Orthogonalized VARs

- A. Recursively orthogonalized VAR
- B. Variance decomposition
- C. Historical decomposition
- D. Structural interpretation
- E. Generalized IRFs

A. Recursively orthogonalized VARs

Nonorthogonal IRF:

$$\Psi_{s} = \frac{\partial E(\mathbf{y}_{t+s}|\mathbf{y}_{t},\mathbf{y}_{t-1},...,\mathbf{y}_{t-p})}{\partial \mathbf{y}_{t}'}$$

Column 1 =
$$\frac{\partial E(\mathbf{y}_{t+s}|y_{1t}, y_{2t}, \dots, y_{nt}, \mathbf{y}_{t-1}, \dots, \mathbf{y}_{t-p})}{\partial y_{1t}}$$

e.g., already have data on y_{2t}, \ldots, y_{nt} and ask how a 1-unit change in y_{1t} affects forecast.

Could instead ask $\frac{\partial E(\mathbf{y}_{t+s}|y_{1t},\mathbf{y}_{t-1},...,\mathbf{y}_{t-p})}{\partial y_{1t}}$

e.g., don't have any data from period t except for y_{1t} and ask how 1-unit change in y_{1t} affects forecast.

Knowing y_{1t} gives us information about y_{2t}, \ldots, y_{nt} if VAR forecast errors are correlated.

How calculate $\mathbf{h}_{s1} = \frac{\partial E(\mathbf{y}_{t+s}|\mathbf{y}_{1t},\mathbf{y}_{t-1},...,\mathbf{y}_{t-p})}{\partial y_{1t}}$? Method 1: local projection Estimate by *n* OLS equations $\mathbf{y}_{t+s} = \mathbf{c}_s + \mathbf{h}_{s1}y_{1t} + \mathbf{H}_{s2}\mathbf{y}_{t-1} + \cdots + \mathbf{H}_{sp}\mathbf{y}_{t-p+1} + \mathbf{u}_{t+s}$

Method 2: calculate answer implied by VAR

$$\mathbf{y}_{t} = (y_{1t}, y_{2t}, \dots, y_{nt})'$$

$$(n \times 1)$$

$$\mathbf{x}_{t} = (1, \mathbf{y}_{t-1}', \mathbf{y}_{t-2}', \dots, \mathbf{y}_{t-p}')'$$

$$(k \times 1)$$

$$k = np + 1$$

$$\mathbf{y}_{t} = \mathbf{\Gamma}' \mathbf{x}_{t} + \mathbf{\varepsilon}_{t}$$

$$E(\mathbf{\varepsilon}_{t} \mathbf{\varepsilon}_{t}') = \mathbf{\Omega}$$

Given parameters, observation of $y_{1t}, \mathbf{y}_{t-1}, \dots, \mathbf{y}_{t-p}$ allows us to observe

 $\boldsymbol{\varepsilon}_{1t} = \boldsymbol{y}_{1t} - \boldsymbol{\gamma}_1' \mathbf{x}_t$

Can calculate optimal forecast of ε_{it} given ε_{1t} as $E(\varepsilon_{it}|\varepsilon_{1t}) = \frac{\sigma_{i1}}{\sigma_{11}}\varepsilon_{1t}$ $E(\mathbf{\varepsilon}_{t}|\boldsymbol{\varepsilon}_{1t}) = \begin{bmatrix} 1 \\ \sigma_{21}/\sigma_{11} \\ \vdots \\ \sigma_{n1}/\sigma_{11} \end{bmatrix} \boldsymbol{\varepsilon}_{1t} = \mathbf{a}_{1}\boldsymbol{\varepsilon}_{1t}$

$$\frac{\partial E(\mathbf{y}_t|y_{1t}, \mathbf{y}_{t-1}, \dots, \mathbf{y}_{t-p})}{\partial y_{1t}} = \mathbf{a}_1$$

$$\frac{\partial E(\mathbf{y}_{t+s}|y_{1t}, \mathbf{y}_{t-1}, \dots, \mathbf{y}_{t-p})}{\partial y_{1t}} = \frac{\partial E(\mathbf{y}_{t+s}|\mathbf{y}_t, \mathbf{y}_{t-1}, \dots, \mathbf{y}_{t-p})}{\partial \mathbf{y}_t'} \frac{\partial E(\mathbf{y}_t|y_{1t}, \mathbf{y}_{t-1}, \dots, \mathbf{y}_{t-p})}{\partial y_{1t}}$$

