No class Wed Oct 18

Set identification using sign restrictions

Could we still draw structural conclusions using much weaker identifying assumptions, e.g., supply curve slopes up and demand curve slopes down?

$$
\begin{aligned}
& \boldsymbol{\varepsilon}_{t}=\text { vector of } \mathrm{VAR} \text { forecast errors } \\
& \boldsymbol{\Omega}=E\left(\boldsymbol{\varepsilon}_{t} \boldsymbol{\varepsilon}_{t}^{\prime}\right) \\
& \hat{\boldsymbol{\varepsilon}}_{t}=\mathbf{y}_{t}-\hat{\mathbf{c}}-\hat{\boldsymbol{\Phi}}_{1} \mathbf{y}_{t-1}-\cdots-\hat{\boldsymbol{\Phi}}_{p} \mathbf{y}_{t-p} \\
& \hat{\boldsymbol{\Omega}}=T^{-1} \sum_{t=1}^{T} \hat{\boldsymbol{\varepsilon}}_{t} \hat{\boldsymbol{\varepsilon}}_{t}^{\prime} \\
& \mathbf{v}_{t}=\text { vector of structural shocks } \\
& E\left(\mathbf{v}_{t} \mathbf{v}_{t}^{\prime}\right)=\mathbf{I}_{n} \\
& \boldsymbol{\varepsilon}_{t}=\mathbf{H} \mathbf{v}_{t} \\
& E\left(\boldsymbol{\varepsilon}_{t} \boldsymbol{\varepsilon}_{t}^{\prime}\right)=\boldsymbol{\Omega}=\mathbf{H} \mathbf{H}^{\prime}
\end{aligned}
$$

$E\left(\boldsymbol{\varepsilon}_{t} \boldsymbol{\varepsilon}_{t}^{\prime}\right)=\boldsymbol{\Omega}=\mathbf{H} \mathbf{H}^{\prime}$
One example of an \mathbf{H} we could consider is
Cholesky factor $\boldsymbol{\Omega}=\mathbf{P P}{ }^{\prime}$ for \mathbf{P} lower triangular.
The set of all possible \mathbf{H} can be characterized as $\mathbf{H}=\mathbf{P Q}$ for $\mathbf{Q} \in O_{n}$, the set of all orthonormal $(n \times n)$ matrices

$$
O_{n}=\left\{\mathbf{Q}: \mathbf{Q Q}^{\prime}=\mathbf{I}_{n}\right\}
$$

Proof:
(1) If $\mathbf{H}=\mathbf{P Q}$ then $\mathbf{H H}^{\prime}=\mathbf{P Q Q} \mathbf{P}^{\prime}=\boldsymbol{\Omega}$
(2) If $\mathbf{H H}^{\prime}=\boldsymbol{\Omega}$ then $\mathbf{H H}^{\prime}=\mathbf{P} \mathbf{P}^{\prime}$ and
$\mathbf{P}^{-1} \mathbf{H H}^{\prime}\left(\mathbf{P}^{\prime}\right)^{-1}=\mathbf{I}_{n}$ so $\mathbf{P}^{-1} \mathbf{H}=\mathbf{Q}$ must be an orthonormal matrix (that is, \mathbf{H} must be of form $\mathbf{H}=\mathbf{P Q}$)

What does O_{n} look like for $n=2$?
$\mathbf{Q}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ or $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$
for $\theta \in[-\pi, \pi]$.

If we generated $\theta \sim U[-\pi, \pi]$ and then selected one of the above matrices with prob $1 / 2$, this is described as a distribution over O_{2} that is Haar-uniform.

Rubio-Ramírez, Waggoner and Zha (2010) algorithm for generating a Haar-uniform draw from O_{n}.
(1) Generate an $(n \times n)$ matrix \mathbf{X} of independent $N(0,1)$ variables.
(2) Calculate the $Q R$ decomposition $\mathbf{X}=\mathbf{Q R}$ where
\mathbf{Q} is orthonormal and \mathbf{R} is upper triangular
Matlab: $[Q, R]=\operatorname{qr}(X)$

How the $Q R$ decomposition works: first column of \mathbf{Q} is simply first column of \mathbf{X} normalized to have unit length:

$$
\left[\begin{array}{c}
q_{11} \\
q_{21} \\
\vdots \\
q_{n 1}
\end{array}\right]=\left[\begin{array}{c}
x_{11} / \sqrt{x_{11}^{2}+\cdots+x_{n 1}^{2}} \\
x_{21} / \sqrt{x_{11}^{2}+\cdots+x_{n 1}^{2}} \\
\vdots \\
x_{n 1} / \sqrt{x_{11}^{2}+\cdots+x_{n 1}^{2}}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
q_{11} \\
q_{21}
\end{array}\right]=\left[\begin{array}{l}
x_{11} / \sqrt{x_{11}^{2}+x_{21}^{2}} \\
x_{21} / \sqrt{x_{11}^{2}+x_{21}^{2}}
\end{array}\right]
$$

