No class Wed Oct 18

Set identification using sign restrictions

Could we still draw structural conclusions using much weaker identifying assumptions, e.g., supply curve slopes up and demand curve slopes down?

$$\boldsymbol{\varepsilon}_{t} = \text{vector of VAR forecast errors}$$
$$\boldsymbol{\Omega} = E(\boldsymbol{\varepsilon}_{t}\boldsymbol{\varepsilon}_{t}')$$
$$\boldsymbol{\hat{\varepsilon}}_{t} = \mathbf{y}_{t} - \boldsymbol{\hat{\varepsilon}} - \boldsymbol{\hat{\Phi}}_{1}\mathbf{y}_{t-1} - \dots - \boldsymbol{\hat{\Phi}}_{p}\mathbf{y}_{t-p}$$
$$\boldsymbol{\hat{\Omega}} = T^{-1}\sum_{t=1}^{T} \boldsymbol{\hat{\varepsilon}}_{t}\boldsymbol{\hat{\varepsilon}}_{t}'$$
$$\mathbf{v}_{t} = \text{vector of structural shocks}$$
$$E(\mathbf{v}_{t}\mathbf{v}_{t}') = \mathbf{I}_{n}$$
$$\boldsymbol{\varepsilon}_{t} = \mathbf{H}\mathbf{v}_{t}$$
$$E(\boldsymbol{\varepsilon}_{t}\boldsymbol{\varepsilon}_{t}') = \boldsymbol{\Omega} = \mathbf{H}\mathbf{H}'$$

 $E(\mathbf{\varepsilon}_t \mathbf{\varepsilon}_t') = \mathbf{\Omega} = \mathbf{H}\mathbf{H}'$

One example of an **H** we could consider is Cholesky factor $\Omega = \mathbf{PP}'$ for **P** lower triangular. The set of all possible **H** can be characterized as $\mathbf{H} = \mathbf{PQ}$ for $\mathbf{Q} \in O_n$, the set of all orthonormal $(n \times n)$ matrices

$$O_n = \{ \mathbf{Q} : \mathbf{Q}\mathbf{Q}' = \mathbf{I}_n \}$$

Proof: (1) If $\mathbf{H} = \mathbf{PQ}$ then $\mathbf{HH}' = \mathbf{PQQ}'\mathbf{P}' = \mathbf{\Omega}$ (2) If $\mathbf{HH}' = \mathbf{\Omega}$ then $\mathbf{HH}' = \mathbf{PP}'$ and $\mathbf{P}^{-1}\mathbf{HH}'(\mathbf{P}')^{-1} = \mathbf{I}_n$ so $\mathbf{P}^{-1}\mathbf{H} = \mathbf{Q}$ must be an orthonormal matrix (that is, \mathbf{H} must be of form $\mathbf{H} = \mathbf{PQ}$)

What does
$$O_n$$
 look like for $n = 2$?
 $\mathbf{Q} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ or $\begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$
for $\theta \in [-\pi, \pi]$.

If we generated $\theta \sim U[-\pi, \pi]$ and then selected one of the above matrices with prob 1/2, this is described as a distribution over O_2 that is Haar-uniform. Rubio-Ramírez, Waggoner and Zha (2010) algorithm for generating a Haar-uniform draw from O_n . (1) Generate an $(n \times n)$ matrix **X** of independent N(0, 1) variables. (2) Calculate the *QR* decomposition X = QR where
 Q is orthonormal and R is upper triangular
 Matlab: [Q,R] = qr(X)

How the *QR* decomposition works: first column of **Q** is simply first column of **X** normalized to have unit length:

$$\begin{bmatrix} q_{11} \\ q_{21} \\ \vdots \\ q_{n1} \end{bmatrix} = \begin{bmatrix} x_{11}/\sqrt{x_{11}^2 + \dots + x_{n1}^2} \\ x_{21}/\sqrt{x_{11}^2 + \dots + x_{n1}^2} \\ \vdots \\ x_{n1}/\sqrt{x_{11}^2 + \dots + x_{n1}^2} \end{bmatrix}$$

$$\begin{bmatrix} q_{11} \\ q_{21} \end{bmatrix} = \begin{bmatrix} x_{11}/\sqrt{x_{11}^2 + x_{21}^2} \\ x_{21}/\sqrt{x_{11}^2 + x_{21}^2} \end{bmatrix}$$