$$= \mathbf{\Psi}_s \mathbf{a}_1$$

$$\hat{\boldsymbol{\Gamma}}'_{(n\times k)} = \left(\sum_{t=1}^{T} \mathbf{y}_{t} \mathbf{x}_{t}'\right) \left(\sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}'\right)^{-1} \Rightarrow \hat{\boldsymbol{\Psi}}_{s}$$

$$\hat{\boldsymbol{\epsilon}}_{t} = \mathbf{y}_{t} - \hat{\boldsymbol{\Gamma}}' \mathbf{x}_{t}$$

$$(n\times 1)$$

$$\hat{\boldsymbol{\Omega}}_{(n\times n)} = T^{-1} \sum_{t=1}^{T} \hat{\boldsymbol{\epsilon}}_{t} \hat{\boldsymbol{\epsilon}}_{t}' \Rightarrow \hat{\boldsymbol{a}}_{1} = \begin{bmatrix} 1 & \hat{\sigma}_{21}/\hat{\sigma}_{11} & \hat{\sigma}_{21}/\hat{\sigma}_{21} & \hat{\sigma}_{21}/\hat{\sigma}_{21}/\hat{\sigma}_{21} & \hat{\sigma}_{21}/\hat{\sigma}_{21}/\hat{\sigma}_{21} & \hat{\sigma}_{21}/\hat{\sigma}$$

Could also do this using Cholesky factor:

 $\hat{\mathbf{\Omega}} = \hat{\mathbf{P}}\hat{\mathbf{P}}' \quad (\hat{\mathbf{P}} \text{ lower triangular})$ $\hat{\mathbf{a}}_1 = \hat{\mathbf{p}}_1 / \hat{p}_{11}$ $\hat{\mathbf{p}}_1 = \text{column 1 of } \hat{\mathbf{P}}$ $\hat{p}_{11} = \text{row 1 col 1 element of } \hat{\mathbf{P}}$

$$\Psi_{s}\mathbf{a}_{1} = \frac{\partial E(\mathbf{y}_{t+s}|y_{1t},\mathbf{y}_{t-1},...,\mathbf{y}_{t-p})}{\partial y_{1t}}$$

is effect of one-unit increase in y_{1t} or ε_{1t} on forecast $\Psi_s \mathbf{p}_1$ is effect of one-standard-deviation increase in ε_{1t} on forecast.

 $\Psi_s \mathbf{a}_1$ shows IRF to shock in observed units $\Psi_s \mathbf{p}_1$ shows IRF to shock of typical size Plots will look identical just with different units on vertical axis $\Psi_s \mathbf{p}_1 = \Psi_s \mathbf{a}_1 p_{11}$

Recursively orthgonalized VAR estimated 1954-2007

Recursively orthgonalized local projection estimated 1954-2007

Suppose next that we've observed y_{1t} and y_{2t} but not $y_{3t}, y_{4t}, ..., y_{nt}$. What is effect on forecast of changing y_{2t} ? $\frac{\partial E(\mathbf{y}_t|y_{1t}, y_{2t}, \mathbf{y}_{t-1}, \dots, \mathbf{y}_{t-p})}{\partial y_{2t}} = \mathbf{a}_2 = \mathbf{p}_2/p_{22}$ $\mathbf{p}_2 = \text{column 2 of } \mathbf{P}$ $p_{22} = row 2 col 2 element of P$ first element of a_2 is zero

 $(n \times n)$ matrix of recursively orthogonalized shocks: $\Psi_s \mathbf{P}$ or $\Psi_s \mathbf{A}$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ a_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & 1 \end{bmatrix} = \mathbf{P}[\mathsf{diag}(\mathbf{P})]^{-1}$$

Note last col of $\Psi_s A$ is identical to last col of Ψ_s

We have broken down the news arriving in period *t* into *n* separate uncorrelated components

$$\varepsilon_{1t} = y_{1t} - \boldsymbol{\gamma}_1' \mathbf{x}_t = \text{news about } y_{1t}$$

