### Event studies and highfrequency data

- A. FOMC announcement effects (Kuttner)
- B. Application: daily monetary policy shocks and the effect on new home sales (Hamilton)
- C. FOMC meeting decisions (Romer-Romer)
- D. Identifying DSGE from daily data (Nakamura and Steinsson)

Motivating theme: why do we really believe monetary policy has effects?

- Fed has meetings where they make decisions.
- Market seems to respond to outcome of those meetings.

### A. FOMC announcement effects

- The Federal Open Market Committee currently meets 8 times a year.
- Will meet again Nov 1 and Dec 13
- At each meeting since mid-1980s, decides on a target for the fed funds rate
  - Overnight interest rate on loans between depository institutions (currently: GSEs lend to U.S. branches of foreign banks)
  - Current target is 1 to 1.25% (funds rate averaged 1.12% during October).

- The Nov 2017 fed funds futures contract is a number  $f_{t,Nov}$  agreed upon by the buyer and seller at some day *t* (for example, *t* = Oct 23, 2017).
- If the average fed funds rate in Nov comes in above the value  $f_{t,Nov}$  the buyer pays the seller \$41.67 for each basis point below.
- If it comes in below, the seller pays the buyer.

- For near-term contracts (less than 2 months ahead), there is little role for risk premium.
- Can treat futures price as market's expectation of average fed funds rate for that month.

- $f_{t,Nov}$  is currently trading at 1.12% (annual rate).
- Average fed funds rate in October has been 1.12%.
  - Traders are betting on relatively little chance of rate hike at next meeting
- $f_{t,Jan}$  is currently 1.36%
  - Traders are betting that rate hike at following meeting is almost a sure thing

 Research question: what do we see happen when the Fed's announcement surprises the market?  $f_t^0$  = price of current-month contract (e.g., price of April contract some day *t* in April)  $f_t^s$  = price of *s*-month-ahead contract (e.g., s = 3 is price of July contract some day *t* in April)  $r_t$  = overnight fed funds rate on day t

 $m_t$  = number of calendar days in current month  $d_t$  = calendar days so far in current month as of t  $f_t^0$  is average of  $d_t$  days so far and expectation of  $m_t - d_t$  days yet to come  $f_t^0 = \frac{1}{m_t} E_t \sum_{j=-d_t+1}^{m_t-d_t} r_{t+j}$  $f_t^0 - f_{t-1}^0 = \frac{1}{m_t} (E_t - E_{t-1}) \sum_{j=0}^{m_t-d_t} r_{t+j}$  Suppose that an FOMC announcement on day *t* caused me to revise up my expectation of each remaining day of month by  $\delta_t$ 

$$(E_t - E_{t-1})(r_{t+j}) = \delta_t \quad j = 1, \dots, m_t - d_t$$

E.g., if I was expecting the Fed to raise target by 10 bp and they raised it by 25,  $\delta_t = 0.15$ 

$$f_t^0 - f_{t-1}^0 = \frac{1}{m_t} (E_t - E_{t-1}) \sum_{j=0}^{m_t - d_t} r_{t+j}$$
  

$$= \frac{1}{m_t} (m_t - d_t) \delta_t$$
  

$$\delta_t = \frac{m_t}{m_t - d_t} (f_t^0 - f_{t-1}^0)$$
  
= Kuttner's measure of a surprise change  
in the Fed's target

$$i_t^n$$
 = yield on *n*-month Treasury bond on day *t*  
 $i_t^n - i_{t-1}^n = \alpha_n + \beta_n \delta_t + \varepsilon_t^n$ 