For $n=2, q_{11}$ is cosine of angle formed by x_{11}, x_{21} and q_{21} is the sine.
$\mathbf{Q}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ or $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$
$\theta \sim U(-\pi, \pi)$

Algorithm for generating possible draws for \mathbf{H}.
(1) Either fix $\boldsymbol{\Omega}$ and Γ at MLEs $\hat{\boldsymbol{\Omega}}=T^{-1} \sum_{t=1}^{T} \hat{\varepsilon}_{t} \hat{\boldsymbol{\varepsilon}}_{t}^{\prime}$
and $\hat{\Gamma}^{\prime}=\left(\sum_{t=1}^{T} \mathbf{y}_{t} \mathbf{x}_{t}^{\prime}\right)\left(\sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{\prime}\right)^{-1} \Rightarrow \hat{\Psi}_{s}$ or
draw Ω^{-1} from Wishart with $T-p$ degrees
of freedom and scale matrix $T \hat{\Omega}$ and use this
to draw $\operatorname{vec}(\Gamma) \sim N\left(\operatorname{vec}[\hat{\Gamma}], \boldsymbol{\Omega} \otimes\left[\sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{\prime}\right]^{-1}\right)$.
(2) Find Cholesky factor $\Omega=\mathbf{P P}^{\prime}$, draw \mathbf{Q} from Haar distribution, and calculate candidate $\mathbf{H}=\mathbf{P Q}$.
(3) Calculate signs of chosen magnitudes in
$\Psi_{s} \mathbf{H}$ and keep draw if these satisfy theory, otherwise throw out.
(e.g., monetary contraction raises interest
rate, lowers output and inflation on
impact $(s=0)$
(4) Researchers typically report median accepted draw for element i, j of $\Psi_{s} \mathbf{H}$ as if it is estimate of effect of structural shock j on variable i and 68% of draws around the median as if they were "error bands" (this is problematic!)

Example:

$y_{1 t}=$ fed funds rate
$y_{2 t}=$ log output gap
$y_{3 t}=$ inflation

Let's run the algorithm to find the effect on output of a monetary policy shock that raises fed funds rate by 0.25%, with one change- we forget to throw any of the draws out!

Supposed effect on output gap of 0.25% monetary contraction without making any assumptions (68\% "error bands")

Supposed effect at horizon zero on output gap of

 0.25% monetary contraction

This magnitude is 0.25 times the ratio of the $(2,1)$ element of \mathbf{H} to the $(1,1)$ element $=0.25$ times ratio of effect of shock 1 (monetary policy?) on output to its effect on fed funds rate

$\mathbf{h}_{1}=\mathbf{P q}_{1}$

$=\left[\begin{array}{ccc}p_{11} & 0 & 0 \\ p_{21} & p_{22} & 0 \\ p_{31} & p_{32} & p_{33}\end{array}\right]\left[\begin{array}{l}x_{11} / \sqrt{x_{11}^{2}+x_{21}^{2}+x_{31}^{2}} \\ x_{21} / \sqrt{x_{11}^{2}+x_{21}^{2}+x_{31}^{2}} \\ x_{31} / \sqrt{x_{11}^{2}+x_{21}^{2}+x_{31}^{2}}\end{array}\right]$
$h_{21} / h_{11}=\frac{p_{21} x_{11}+p_{22} x_{21}}{p_{11} x_{11}}=\frac{p_{21}}{p_{11}}+\frac{p_{22}}{p_{11}} \frac{x_{21}}{x_{11}}$
$x_{i j} \sim N(0,1)$
$x_{21} / x_{11} \sim \operatorname{Cauchy}(0,1)$
$h_{21} / h_{11} \sim \operatorname{Cauchy}\left(p_{21} / p_{11}, p_{22} / p_{11}\right)$

Supposed effect at horizon zero on output gap of 0.25% monetary contraction

If we reported all the draws instead of 68\% "error bands," answer would just be the real line.
Implicit distribution has made it appear we learned more than we did.

What about distribution of individual elements $h_{i j}$?

$$
\begin{aligned}
& h_{11}=p_{11} x_{11} / \sqrt{x_{11}^{2}+x_{21}^{2}+\cdots+x_{n 1}^{2}} \\
& p_{11}=\sqrt{\omega_{11}}
\end{aligned}
$$

Analytic distribution of $h_{i j}$

Panel A

Although the procedure implies a uniform distribution for the angle of rotation θ associated with the matrix \mathbf{Q}, we are not interested in inference about θ.
The algorithm implies a nonuniform distribution for structural impulse-response coefficients and this is what we are looking at with median and "error bands".