 $u_{2t} = \varepsilon_{2t} - a_{21}\varepsilon_{1t}$ = news about y_{2t} not already revealed by y_{1t}

$$u_{nt} = \varepsilon_{nt} - E(\varepsilon_{nt}|\varepsilon_{1t}, \dots, \varepsilon_{n-1,t})$$

= news about y_{nt} not already revealed by
 $y_{1t}, \dots, y_{n-1,t}$

Simple way to summarize these components:

$$\mathbf{v}_{t} = \mathbf{P}^{-1} \boldsymbol{\varepsilon}_{t} = \begin{bmatrix} p^{11} & 0 & \cdots & 0 \\ p^{21} & p^{22} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ p^{n1} & p^{n2} & \cdots & p^{nn} \end{bmatrix} \begin{bmatrix} \boldsymbol{\varepsilon}_{1t} \\ \boldsymbol{\varepsilon}_{2t} \\ \vdots \\ \boldsymbol{\varepsilon}_{nt} \end{bmatrix}$$
$$E(\mathbf{v}_{t}\mathbf{v}_{t}') = \mathbf{P}^{-1} E(\boldsymbol{\varepsilon}_{t}\boldsymbol{\varepsilon}_{t}') \mathbf{P}'^{-1} = \mathbf{P}^{-1} \mathbf{\Omega} \mathbf{P}'^{-1}$$

$$= \mathbf{P}^{-1}\mathbf{P}\mathbf{P}'\mathbf{P}'^{-1} = \mathbf{I}_n$$

 \mathbf{v}_t is a linear combination of $\boldsymbol{\varepsilon}_t$ whose elements are uncorrelated with each other

 $v_{1t} = p^{11} \varepsilon_{1t}$

= rescaled error forecasting y_{1t}

$$v_{2t} = p^{21} \varepsilon_{1t} + p^{22} \varepsilon_{2t}$$

= rescaled error forecasting ε_{2t} from ε_{1t}
 $v_{nt} = p^{n1} \varepsilon_{1t} + p^{n2} \varepsilon_{2t} + \dots + p^{nn} \varepsilon_{nt}$
= rescaled error forecasting ε_{nt} from $\varepsilon_{1t}, \dots, \varepsilon_{n-1,t}$

B. Variance decomposition

$$\mathbf{y}_{t+s} = \mathbf{\hat{y}}_{t+s|t} + \mathbf{\Psi}_{0}\mathbf{\varepsilon}_{t+s} + \mathbf{\Psi}_{1}\mathbf{\varepsilon}_{t+s-1} + \mathbf{\Psi}_{2}\mathbf{\varepsilon}_{t+s-2} + \dots + \mathbf{\Psi}_{s-1}\mathbf{\varepsilon}_{t+1}$$

$$E(\mathbf{y}_{t+s} - \mathbf{\hat{y}}_{t+s|t})(\mathbf{y}_{t+s} - \mathbf{\hat{y}}_{t+s|t}) = \sum_{m=0}^{s-1} \mathbf{\Psi}_{m}\mathbf{\Omega}\mathbf{\Psi}_{m}'$$

$$\mathbf{\varepsilon}_{t} = \mathbf{P}\mathbf{v}_{t} = \mathbf{p}_{1}v_{1t} + \mathbf{p}_{2}v_{2t} + \dots + \mathbf{p}_{n}v_{nt}$$
Contribution of $v_{i,t+1}, v_{i,t+2}, \dots, v_{i,t+s}$ to forecast error:

$$\mathbf{\Psi}_{0}\mathbf{p}_{i}v_{i,t+s} + \mathbf{\Psi}_{1}\mathbf{p}_{i}v_{i,t+s-1} + \dots + \mathbf{\Psi}_{s-1}\mathbf{p}_{i}v_{i,t+1}$$

 $E(\mathbf{y}_{t+s} - \mathbf{\hat{y}}_{t+s|t})(\mathbf{y}_{t+s} - \mathbf{\hat{y}}_{t+s|t})$ $= \sum_{m=0}^{s-1} \Psi_m \mathbf{p}_1 \mathbf{p}_1' \Psi_m' + \dots + \sum_{m=0}^{s-1} \Psi_m \mathbf{p}_n \mathbf{p}_n' \Psi_m'$ First term: amount by which could reduce MSE if we knew the values of $\varepsilon_{1,t+1}, \dots, \varepsilon_{1,t+s}$ Second term: amount by which we could reduce MSE if we knew the values of $u_{2,t+1}, \dots, u_{2,t+s}$