|          |           | Response to targ | get change    |       |     |      |
|----------|-----------|------------------|---------------|-------|-----|------|
| Maturity | Intercept | Anticipated      | Unanticipated | $R^2$ | SE  | DW   |
| 3 month  | -0.7      | 4.4              | 79.1          | 0.70  | 7.1 | 1.82 |
|          | (0.5)     | (0.8)            | (8.4)         |       |     |      |
| 6 month  | -2.5      | 0.6              | 71.6          | 0.69  | 6.3 | 2.06 |
|          | (2.2)     | (0.1)            | (8.5)         |       |     |      |
| 12 month | -2.2      | - 2.3            | 71.6          | 0.64  | 6.9 | 2.10 |
|          | (1.8)     | (0.5)            | (7.8)         |       |     |      |
| 2 year   | -2.8      | -0.4             | 61.4          | 0.52  | 7.8 | 2.25 |
|          | (2.0)     | (0.1)            | (6.0)         |       |     |      |
| 5 year   | -2.4      | - 5.8            | 48.1          | 0.33  | 8.6 | 2.37 |
|          | (1.6)     | (0.9)            | (4.3)         |       |     |      |
| 10 year  | -2.4      | - 7.4            | 31.5          | 0.19  | 7.8 | 2.37 |
|          | (1.8)     | (1.3)            | (3.1)         |       |     |      |
| 30 year  | - 2.5     | -8.2             | 19.4          | 0.13  | 6.5 | 2.46 |
|          | (2.2)     | (1.7)            | (2.3)         |       |     |      |

The 1-day response of interest rates to the Fed funds surprises<sup>a</sup>

<sup>a</sup> *Note*: Anticipated and unanticipated changes in the Fed funds target are computed from the Fed funds futures rates, as described in the text. Parentheses contain *t*-statistics. See also notes to Table 1.

#### Drawback to Kuttner's measure:

extreme weight to changes near end of month  $\delta_t = \frac{m_t}{m_t - d_t} (f_t^0 - f_{t-1}^0)$ 

## The actual fed funds rate historically not equal to target



#### Solutions:

(1) Hamilton (St. Louis Review, 2008)
generalizes Kuttner's formlua to recognize
difference of actual fed funds rate from target.
(2) Look at change in *f*<sup>1</sup><sub>t</sub> instead of *f*<sup>0</sup><sub>t</sub>.

# B. Application: daily monetary policy shocks

 $\Delta R_w$  = change in 30-year mortgage rate in week w  $\ell_w^*$  = change in  $f_t^{(1)}$  on day t of week w if t was FOMC day or monetary policy announcement  $\ell_w^* = 0$  otherwise

In regression of  $\Delta R_w$  on constant,

3 lags, and  $\ell_w^*$ , coefficient on  $\ell_w^*$  is 0.53

with standard error of 0.11 for data

Oct 1988 - June 2006.

FOMC was scheduled to meet Jan 30, 2008 but announced 75 bp intermeeting cut on Jan 22



What if we treated every change in  $f_t^{(1)}$  as if it was a monetary policy shock?

 $\ell_w$  = change in  $f_1^{(1)}$  between start and end of week *w* (all days)

In regression of  $\Delta R_w$  on constant,

3 lags, and  $\ell_w$ , coefficient on  $\ell_w$  is 0.53 with standard error of 0.04 for data Oct 1988 - June 2006.

 $h_m = \log of new home sales in month m$ Regression of  $h_m$  on seasonals, lags, lagged GDP, time trend, and 30 lags of weekly changes in mortgage rate.



Separate data source: National Association of Realtors' cross-section survey of time spent searching before buying a house



### Households differ in search times Weibull distribution:

$$f(j;k,\lambda) = \frac{k}{\lambda} \left(\frac{j}{\lambda}\right)^{k-1} \exp[-(j/\lambda)^k]$$



#### Unrestricted coefficients on lagged weekly mortgage changes

25

#### Same as effect of 20 bp increase in fed funds futures



26

# C. FOMC meeting decisions (Romer and Romer, 2004)

- Step 1: Studied minutes and announcements for each FOMC meeting to calculate the change in target that Fed decided to implement
- For data since 1994, this is straightforward (Fed announced its decision publicly)
- For earlier periods, it can be much less clear (Fed often viewed policy in terms of monetary aggregates, not funds rate)

| Romer-Romer |         |         | Thornton (DFEDTAR on FRED) |        | RED) |
|-------------|---------|---------|----------------------------|--------|------|
| MTGDATE     | DTARG   | OLDTARG | 1995-07-05                 | 6.0000 |      |
| 70695       | -0.2500 | 6.0000  | 1995-07-06                 | 5.7500 |      |
| 82295       | 0.0000  | 5.7500  | 1995-07-07                 | 5.7500 |      |
| 92695       | 0.0000  | 5.7500  |                            |        |      |
| 111595      | 0.0000  | 5.7500  | 1995-12-18                 | 5.7500 |      |
| 121995      | -0.2500 | 5.7500  | 1995-12-19                 | 5.5000 |      |
| 13196       | -0.2500 | 5.5000  | 1995-12-20                 | 5.5000 |      |
| 32696       | 0.0000  | 5.2500  |                            |        |      |