How do sign restrictions change any of this?
$\Delta w_{t}=$ growth rate of real labor compensation
$\Delta n_{t}=$ growth rate of total employment
$\mathbf{y}_{t}=\left(\Delta w_{t}, \Delta n_{t}\right)^{\prime}$
demand: $\Delta n_{t}=k^{d}+\beta^{d} \Delta w_{t}+b_{11}^{d} \Delta w_{t-1}+b_{12}^{d} \Delta n_{t-1}+b_{21}^{d} \Delta w_{t-2}$

$$
+b_{22}^{d} \Delta n_{t-2}+\cdots+b_{m 1}^{d} \Delta w_{t-m}+b_{m 2}^{d} \Delta n_{t-m}+u_{t}^{d}
$$

supply:

$$
\begin{aligned}
\Delta n_{t}= & k^{s}+\alpha^{s} \Delta w_{t}+b_{11}^{s} \Delta w_{t-1}+b_{12}^{s} \Delta n_{t-1}+b_{21}^{s} \Delta w_{t-2} \\
& +b_{22}^{s} \Delta n_{t-2}+\cdots+b_{m 1}^{s} \Delta w_{t-m}+b_{m 2}^{s} \Delta n_{t-m}+u_{t}^{s}
\end{aligned}
$$

sign restrictions: $\beta^{d} \leq 0, \alpha^{s} \geq 0$.

For fixed α^{s}, MLE of β^{d} can be found by an IV regression of $\hat{\varepsilon}_{2 t}$ on $\hat{\varepsilon}_{1 t}$ using $\hat{\varepsilon}_{2 t}-\alpha \hat{\varepsilon}_{1 t}$ as instrument:
$\hat{\beta}(\alpha)=\frac{\sum_{t=1}^{T}\left(\hat{\varepsilon}_{2 t}-\alpha \hat{\hat{k}}_{11}\right) \hat{\varepsilon}_{2 t}}{\sum_{t=1}^{T}\left(\hat{\varepsilon}_{t t}-\alpha \hat{\alpha}_{11} \hat{\varepsilon}_{1 t}\right.}=\frac{\left(\hat{\omega}_{22}-\alpha \hat{\omega}_{12}\right)}{\left(\hat{\omega}_{12}-\alpha \hat{\omega}_{11}\right)}$
$\hat{\beta}(\alpha)=\frac{\sum_{t=1}^{T}\left(\hat{\varepsilon}_{2 t}-\alpha \hat{\varepsilon}_{1 t} \hat{\varepsilon}_{2 t}\right.}{\sum_{t=1}^{T}\left(\hat{\varepsilon}_{2 t}-\alpha \hat{\varepsilon}_{1 t}\right) \hat{\varepsilon}_{1 t}}=\frac{\left(\hat{\omega}_{22}-\alpha \hat{\omega}_{12}\right)}{\left(\hat{\omega}_{12}-\alpha \hat{\omega}_{11}\right)}$
In the data, $\hat{\omega}_{12}>0$.
At $\alpha=h_{H}=\hat{\omega}_{22} / \hat{\omega}_{12}$, numerator switches
from positive to negative.
At $\alpha=h_{L}=\hat{\omega}_{12} / \hat{\omega}_{11}$, denominator switches from positive to negative.

$\alpha>0$ and $\beta<0$ restricts $h_{L}<\alpha<h_{H}$ but allows any $\beta<0$.

Intuition: $h_{L}=\hat{\omega}_{12} / \hat{\omega}_{11}$ is coeff from OLS regression of $\hat{\varepsilon}_{2 t}$ on $\hat{\varepsilon}_{1 t}$
$=$ convex combination of α and β
$\Rightarrow \beta<h_{L}, \alpha>h_{L}$
since $h_{L}>0$, this restricts α, not β

Intuition: $h_{H}^{-1}=\hat{\omega}_{12} / \hat{\omega}_{22}$ is coefficient from OLS regression of $\hat{\varepsilon}_{1 t}$ on $\hat{\varepsilon}_{2 t}$
$=$ convex combination of α^{-1} and β^{-1}
$\Rightarrow \beta^{-1}<h_{H}^{-1}, \alpha^{-1}>h_{H}^{-1}$
since $h_{H}>0$, this restricts α, not β
$\Rightarrow h_{L}<\alpha<h_{H}$

Distribution for draws of β when sign restrictions are imposed is Cauchy truncated to be negative.

Distribution for draws of α when sign restrictions are imposed is Cauchy truncated to be between h_{L} and h_{H}.

