No class Wed Oct 18

Set identification using sign restrictions

Could we still draw structural conclusions using much weaker identifying assumptions, e.g., supply curve slopes up and demand curve slopes down?

2

 ε_t = vector of VAR forecast errors

$$\mathbf{\Omega} = E(\mathbf{\varepsilon}_t \mathbf{\varepsilon}_t')$$

$$\hat{\boldsymbol{\varepsilon}}_t = \mathbf{y}_t - \hat{\mathbf{c}} - \hat{\boldsymbol{\Phi}}_1 \mathbf{y}_{t-1} - \dots - \hat{\boldsymbol{\Phi}}_p \mathbf{y}_{t-p}$$

$$\hat{\mathbf{\Omega}} = T^{-1} \sum_{t=1}^{T} \hat{\mathbf{\epsilon}}_t \hat{\mathbf{\epsilon}}_t'$$

 \mathbf{v}_t = vector of structural shocks

$$E(\mathbf{v}_t\mathbf{v}_t')=\mathbf{I}_n$$

$$\mathbf{\varepsilon}_t = \mathbf{H}\mathbf{v}_t$$

$$E(\mathbf{\varepsilon}_t\mathbf{\varepsilon}_t') = \mathbf{\Omega} = \mathbf{H}\mathbf{H}'$$

 $E(\mathbf{\varepsilon}_t\mathbf{\varepsilon}_t') = \mathbf{\Omega} = \mathbf{H}\mathbf{H}'$

One example of an \mathbf{H} we could consider is Cholesky factor $\mathbf{\Omega} = \mathbf{PP}'$ for \mathbf{P} lower triangular. The set of all possible \mathbf{H} can be characterized as $\mathbf{H} = \mathbf{PQ}$ for $\mathbf{Q} \in O_n$, the set of all orthonormal $(n \times n)$ matrices

$$O_n = \{ \mathbf{Q} : \mathbf{Q}\mathbf{Q}' = \mathbf{I}_n \}$$

4

Proof:

(1) If H = PQ then $HH' = PQQ'P' = \Omega$

(2) If $\mathbf{H}\mathbf{H}' = \mathbf{\Omega}$ then $\mathbf{H}\mathbf{H}' = \mathbf{P}\mathbf{P}'$ and

 $\mathbf{P}^{-1}\mathbf{H}\mathbf{H}'(\mathbf{P}')^{-1} = \mathbf{I}_n$ so $\mathbf{P}^{-1}\mathbf{H} = \mathbf{Q}$ must be an orthonormal matrix (that is, \mathbf{H} must be of form $\mathbf{H} = \mathbf{PQ}$)

5

What does O_n look like for n = 2?

$$\mathbf{Q} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \text{ or } \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$$
 for $\theta \in [-\pi, \pi]$.

If we generated $\theta \sim U[-\pi,\pi]$ and then selected one of the above matrices with prob 1/2, this is described as a distribution over O_2 that is Haar-uniform.

Rubio-Ramírez, Waggoner and Zha (2010) algorithm for generating a Haar-uniform draw from O_n .

(1) Generate an $(n \times n)$ matrix **X** of independent N(0,1) variables.

8

(2) Calculate the QR decomposition $\mathbf{X} = \mathbf{Q}\mathbf{R}$ where \mathbf{Q} is orthonormal and \mathbf{R} is upper triangular Matlab: $[\mathbf{Q},\mathbf{R}] = qr(\mathbf{X})$

9

How the QR decomposition works: first column of \mathbf{Q} is simply first column of \mathbf{X} normalized to have unit length:

$$\begin{bmatrix} q_{11} \\ q_{21} \\ \vdots \\ q_{n1} \end{bmatrix} = \begin{bmatrix} x_{11}/\sqrt{x_{11}^2 + \dots + x_{n1}^2} \\ x_{21}/\sqrt{x_{11}^2 + \dots + x_{n1}^2} \\ \vdots \\ x_{n1}/\sqrt{x_{11}^2 + \dots + x_{n1}^2} \end{bmatrix}$$

10

$$\begin{bmatrix} q_{11} \\ q_{21} \end{bmatrix} = \begin{bmatrix} x_{11}/\sqrt{x_{11}^2 + x_{21}^2} \\ x_{21}/\sqrt{x_{11}^2 + x_{21}^2} \end{bmatrix}$$

For n = 2, q_{11} is cosine of angle formed by x_{11}, x_{21} and q_{21} is the sine.

$$\mathbf{Q} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \text{ or } \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$$
$$\theta \sim U(-\pi, \pi)$$