| Romer-Romer |         |         | Thornton (DFEDTAR on FRED) |         | RED) |
|-------------|---------|---------|----------------------------|---------|------|
| MTGDATE     | DTARG   | OLDTARG | 1982-10-05                 | 10.0000 |      |
| 82482       | -0.7500 | 10.2500 | 1982-10-06                 | 10.0000 |      |
| 100582      | -0.7500 | 10.2500 | 1982-10-07                 | 9.5000  |      |
| 111682      | -0.5000 | 9.5000  |                            |         |      |
| 122182      | 0.0000  | 8.5000  | 1982-11-16                 | 9.5000  |      |
|             |         |         | 1982-11-17                 | 9.5000  |      |
|             |         |         | 1982-11-18                 | 9.5000  |      |
|             |         |         | 1982-11-19                 | 9.0000  |      |

- Step 2: Regressed Fed's intended change in target on Fed's own forecasts of inflation and output at time of meeting.
- Fitted value interpreted as Fed response to economic conditions.
- Residual interpreted as shock s<sub>t</sub> to monetary policy in month t.
- $s_t = 0$  if no meeting in month *t*

#### • Step 3:

Our baseline regression is therefore:

(2) 
$$\Delta y_t = a_0 + \sum_{k=1}^{11} a_k D_{kt} + \sum_{i=1}^{24} b_i \Delta y_{t-i}$$

$$+\sum_{j=1}^{36}c_jS_{t-j}+e_t,$$

where y is the log of industrial production, S is our new measure of monetary policy shocks, and the  $D_k$ 's are monthly dummies. Our sample period is 1970:1–1996:12, with the values of  $S_t$ before 1969:3 set to zero. The end date is the Can think of this as first equation in a 2-variable VAR for  $\mathbf{y}_t = (\Delta y_t, S_t)'$ . Second equation:

$$S_t = \varepsilon_t^S$$

 $S_t$  is already a shock (not forecastable)

$$\begin{bmatrix} \Delta y_t \\ S_t \end{bmatrix} = \begin{bmatrix} c_t \\ 0 \end{bmatrix} + \Phi_1 \mathbf{y}_{t-1} + \dots + \Phi_{36} \mathbf{y}_{t-36} + \mathbf{\varepsilon}_t$$
  
Second row of  $\Phi_j = \mathbf{0}$   
(1, 1) element of  $\Phi_{25}, \dots, \Phi_{36} = 0$ 

 $\Psi_0 = \mathbf{I}_n$  $\Psi_1 = \Phi_1$  $\Psi_2 = \Phi_1^2 + \Phi_2$  $\Psi_s = \Phi_1 \Psi_{s-1} + \Phi_2 \Psi_{s-2} + \dots + \Phi_p \Psi_{s-p}$ Interested in cumulative effect of  $S_t$ on level of industrial production = (1,2) element of  $\Psi_0 + \Psi_1 + \cdots + \Psi_s$ 

## Effect on output of unanticipated 100 bp increase in intended target



## Effect on price level of unanticipated 100 bp increase in intended target



Romer and Romer alternatively report a VAR based on accumulation of  $S_t$ :

$$\begin{split} \tilde{S}_{t} &= \tilde{S}_{t-1} + S_{t} \\ \tilde{S}_{0} &= 0 \\ \mathbf{y}_{t} &= (\Delta y_{t}, \tilde{S}_{t})' \\ \begin{bmatrix} \Delta y_{t} \\ \tilde{S}_{t} \end{bmatrix} = \begin{bmatrix} c_{t} \\ \tilde{c} \end{bmatrix} + \mathbf{\Phi}_{1} \mathbf{y}_{t-1} + \dots + \mathbf{\Phi}_{36} \mathbf{y}_{t-36} + \mathbf{\varepsilon}_{t} \\ \mathbf{\Phi}_{j} \text{ unrestricted} \end{split}$$

This procedure deliberately and knowingly introduces a unit root into  $\tilde{S}_t$ .