Decompos	sition	of Va	riance for	Series GI	DPCH
Step	Std Er	ror	GDPCH	INFLATION	FEDFUNDS
1	3.0874	1913	100.000	0.000	0.000
2	3.1596	53628	99.994	0.001	0.005
3	3.3671	10884	90.098	0.218	9.684
4	3.4101	L7407	87.881	1.147	10.972
5	3.4303	30191	87.226	1.928	10.846
6	3.4504	1262	86.487	2.627	10.886
7	3.4598	31410	86.245	2.871	10.883
8	3.4683	34423	86.053	3.093	10.854
9	3.4751	14728	85.850	3.331	10.819
10	3.4799	97093	85.727	3.483	10.789
11	3.4834	1375	85.612	3.612	10.776
12	3.4866	53478	85.487	3.744	10.769
13	3.4892	20625	85.388	3.856	10.756
14	3.4913	37054	85.302	3.954	10.745
15	3.4934	1827	85.216	4.047	10.737
16	3.4952	26789	85.139	4.132	10.729
17	3.4968	36734	85.072	4.206	10.721
18	3.4983	30813	85.011	4.273	10.716
19	3.4996	50777	84.956	4.333	10.711
20	3.5007	74296	84.907	4.385	10.708

Decompos	sition of	Variance for	Series IN	VFLATION
Step	Std Error	GDPCH	INFLATION	FEDFUNDS
1	1.1279067	1 0.711	99.289	0.000
2	1.3010351	6 1.009	97.570	1.421
3	1.4394558	8 1.909	96.580	1.511
4	1.5890160	3 1.634	97.023	1.343
5	1.7332921	0 4.906	93.947	1.147
6	1.8384214	4 6.087	92.878	1.034
7	1.9335819	6.981	91.717	1.302
8	2.0132398	1 7.629	90.802	1.569
9	2.0761774	3 7.983	90.376	1.641
10	2.1289332	0 8.188	89.988	1.824
11	2.1757108	9 8.286	89.663	2.051
12	2.2150161	3 8.322	89.481	2.197
13	2.2482656	1 8.329	89.336	2.335
14	2.2773751	2 8.303	89.209	2.488
15	2.3026207	0 8.268	89.109	2.623
16	2.3242083	3 8.229	89.031	2.740
17	2.3429377	9 8.186	88.958	2.856
18	2.3592137	8 8.141	88.891	2.968
19	2.3732118	4 8.097	88.834	3.069
20	2.3852689	1 8.056	88.782	3.163

Decompos	ition	of V	ariance for	Series F	EDFUNDS
Step	Std En	rror	GDPCH	INFLATION	FEDFUNDS
1	0.7829	94284	3.309	2.939	93.752
2	1.2408	88336	11.710	8.195	80.095
3	1.5192	28430	20.625	13.752	65.623
4	1.767	76027	25.568	18.317	56.116
5	1.9719	94315	28.715	20.684	50.601
6	2.1330	03190	31.520	22.672	45.807
7	2.2705	57752	33.433	24.707	41.860
8	2.3905	54533	34.802	26.385	38.813
9	2.4902	21257	35.694	27.902	36.404
10	2.5750	00835	36.215	29.393	34.392
11	2.6492	25525	36.494	30.775	32.732
12	2.7141	14804	36.608	32.042	31.350
13	2.7712	23546	36.605	33.230	30.165
14	2.8220	08295	36.523	34.335	29.142
15	2.8673	34779	36.391	35.348	28.261
16	2.9070	64045	36.226	36.275	27.499
17	2.9430	64156	36.040	37.125	26.836
18	2.9758	80 <mark>221</mark>	35.843	37.897	26.260
19	3.0044	48248	35.642	38.597	25.761
20	3.0300	06847	35.441	39.230	25.329

C. Historical decomposition

$$\begin{aligned} \mathbf{y}_{t+s} &= \mathbf{\hat{y}}_{t+s|t} + \sum_{m=0}^{s-1} \mathbf{\Psi}_m \mathbf{\epsilon}_{t+s-m} \\ &= \mathbf{\hat{y}}_{t+s|t} + \sum_{m=0}^{s-1} \mathbf{\Psi}_m [\mathbf{p}_1 v_{1,t+s-m} + \dots + \mathbf{p}_n v_{n,t+s-m}] \end{aligned}$$
Can decompose the observed value for any variable at any date into component that could have been predicted as of some earlier date plus innovations in individual $v_{i,t+m}$ since then.

