathbf{u}_{t}+v_{i t}$
plim $\hat{\boldsymbol{\pi}}_{i}=\left(\alpha_{i} / d_{i i}\right) \mathbf{e}_{i}$

If instead we regressed $z_{i t}$ on $\boldsymbol{\varepsilon}_{\boldsymbol{t}}$,
$z_{i t}=\boldsymbol{\lambda}_{i}^{\prime} \boldsymbol{\varepsilon}_{t}+v_{i t}$
this would just be rotation of
above regression since $\boldsymbol{\varepsilon}_{t}=\mathbf{A}^{-1} \mathbf{u}_{t}$
Hence fitted values from regression
of $z_{i t}$ on $\hat{\varepsilon}_{t}$ give consistent estimate of $\left(\alpha_{i} / d_{i i}\right) u_{i t}$

Stock-Watson examined several different proposed measures of monetary policy shocks, including
(1) Romer-Romer shocks
(2) Monetary policy shocks inferred from Smets-Wouters empirical DGSE
(3) Gürkaynak-Sack-Swanson (2005) Fed target shock

Structural IRF using Romer-

 Romer monetary shocks

Structural IRF using SmetsWouters monetary shocks

Correlation between RR and SW shock $=0.09$

Structural IRF using Gürkaynak-SackSwanson monetary shocks

Stock-Watson considered 17 different

 instruments for 6 structural shocks

Kilian
Ramey-Vine
Monetary policy shock
Romer-Romer
Smets-Wouters
Sims-Zha
Gärkaynak-Sack-Swanson
Productivity shock
Fernald TFP
Galf long-run output per hour Smets-Wouters

Uncertainty shock
Bloom financial uncertainty (VIX) Baker-Bloom-Davis policy uncertainty
Liquidity-financial risk shock Gilchrist-Zakrajjek spread TED spread Bassett and others bank loan supply

Fiscal policy shock

Ramey spending
Fisher-Peters spending
Romer-Romer tax

Instruments should be correlated within group and not across groups

- Most important shocks in Great Recession seemed to be financial shocks
- TED spread =3-month LIBOR rate (an average of interest rates offered in the London interbank market for 3-month dollar-denominated loans) and the 3month Treasury bill rate
- Gilchrist-Zakrajšek spread = average gap between corporate and risk-free yields

Historical decomposition: contribution of financial shocks (TED)

C. Using IV for mixed-frequency inference: Gertler and Karadi (2015)

- Monthly 1979:M7 - 2012:M6
- interest rate on 1-year U.S. Treasury (takes place of fed funds rate in older regressions)
- log of CPI
- log of industrial production
- Gilchrist-Zakrajšek spread

Instruments for monetary policy shock

(1) Kuttner's surprise component of change in current-month fed funds futures contract in 30-minute window around FOMC announcement in month t

- = 0 if no announcement
- Only estimate over $\mathbb{Q}=\{[1991: \mathrm{M} 1-$ 2008:M6] U [2009:M7 - 2012:M6]\}
- Identifies linear combination of reducedform VAR residuals that is to be designated "monetary policy shock"

Instruments for monetary policy

 shock(2) Change in 3-month ahead fed funds futures contract in 30-minute window around FOMC announcement in month t
(3)-(5) Change in 6, 9, and 12-month ahead 3-month Eurodollar futures in 30 minute window in month t
$\varepsilon_{t}=$ reduced-form VAR residuals
($\varepsilon_{1 t}=$ error forecasting 1-year interest rate)
$\mathbf{u}_{t}=$ structural shocks
($u_{1 t}=$ monetary policy shock)
$\mathbf{z}_{t}=(5 \times 1)$ vector of instruments
$\boldsymbol{\varepsilon}_{t}=\mathbf{A}^{-1} \mathbf{u}_{t}$
$\frac{\partial \varepsilon_{t}}{\partial u_{1 t}}=\mathbf{a}^{(1)} \quad\left(\right.$ col 1 of $\left.\mathbf{A}^{-1}\right)$

Estimate j th element of $\mathbf{a}^{(1)}$ by 2SLS regression of $\hat{\varepsilon}_{j t}$ on $\hat{\varepsilon}_{1 t}$ using \mathbf{z}_{t} as inst

$$
\begin{gathered}
a_{j}^{(1)}=\frac{\sum_{t \in \mathbb{Q}}}{\sum_{t \in \mathbb{Q}} \hat{\hat{Q}}_{j} \tilde{\varepsilon}_{1 t}}{ }^{\tilde{\varepsilon}_{1 t}} \\
\tilde{\varepsilon}_{1 t}=\hat{\phi}^{\prime} \mathbf{z}_{t} \\
\hat{\phi}=\left(\sum_{t \in \mathbb{Q}} \mathbf{z}_{t} \mathbf{z}_{t}^{\prime}\right)\left(\sum_{t \in \mathbb{Q}} \mathbf{z}_{t} \hat{\varepsilon}_{1 t}\right) \\
\frac{\partial \mathbf{y}_{t s s}}{\partial u_{1 t}}=\Psi_{s} \mathbf{a}^{(1)}
\end{gathered}
$$

- Next consider 5-variable VARs, where alternative interest rate measures are added, one at a time

D. Augmented VAR versus IV estimation

1) advantage of augmented VAR: structural shock can be linear combination of innovations to \mathbf{y}_{t} and z_{t}, not just innovations to \mathbf{y}_{t}
2) advantage of using Stock-Watson IV: can use longer sample to estimate nonorthogonalized IRF Ψ_{s} than for $\mathbf{a}^{(i)}$

Nonorthogonalized IRF for 1991:Q1-2007:Q4 sample

Nonorthogonalized IRF for 1954:Q3-2007:Q4 sample

34

Barakchian and Crowe (JME, 2013)

Barakchian and Crowe augmented VAR with accumulated shocks

E. Natural experiments in macro

- Application: permanent-income hypothesis
- Change in income at t that was perfectly anticipated at $t-1$ should have no effect on consumption at date t
- If find effect it is evidence of borrowing constraints or some departure from neoclassical assumptions

2001 Bush tax rebates (Johnson, Parker, Souleles, AER 2006; Agarwal and Souleles, JPE 2007)

- Households notified by letter months in advance of $\$ 300-\$ 600$ rebates; substantial press coverage
- Checks delivered over 10-week period based on social security numbers
- Each dollar of rebate added 37 c in nondurable spending within 3 months of receiving rebate

2008 Economic Stimulus Act rebates (Parker, Souleles, Johnson, McClelland, AER 2013)

- Rebates of $\$ 300-\$ 1200$ rebates
- Checks delivered or funds wired based on social security numbers
- Each dollar of rebate added $12 ¢$ in nondurable spending within 3 months of receiving rebate (statistically significant)