OLS will minimize

$$T^{-1} \sum_{t=1}^{T} (\tilde{S}_{t} - \tilde{c} - \boldsymbol{\phi}_{1S}' \mathbf{y}_{t-1} - \dots - \boldsymbol{\phi}_{36,S}' \mathbf{y}_{t-36})^{2}$$

Diverges to infinity unless second element of

$$\mathbf{\phi}_{1S} + \dots + \mathbf{\phi}_{36,S} \rightarrow 1$$

Forcing OLS to estimate a parameter that

the researcher knows with certainty

pointlessly introduces an additional source

of measurement error.

# D. Identifying DSGE from daily data (Nakamura and Steinsson)

- Nakamura and Steinsson argue that changes on day of FOMC meeting could reflect more news than just the meeting.
- They look at changes in 5 measures in a 30-minute window 10 minutes before to 20 minutes after the FOMC announcement.

- (1) Kuttner measure of unanticipated change in current-month's fed funds rate from fed funds futures
- (2) Kuttner measure of unanticipated change in fed funds futures expected outcome of next FOMC meeting
- (3)-(5) Change in 3-month Eurodollar futures 2-, 3-, and 4-quarters ahead

- Calculate first principal component of these 5 variables on set of FOMC announcements 1995-2012.
- Regress change in interest rate for this day on a constant and this component (normalize 1-year coefficient = 1.0)

|                                 | Nominal | Real   | Inflation |
|---------------------------------|---------|--------|-----------|
| 3M Treasury Yield               | 0.67    |        |           |
|                                 | (0.14)  |        |           |
| 6M Treasury Yield               | 0.85    |        |           |
|                                 | (0.11)  |        |           |
| 1Y Treasury Yield               | 1.00    |        |           |
|                                 | (0.14)  |        |           |
| 2Y Treasury Yield               | 1.10    | 1.06   | 0.04      |
|                                 | (0.33)  | (0.24) | (0.18)    |
| 3Y Treasury Yield               | 1.06    | 1.02   | 0.04      |
|                                 | (0.36)  | (0.25) | (0.17)    |
| 5Y Treasury Yield               | 0.73    | 0.64   | 0.09      |
|                                 | (0.20)  | (0.15) | (0.11)    |
| 10Y Treasury Yield              | 0.38    | 0.44   | -0.06     |
|                                 | (0.17)  | (0.13) | (0.08)    |
| 2Y Treasury Inst. Forward Rate  | 1.14    | 0.99   | 0.15      |
|                                 | (0.46)  | (0.29) | (0.23)    |
| 3Y Treasury Inst. Forward Rate  | 0.82    | 0.88   | -0.06     |
|                                 | (0.43)  | (0.32) | (0.15)    |
| 5Y Treasury Inst. Forward Rate  | 0.26    | 0.47   | -0.21     |
|                                 | (0.19)  | (0.17) | (0.08)    |
| 10Y Treasury Inst. Forward Rate | -0.08   | 0.12   | -0.20     |
|                                 | (0.18)  | (0.12) | (0.09)    |

New Keynesian Phillips Curve:

 $\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \kappa \zeta \hat{x}_t$ 

 $\hat{\pi}_t = \%$  deviation inflation from steady state

 $\hat{x}_t = \%$  deviation real output from s.s.

- $\beta$  = discount rate
- $\kappa \zeta$  = summary of nominal and real rigidities  $\kappa \zeta \rightarrow \infty$  for perfectly flexible prices

 $\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \kappa \zeta \hat{x}_t$  $\hat{\pi}_t = \kappa \zeta \sum_{s=0}^{\infty} \beta^s E_t \hat{x}_{t+s}$  $\frac{\partial \hat{\pi}_t}{\partial u_t^m} = \kappa \zeta \sum_{s=0}^{\infty} \beta^s \frac{\partial E_t \hat{x}_{t+s}}{u_t^m}$ 

