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ABSTRACT

The world price of oil is determined by the interactions of multiple producers

and consumers who face different constraints and shocks. We show how this feature

of the oil market can be used to estimate local and global elasticities of supply and

demand and provide a rich set of testable restrictions. We develop a novel approach to

estimation based on full-information maximum likelihood that generalizes the insights

from granular instrumental variables. We conclude that the supply responses of Saudi

Arabia and adjustments of inventories have historically played a key role in stabilizing

the price of oil. We illustrate how our structural model can be used to analyze how

individual producers and consumers would dynamically adapt to a geopolitical event

such as a major disruption in the supply of oil from Russia.
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1 Introduction

Aggregate economic outcomes result from the interactions of many individual units.

Modeling what those individual units have in common and the ways in which they

differ can help identify the local and aggregate effects of structural shocks. A pop-

ular example is Bartik-type instruments, which use a weighted average of aggregate

conditions with weights given by local shares as an instrument to estimate local

elasticities; see Bartik (1991), Blanchard et al. (1992), Goldsmith-Pinkham, Sorkin

and Swift (2020), and Carlino and Drautzburg (2020). Gabaix and Koijen (2024)

demonstrated that in some situations one can use the difference between the arith-

metic average and a share-weighted average of observations across units as a valid

instrument, which they described as “granular instrumental variables.” Qian (2023)

extended granular instrumental variables to allow for heterogeneous responses of in-

dividual units. Banafti and Lee (2022) considered granular instrumental variables

in large panels and Sarto (2022) in panel vector autoregressions. Another nice illus-

tration of the underlying idea is Caldara, Cavallo and Iacoviello (2019), who used

known exogenous shortfalls in oil production in certain countries as an instrument to

estimate the response of producers in other countries to an exogenous increase in the

price of oil.

In all these applications, the focus has been on developing a valid instrument for

purposes of estimating a particular elasticity of interest. In this paper, we adopt

a broader systemwide approach based on modeling how individual units interact to

produce the aggregate outcome. We show that while such an approach could be used

to motivate instrumental-variable estimation used in other studies, the underlying

assumptions in fact provide a full characterization of the joint determination of local

and aggregate magnitudes. The first-order conditions for maximum likelihood esti-

mation can be given an instrumental variable interpretation. We show in a simple

example that the usual granular instruments are just one part of the information ex-

ploited by maximum likelihood and that using all the available information can result

in substantially improved estimates.

Our method can also be viewed as an application of the familiar approach in

structural vector autoregressions of interpreting the correlations between the errors

in forecasting individual observed variables as arising from an underlying set of struc-

tural shocks. The dynamic effects of structural shocks on local and aggregate vari-

ables can then be consistently estimated. Our approach typically produces a rich set

of overidentifying restrictions that can be tested against the data.
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We illustrate our approach with an analysis of the world oil market. Our frame-

work allows us to estimate country-specific supply and demand elasticities jointly,

which allows us to assess adjustment dynamics of major players in the market in

response to common or country-specific disturbances. The need to gain a better un-

derstanding of the propagation of shocks originating in one particular country has

been highlighted by recent geopolitical events in Russia, which we use as one illustra-

tion of the usefulness of our proposed modeling approach.

We model oil market dynamics using a small-scale vector autoregression that

includes production of oil from the three largest producers over 1974-2023 (the United

States, Saudi Arabia, and Russia), consumption of oil by the three largest historical

consumers (the United States, Japan, and Europe), and aggregate magnitudes. Our

estimates imply a global short-run price elasticity of oil supply of 0.08, consistent with

the estimates of Caldara, Cavallo and Iacoviello (2019, Table 3) of 0.05 to 0.08, Balke,

Jin and Yücel’s (2024) estimates of 0.07 to 0.10, and Baumeister and Hamilton’s

(2019) estimate of 0.15. Unlike any previous study, our estimates are also consistent

with all the individual elasticities that we also report. We estimate a short-run

supply elasticity of 0.25 for Saudi Arabia and 0.02 to 0.07 for other countries. A few

studies have estimated separate supply elasticities for different countries or regions,

and where this has been done these earlier estimates are consistent with our findings.

Alonso-Alvarez, Di Nino and Venditti (2022) arrived at separate supply elasticities of

0.20 for OPEC and 0.06 for non-OPEC. When Caldara, Cavallo and Iacoviello (2019)

estimated elasticities separately for different groups of countries, their estimates were

0.21 for Saudi Arabia, 0.19 for other OPEC countries, and essentially zero for non-

OPEC countries, again in line with our findings. A substantially larger price elasticity

for OPEC versus non-OPEC countries is also supported by the analysis in Almutairi,

Pierru and Smith (2023) and Balke, Jin and Yücel (2024).