For n = 2, q_{11} is cosine of angle formed by x_{11}, x_{21} and q_{21} is the sine. $\mathbf{Q} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ or $\begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$ $\theta \sim U(-\pi, \pi)$

Algorithm for generating possible draws for **H**. (1) Either fix Ω and Γ at MLEs $\hat{\Omega} = T^{-1} \sum_{t=1}^{T} \hat{\epsilon}_t \hat{\epsilon}'_t$ and $\hat{\Gamma}' = \left(\sum_{t=1}^{T} \mathbf{y}_t \mathbf{x}_t'\right) \left(\sum_{t=1}^{T} \mathbf{x}_t \mathbf{x}_t'\right)^{-1} \Rightarrow \hat{\Psi}_s \text{ or }$ draw Ω^{-1} from Wishart with T - p degrees of freedom and scale matrix $T\hat{\Omega}$ and use this to draw vec(Γ) ~ $N(\operatorname{vec}[\hat{\Gamma}], \Omega \otimes [\sum_{t=1}^{T} \mathbf{x}_t \mathbf{x}'_t]^{-1}).$ (2) Find Cholesky factor $\Omega = PP'$, draw Q from Haar distribution, and calculate candidate H = PQ.

(3) Calculate signs of chosen magnitudes in $\Psi_s H$ and keep draw if these satisfy theory, otherwise throw out.

(e.g., monetary contraction raises interest rate, lowers output and inflation on impact (s = 0) (4) Researchers typically report median accepted draw for element i, j of $\Psi_s H$ as if it is estimate of effect of structural shock jon variable i and 68% of draws around the median as if they were "error bands" (this is problematic!)

Example:

- $y_{1t} =$ fed funds rate
- $y_{2t} = \log \text{ output gap}$
- $y_{3t} = inflation$

Let's run the algorithm to find the effect on output of a monetary policy shock that raises fed funds rate by 0.25%, with one change– we forget to throw any of the draws out! Supposed effect on output gap of 0.25% monetary contraction without making any assumptions (68% "error bands")

Supposed effect at horizon zero on output gap of 0.25% monetary contraction

This magnitude is 0.25 times the ratio of the (2,1) element of **H** to the (1,1) element = 0.25 times ratio of effect of shock 1 (monetary policy?) on output to its effect on fed funds rate

 $\mathbf{h}_1 = \mathbf{P}\mathbf{q}_1$ $= \begin{bmatrix} p_{11} & 0 & 0 \\ p_{21} & p_{22} & 0 \\ p_{31} & p_{32} & p_{33} \end{bmatrix} \begin{bmatrix} x_{11}/\sqrt{x_{11}^2 + x_{21}^2 + x_{31}^2} \\ x_{21}/\sqrt{x_{11}^2 + x_{21}^2 + x_{31}^2} \\ x_{31}/\sqrt{x_{11}^2 + x_{21}^2 + x_{31}^2} \end{bmatrix}$ $h_{21}/h_{11} = \frac{p_{21}x_{11}+p_{22}x_{21}}{p_{11}x_{11}} = \frac{p_{21}}{p_{11}} + \frac{p_{22}}{p_{11}} \frac{x_{21}}{x_{11}}$ $x_{ii} \sim N(0,1)$ $x_{21}/x_{11} \sim \text{Cauchy}(0,1)$ $h_{21}/h_{11} \sim \text{Cauchy}(p_{21}/p_{11}, p_{22}/p_{11})$

Supposed effect at horizon zero on output gap of 0.25% monetary contraction

If we reported all the draws instead of 68% "error bands," answer would just be the real line. Implicit distribution has made it appear we learned more than we did.

What about distribution of individual elements
$$h_{ij}$$
?
 $h_{11} = p_{11}x_{11}/\sqrt{x_{11}^2 + x_{21}^2 + \dots + x_{n1}^2}$
 $p_{11} = \sqrt{\omega_{11}}$

Analytic distribution of h_{ij}

Although the procedure implies a uniform distribution for the angle of rotation θ associated with the matrix **Q**, we are not interested in inference about θ .