Consumption Euler equation:

$$\hat{x}_t = E_t \hat{x}_{t+1} - \sigma(\hat{r}_t - \hat{r}_t^n)$$

- $\sigma$  = intertemporal elasticity of substitution
- $\hat{r}_t = \hat{\iota}_t E_t \hat{\pi}_{t+1} = \text{real interest rate}$
- $\hat{r}_t^n$  = natural rate of interest

$$\frac{\partial \hat{x}_t}{\partial u_t^m} = \frac{\partial E_t \hat{x}_{t+1}}{\partial u_t^m} - \sigma \frac{\partial \hat{r}_t}{\partial u_t^m}$$





 $\frac{\partial \hat{\pi}_{t}}{\partial u_{t}^{m}} = -\sigma \kappa \zeta \sum_{s=0}^{\infty} \beta^{s} \frac{\partial E_{t} \hat{r}_{t+s}^{v}}{u_{t}^{m}}$ Response of real rates large relative to inflation means high nominal or real rigidities ( $\kappa \zeta$  small) or low intertemporal substitution ( $\sigma$  small).

- Estimate key parameters of Christiano, Eichenbaum Evans (JPE, 2005) quarterly model.
- Observed and predicted responses of 2, 3, 5, 10 year nominal yields, real yields, nominal forwards, and real forwards to monetary policy shock.

|                                 | Nominal | Real   | Inflation |
|---------------------------------|---------|--------|-----------|
| 3M Treasury Yield               | 0.67    |        |           |
|                                 | (0.14)  |        |           |
| 6M Treasury Yield               | 0.85    |        |           |
|                                 | (0.11)  |        |           |
| 1Y Treasury Yield               | 1.00    |        |           |
|                                 | (0.14)  |        |           |
| 2Y Treasury Yield               | 1.10    | 1.06   | 0.04      |
|                                 | (0.33)  | (0.24) | (0.18)    |
| 3Y Treasury Yield               | 1.06    | 1.02   | 0.04      |
|                                 | (0.36)  | (0.25) | (0.17)    |
| 5Y Treasury Yield               | 0.73    | 0.64   | 0.09      |
|                                 | (0.20)  | (0.15) | (0.11)    |
| 10Y Treasury Yield              | 0.38    | 0.44   | -0.06     |
|                                 | (0.17)  | (0.13) | (0.08)    |
| 2Y Treasury Inst. Forward Rate  | 1.14    | 0.99   | 0.15      |
| •                               | (0.46)  | (0.29) | (0.23)    |
| 3Y Treasury Inst. Forward Rate  | 0.82    | 0.88   | -0.06     |
|                                 | (0.43)  | (0.32) | (0.15)    |
| 5Y Treasury Inst. Forward Rate  | 0.26    | 0.47   | -0.21     |
|                                 | (0.19)  | (0.17) | (0.08)    |
| 10Y Treasury Inst. Forward Rate | -0.08   | 0.12   | -0.20     |
|                                 | (0.18)  | (0.12) | (0.09)    |

| param   | meaning                 | estimate | 95%          |
|---------|-------------------------|----------|--------------|
| $\xi_p$ | prob no price $\Delta$  | 0.99     | [0.49,0.99]  |
| $\xi_w$ | prob no wage $\Delta$   | 0.90     | [0.48,0.99]  |
| $k_I$   | recip of invest elast   | 25.0     | [0.69,25.0]  |
| ho      | inertia in policy rule  | 0.96     | [0.91,0.99]  |
| V       | inertia in policy shock | 0.74     | [0.01, 0.96] |



Figure 2: Interest Rates and Inflation in the Data



Figure 3: The Response of Inflation and Interest Rates to the Policy News Shock in Our Estimation of CEE/ACEL Model

### But Blue Chip forecast expects higher GDP after contractionary monetary shock

| 1.35   |
|--------|
| (1.59) |
| 1.58   |
| (0.61) |
| 0.66   |
| (0.34) |
| 0.82   |
| (0.26) |
| 0.50   |
| (0.30) |
| 0.55   |
| (0.27) |
| 0.47   |
| (0.30) |
| 0.88   |
| (0.66) |
|        |

- Interpretation: Fed has information that market did not
- People see Fed contracted, assume it means Fed sees faster growth
- Fed information effect