11

Algorithm for generating possible draws for \mathbf{H} . (1) Either fix $\mathbf{\Omega}$ and $\mathbf{\Gamma}$ at MLEs $\hat{\mathbf{\Omega}} = T^{-1} \sum_{t=1}^T \hat{\mathbf{\varepsilon}}_t \hat{\mathbf{\varepsilon}}_t'$ and $\hat{\mathbf{\Gamma}}' = \left(\sum_{t=1}^T \mathbf{y}_t \mathbf{x}_t'\right) \left(\sum_{t=1}^T \mathbf{x}_t \mathbf{x}_t'\right)^{-1} \Rightarrow \hat{\mathbf{\Psi}}_s$ or draw $\mathbf{\Omega}^{-1}$ from Wishart with T-p degrees of freedom and scale matrix $T\hat{\mathbf{\Omega}}$ and use this to draw $\mathrm{vec}(\mathbf{\Gamma}) \sim N \Big(\mathrm{vec} \Big[\hat{\mathbf{\Gamma}}\Big], \mathbf{\Omega} \otimes \Big[\sum_{t=1}^T \mathbf{x}_t \mathbf{x}_t'\Big]^{-1}\Big)$.

- (2) Find Cholesky factor $\Omega = PP'$, draw Q from Haar distribution, and calculate candidate H = PQ.
- (3) Calculate signs of chosen magnitudes in $\Psi_s \mathbf{H}$ and keep draw if these satisfy theory, otherwise throw out.
- (e.g., monetary contraction raises interest rate, lowers output and inflation on impact (s=0)

(4) Researchers typically report median accepted draw for element i,j of $\Psi_s\mathbf{H}$ as if it is estimate of effect of structural shock j on variable i and 68% of draws around the median as if they were "error bands" (this is problematic!)

14

Example:

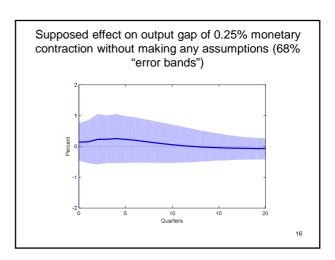
 $y_{1t} = \text{fed funds rate}$

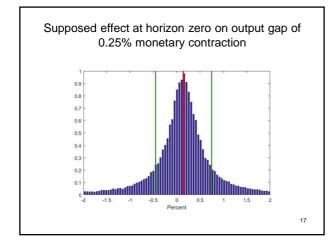
 $y_{2t} = \log \text{ output gap}$

 $y_{3t} = inflation$

Let's run the algorithm to find the effect on output of a monetary policy shock that raises fed funds rate by 0.25%, with one change— we forget to throw any of the draws out!

15





This magnitude is 0.25 times the ratio of the (2,1) element of **H** to the (1,1) element = 0.25 times ratio of effect of shock 1 (monetary policy?) on output to its effect on fed funds rate

$$\mathbf{h}_{1} = \mathbf{Pq}_{1}$$

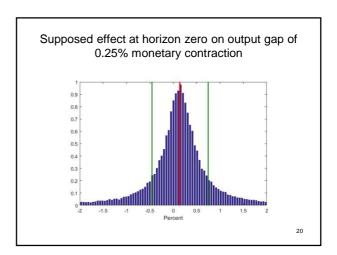
$$= \begin{bmatrix} p_{11} & 0 & 0 \\ p_{21} & p_{22} & 0 \\ p_{31} & p_{32} & p_{33} \end{bmatrix} \begin{bmatrix} x_{11}/\sqrt{x_{11}^{2} + x_{21}^{2} + x_{31}^{2}} \\ x_{21}/\sqrt{x_{11}^{2} + x_{21}^{2} + x_{31}^{2}} \\ x_{31}/\sqrt{x_{11}^{2} + x_{21}^{2} + x_{31}^{2}} \end{bmatrix}$$

$$h_{21}/h_{11} = \frac{p_{21}x_{11} + p_{22}x_{21}}{p_{11}x_{11}} = \frac{p_{21}}{p_{11}} + \frac{p_{22}}{p_{11}} \frac{x_{21}}{x_{11}}$$

$$x_{ij} \sim N(0, 1)$$

$$x_{21}/x_{11} \sim \text{Cauchy}(0, 1)$$

$$h_{21}/h_{11} \sim \text{Cauchy}(p_{21}/p_{11}, p_{22}/p_{11})$$



If we reported all the draws instead of 68% "error bands," answer would just be the real line.

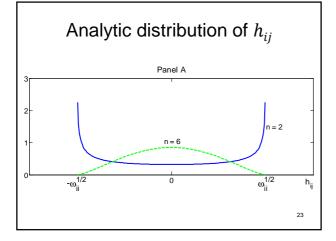
Implicit distribution has made it appear we learned more than we did.