The algorithm implies a nonuniform distribution for structural impulse-response coefficients and this is what we are looking at with median and "error bands". How do sign restrictions change any of this? $\Delta w_t = \text{growth rate of real labor compensation}$ $\Delta n_t = \text{growth rate of total employment}$ $\mathbf{y}_t = (\Delta w_t, \Delta n_t)'$ demand: $\Delta n_t = k^d + \beta^d \Delta w_t + b_{11}^d \Delta w_{t-1} + b_{12}^d \Delta n_{t-1} + b_{21}^d \Delta w_{t-2}$ $+ b_{22}^d \Delta n_{t-2} + \dots + b_{m1}^d \Delta w_{t-m} + b_{m2}^d \Delta n_{t-m} + u_t^d$ supply:

$$\Delta n_t = k^s + \alpha^s \Delta w_t + b_{11}^s \Delta w_{t-1} + b_{12}^s \Delta n_{t-1} + b_{21}^s \Delta w_{t-2} + b_{22}^s \Delta n_{t-2} + \dots + b_{m1}^s \Delta w_{t-m} + b_{m2}^s \Delta n_{t-m} + u_t^s \text{sign restrictions: } \beta^d \leq 0, \ \alpha^s \geq 0.$$

For fixed α^{s} , MLE of β^{d} can be found by an IV regression of $\hat{\varepsilon}_{2t}$ on $\hat{\varepsilon}_{1t}$ using $\hat{\varepsilon}_{2t} - \alpha \hat{\varepsilon}_{1t}$ as instrument: $\hat{\beta}(\alpha) = \frac{\sum_{t=1}^{T} (\hat{\varepsilon}_{2t} - \alpha \hat{\varepsilon}_{1t}) \hat{\varepsilon}_{2t}}{\sum_{t=1}^{T} (\hat{\varepsilon}_{2t} - \alpha \hat{\varepsilon}_{1t}) \hat{\varepsilon}_{1t}} = \frac{(\hat{\omega}_{22} - \alpha \hat{\omega}_{12})}{(\hat{\omega}_{12} - \alpha \hat{\omega}_{11})}$

$$\hat{\beta}(\alpha) = \frac{\sum_{t=1}^{T} (\hat{\varepsilon}_{2t} - \alpha \hat{\varepsilon}_{1t}) \hat{\varepsilon}_{2t}}{\sum_{t=1}^{T} (\hat{\varepsilon}_{2t} - \alpha \hat{\varepsilon}_{1t}) \hat{\varepsilon}_{1t}} = \frac{(\hat{\omega}_{22} - \alpha \hat{\omega}_{12})}{(\hat{\omega}_{12} - \alpha \hat{\omega}_{11})}$$

In the data, $\hat{\omega}_{12} > 0$.

At $\alpha = h_H = \hat{\omega}_{22}/\hat{\omega}_{12}$, numerator switches from positive to negative.

At $\alpha = h_L = \hat{\omega}_{12}/\hat{\omega}_{11}$, denominator switches from positive to negative.

 $\alpha > 0$ and $\beta < 0$ restricts $h_L < \alpha < h_H$ but allows any $\beta < 0$.

Intuition: $h_L = \hat{\omega}_{12}/\hat{\omega}_{11}$ is coeff from OLS regression of $\hat{\varepsilon}_{2t}$ on $\hat{\varepsilon}_{1t}$

= convex combination of α and β

$$\Rightarrow \beta < h_L, \alpha > h_L$$

since $h_L > 0$, this restricts α , not β

Intuition: $h_{H}^{-1} = \hat{\omega}_{12}/\hat{\omega}_{22}$ is coefficient from OLS regression of $\hat{\varepsilon}_{1t}$ on $\hat{\varepsilon}_{2t}$ = convex combination of α^{-1} and β^{-1} $\Rightarrow \beta^{-1} < h_{H}^{-1}, \alpha^{-1} > h_{H}^{-1}$ since $h_H > 0$, this restricts α , not β $\Rightarrow h_L < \alpha < h_H$

Distribution for draws of β when sign restrictions are imposed is Cauchy truncated to be negative.

Distribution for draws of α when sign restrictions are imposed is Cauchy truncated to be between h_L and h_H .