Historical Decomposition of GDP

D. Structural interpretation

Suppose we hypothesized the following structural model for the behavior of the Fed:

$$i_t = \lambda_3 + \psi_y y_t + \psi_\pi \pi_t + \mathbf{b}'_{31} \mathbf{y}_{t-1} + \dots + \mathbf{b}'_{3p} \mathbf{y}_{t-p} + u_{3t}$$

- $i_t = \text{fed funds rate}$
- $y_t = \text{GDP growth rate}$
- $\pi_t = \text{inflation rate}$

 ψ_y, ψ_π = coefficients in Taylor Rule

 \mathbf{b}_{3m} allow for inertia in monetary policy

 u_{3t} = serially uncorrelated shock to monetary policy

= deviation from Fed's usual rule, uncorrelated

with $\mathbf{y}_{t-1}, \dots, \mathbf{y}_{t-p}$ by definition

Would like to know $\partial \mathbf{y}_{t+s} / \partial u_{3t}$

Suppose I also thought there was a Phillips Curve of the form

$$\pi_t = \lambda_2 + \alpha y_t + \mathbf{b}'_{21}\mathbf{y}_{t-1} + \dots + \mathbf{b}'_{2p}\mathbf{y}_{t-p} + u_{2t}$$

 α = slope of Phillips Curve

 \mathbf{b}_{2m} allow for inertia in PC

$$u_{2t}$$
 = unpredictable shock to PC

 u_{2t} uncorrelated with $\mathbf{y}_{t-1}, \ldots, \mathbf{y}_{t-p}$ by definition

 u_{2t} also assumed to be uncorrelated with u_{3t} (assumption that monetary policy shocks take more than one period to affect inflation)

Model equilibrium output as $y_t = \lambda_1 + \mathbf{b}'_{11}\mathbf{y}_{t-1} + \dots + \mathbf{b}'_{1p}\mathbf{y}_{t-p} + u_{1t}$ u_{1t} = error forecasting GDP one period ahead u_{1t} uncorrelated with $\mathbf{y}_{t-1}, \ldots, \mathbf{y}_{t-p}$ by definition u_{1t} also assumed to be uncorrelated with u_{2t}, u_{3t} (assumption that PC and monetary shocks take more than one period to affect output)

 $i_t = \lambda_3 + \psi_y y_t + \psi_\pi \pi_t + \mathbf{b}'_{31} \mathbf{y}_{t-1} + \dots + \mathbf{b}'_{3p} \mathbf{y}_{t-p} + u_{3t}$ Above assumptions mean u_{3t} uncorrelated with y_t and π_t .

 $\Rightarrow \text{ could estimate by OLS}$ $\hat{\psi}_{y} \text{ and } \hat{\psi}_{\pi} \text{ are same as step 0 Jordá projection}$ $\hat{\psi}_{y} \text{ and } \hat{\psi}_{\pi} \text{ are same as } \hat{a}_{31} \text{ and } \hat{a}_{32}$

$$\pi_t = \lambda_2 + \alpha y_t + \mathbf{b}'_{21} \mathbf{y}_{t-1} + \dots + \mathbf{b}'_{2p} \mathbf{y}_{t-p} + u_{2t}$$

Above assumptions mean u_{2t} uncorrelated with y_t . \Rightarrow could estimate by OLS

 $\hat{\alpha}$ is same as step 0 Jordá projection

 $\hat{\alpha}$ is same as \hat{a}_{21}

Conclusion: under above assumptions with $A = P[diag(P)]^{-1}$ $u_t = A^{-1}\varepsilon_t$ $u_{1t} = \varepsilon_{1t}$ The error I make forecasting y_{1t} given $y_{t-1}, y_{t-2}, \dots, y_{t-p}$ is the shock to equilibrium output.