21

What about distribution of individual elements
$$h_{ij}$$
?
$$h_{11} = p_{11}x_{11}/\sqrt{x_{11}^2 + x_{21}^2 + \dots + x_{n1}^2}$$

$$p_{11} = \sqrt{\omega_{11}}$$

22



Although the procedure implies a uniform distribution for the angle of rotation θ associated with the matrix \mathbf{Q} , we are not interested in inference about θ .

The algorithm implies a nonuniform distribution for structural impulse-response coefficients and this is what we are looking at with median and "error bands".

How do sign restrictions change any of this? $\Delta w_t = \text{growth rate of real labor compensation}$ $\Delta n_t = \text{growth rate of total employment}$ $\mathbf{y}_t = (\Delta w_t, \Delta n_t)'$ $\text{demand: } \Delta n_t = k^d + \beta^d \Delta w_t + b_{11}^d \Delta w_{t-1} + b_{12}^d \Delta n_{t-1} + b_{21}^d \Delta w_{t-2} + b_{22}^d \Delta n_{t-2} + \cdots + b_{m1}^d \Delta w_{t-m} + b_{m2}^d \Delta n_{t-m} + u_t^d$ supply: $\Delta n_t = k^s + \alpha^s \Delta w_t + b_{11}^s \Delta w_{t-1} + b_{12}^s \Delta n_{t-1} + b_{21}^s \Delta w_{t-2} + b_{22}^s \Delta n_{t-2} + \cdots + b_{m1}^s \Delta w_{t-m} + b_{m2}^s \Delta n_{t-m} + u_t^s$ sign restrictions: $\beta^d \leq 0, \ \alpha^s \geq 0.$

For fixed α^s , MLE of β^d can be found by an IV regression of $\hat{\varepsilon}_{2t}$ on $\hat{\varepsilon}_{1t}$ using $\hat{\varepsilon}_{2t} - \alpha \hat{\varepsilon}_{1t}$ as instrument:

$$\hat{\beta}(\alpha) = \frac{\sum_{t=1}^{T} (\hat{\varepsilon}_{2t} - \alpha \hat{\varepsilon}_{1t}) \hat{\varepsilon}_{2t}}{\sum_{t=1}^{T} (\hat{\varepsilon}_{2t} - \alpha \hat{\varepsilon}_{1t}) \hat{\varepsilon}_{1t}} = \frac{(\hat{\omega}_{22} - \alpha \hat{\omega}_{12})}{(\hat{\omega}_{12} - \alpha \hat{\omega}_{11})}$$

26

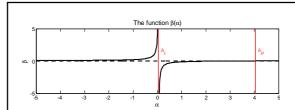
$$\hat{\beta}(\alpha) = \frac{\sum_{t=1}^{T} (\hat{\varepsilon}_{2t} - \alpha \hat{\varepsilon}_{1t}) \hat{\varepsilon}_{2t}}{\sum_{t=1}^{T} (\hat{\varepsilon}_{2t} - \alpha \hat{\varepsilon}_{1t}) \hat{\varepsilon}_{1t}} = \frac{(\hat{\omega}_{22} - \alpha \hat{\omega}_{12})}{(\hat{\omega}_{12} - \alpha \hat{\omega}_{11})}$$

In the data, $\hat{\omega}_{12} > 0$.

At $\alpha = h_H = \hat{\omega}_{22}/\hat{\omega}_{12}$, numerator switches from positive to negative.

At $\alpha = h_L = \hat{\omega}_{12}/\hat{\omega}_{11}$, denominator switches from positive to negative.

27

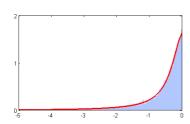


 $\alpha > 0$ and $\beta < 0$ restricts $h_L < \alpha < h_H$ but allows any $\beta < 0$.

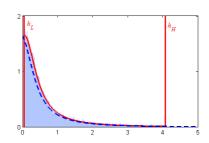
28

Intuition: $h_L = \hat{\omega}_{12}/\hat{\omega}_{11}$ is coeff from OLS regression of $\hat{\varepsilon}_{2t}$ on $\hat{\varepsilon}_{1t}$ = convex combination of α and β $\Rightarrow \beta < h_L, \alpha > h_L$ since $h_L > 0$, this restricts α , not β

Intuition: $h_H^{-1} = \hat{\omega}_{12}/\hat{\omega}_{22}$ is coefficient from OLS regression of $\hat{\varepsilon}_{1t}$ on $\hat{\varepsilon}_{2t}$ = convex combination of α^{-1} and β^{-1} $\Rightarrow \beta^{-1} < h_H^{-1}, \alpha^{-1} > h_H^{-1}$ since $h_H > 0$, this restricts α , not β $\Rightarrow h_L < \alpha < h_H$



Distribution for draws of β when sign restrictions are imposed is Cauchy truncated to be negative.



Distribution for draws of α when sign restrictions are imposed is Cauchy truncated to be between h_L and h_H .