The error I make forecasting y_{2t} given $y_{1t}, \mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \dots, \mathbf{y}_{t-p}$ is the shock to PC. The error I make forecasting y_{3t} given $y_{1t}, y_{2t}, \mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \dots, \mathbf{y}_{t-p}$ is the shock to monetary policy.

$$\frac{\partial E(\mathbf{y}_{t+s}|y_{1t},y_{2t},y_{3t},\mathbf{y}_{t-1},...,\mathbf{y}_{t-p})}{\partial y_{3t}} = \frac{\partial \mathbf{y}_{t+s}}{\partial u_{3t}}$$

Recursively orthogonalized VAR gives the dynamic effects of monetary policy.

- A monetary contraction (higher fed funds rate) is followed by slower GDP growth 2-3 quarters later
- But unanticipated monetary policy shocks account for only 10% of variance of output
- Most of variation in fed funds rate comes from predictable response of monetary policy to output and inflation
- A monetary contraction is followed by higher inflation (known as "price puzzle") ³⁸

- Assumption-free statement of price puzzle:
 - if you tell me that fed funds rate is higher than
 I would have predicted given current output,
 inflation, and lags, then I will revise my
 expectation of future inflation up.
- Natural interpretation:
 - Fed raised funds rate because it anticipated future inflation.
 - Our 3-variable equation is too simplistic a description of Fed

- Popular "fix" for price puzzle:
 - Add other variables that better capture information about future inflation (such as commodity prices) to Fed policy equation

Christiano, Eichenbaum, Evans (1996)

- $y_{1t} = \log of real GDP$
- $y_{2t} = \log of GDP deflator$
- y_{3t} = index of sensitive commodity prices
- $y_{4t} = fed funds rate$
- y_{5t} = nonborrowed reserves
- y_{6t} = total reserves
- y_{7t} = one of a set of macro variables

Structural model: $\mathbf{B}_0 \mathbf{y}_t = \mathbf{B} \mathbf{x}_t + \mathbf{u}_t$ $\mathbf{x}_t = (1, \mathbf{y}'_{t-1}, \mathbf{y}'_{t-2}, \dots, \mathbf{y}'_{t-p})'$ $\mathbf{u}_t = \text{vector of structural shocks}$ $E(\mathbf{u}_t \mathbf{u}'_t) = \mathbf{D}$ (diagonal)

$$\mathbf{B}_{0} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ x & 1 & 0 & 0 & 0 & 0 & 0 \\ x & x & 1 & 0 & 0 & 0 & 0 \\ x & x & x & 1 & 0 & 0 & 0 \\ x & x & x & x & 1 & 0 & 0 \\ x & x & x & x & x & 1 & 0 \\ x & x & x & x & x & x & 1 & 0 \end{bmatrix}$$

Variable 4 is fed funds rate, equation 4 is monetary policy equation.

Note that $\frac{\partial E(\mathbf{y}_{t+s}|y_{1t},y_{2t},y_{3t},y_{4t},\mathbf{y}_{t-1},\mathbf{y}_{t-2},\dots,\mathbf{y}_{t-p})}{\partial E(\mathbf{y}_{t+s}|y_{2t},y_{1t},y_{3t},y_{4t},\mathbf{y}_{t-1},\mathbf{y}_{t-2},\dots,\mathbf{y}_{t-p})}$ ∂y_{4t} ∂y_{4t} Will have the identical answer for effect of variable 4 any way we order variables 1-3 and any way we order variables 5-7. Jordá estimate identical if reorder (keeping 4 in place).

If all we care about is effect of monetary policy, we only need to assume block-recursive

67% confidence bands

46

E. Generalized IRFs

- If we put fed funds fourth, estimated effect of monetary policy does not depend on how we order variables 1-3.
- But if we switch fed funds from 4 to 3, results could change

- Pesaran and Shin (1998): "generalized impulse-response function"
 - Put variable #1 first to find effect of variable 1
 - Put variable #2 first to find effect of variable 2
 - Put variable #n first to find effect of variable n

GIRF: for every *i*, calculate $\frac{\partial E(\mathbf{y}_{t+s}|y_{it},\mathbf{y}_{t-1},...,\mathbf{y}_{t-p})}{\partial y_{it}}$

- Conclusion: any IRF or GIRF is giving answer to a forecasting question.
- Best practice: describe forecasting question explicitly and explain the reason that question is interesting.