We estimate the global short-run price elasticity of the demand for oil to be −0.12,

which is again consistent with the conclusions that earlier studies arrived at using

very different methods from ours. Caldara, Cavallo and Iacoviello (2019, Table 3) esti-

mated the short-run price elasticity of world petroleum demand to be −0.03 to −0.08,

similar to the −0.05 estimate of Pierru, Smith and Zamrik (2018). Slightly larger

estimates were obtained by Balke, Jin and Yücel (2024) (−0.17), Alonso-Alvarez,

Di Nino and Venditti (2022) (−0.28), and Baumeister and Hamilton (2019) (−0.35).

Meta-analyses of hundreds of earlier studies estimated short-run gasoline demand

elasticities from −0.25 to −0.34 and short-run elasticities for the demand for crude

oil from −0.05 to −0.07 (Hamilton (2009b, Table 3)). Again our global elasticity is
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calculated by aggregating the estimated demand responses for individual countries,

which range from −0.001 for Japan to −0.20 for Europe.

Ours is the first study to simultaneously estimate demand and supply elasticities

that differ across all countries. We do this in a unified statistical framework motivated

by the principle that the price of oil equilibrates global supply and demand. Estimates

like ours could prove helpful in calibrating theoretical models of oil market dynamics

such as Bornstein, Krusell and Rebelo (2023) and Balke, Jin and Yücel (2024).

We use our model to analyze the effects of different local and global shocks to

supply or demand. We find that Saudi Arabian production is an important factor

in stabilizing the price of oil, consistent with the conclusions of Almutairi, Pierru

and Smith (2023). We further conclude that inventories are typically drawn down

in response to a temporary increase in price and that this plays a critical role in

smoothing out temporary price shocks. This supports the conclusions of Knittel

and Pindyck (2016) and is in contrast to the claim sometimes made that speculative

inventory accumulation accentuates price increases. We find that in the absence of an

ability to draw down or accumulate inventories, most of the short-run adjustment to

shocks would come in the form of changes in demand rather than changes in supply.

As a case study, we use our model to analyze what would happen in response to

a 50% cut in Russian oil production arising from exogenous political factors unique

to that country. Our model predicts that about 1.9 million barrels a day of the 5.3

mb/d shortfall would be met by increased production from other countries and the

rest by lower consumption.

The plan of the paper is as follows. The data are described in Section 2. Section

3 introduces the model of market equilibrium that underlies our structural analysis.

Section 4 explains how we can use heterogeneous observations on production, con-

sumption, and the price of oil to identify and estimate supply and demand elasticities.

Section 5 presents our empirical results. Section 6 develops case studies illustrating

how the model can be used to learn about dynamics at the disaggregate level and

answer counterfactual questions. Section 7 uses the framework to analyze how the oil

market has changed over time. Section 8 briefly concludes.

2 Data

The U.S. Energy Information Administration publishes monthly data on the produc-

tion of crude oil in a number of different countries going back to 1973 and consumption

of petroleum products for a different set of countries going back to 1982. For purposes

of this study, we used historical published issues of the Monthly Energy Review to
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extend the consumption data back to 1973 for a small number of countries.

2.1 Measuring growth rates

There is a strong seasonal component to petroleum consumption for some countries.

For this reason we use year-over-year growth rates, which we measure as

qit =
Qit −Qi,t−12

0.5(Qit +Qi,t−12)
(1)

cjt =
Cjt − Cj,t−12

0.5(Cjt + Cj,t−12)
. (2)

Here Qit is the quantity of oil produced in country i in month t and Cjt is the

quantity of oil consumed in country j in month t, both measured in millions of

barrels per day. This is preferable to alternative measures of the growth rate such as

(Qit−Qi,t−12)/Qi,t−12 or log(Qit)− log(Qi,t−12). The latter gets arbitrarily large when

either Qit or Qi,t−12 get small, and would diverge to minus or plus infinity in the case

of the complete cessation and subsequent resumption of production, as happened for

example in Iraq and Kuwait in 1990. Expression (1) can be viewed as a first-order

Taylor approximation to the function logQit− logQi,t−12 where the approximation is

taken at a point halfway between Qit and Qi,t−12. The approximation is almost exact

as long as Qit is not less than half the size of Qi,t−12 and not more than twice the

size of Qi,t−12; see Figure A.1. For larger changes, expression (1) is less extreme than

log(Qit)− log(Qi,t−12), and is bounded between ±2 for all values of Qit and Qi,t−12.

Our production data describe countries i = 1, 2, ..., n where country n is defined

as “rest of world” so that
∑n

i=1Qit exactly equals total measured world oil production

in month t. Our empirical application uses n = 4 where i = 1, 2, or 3 correspond to

the three largest producing countries over our historical sample, which were the U.S.,

Saudi Arabia, and Russia. A key magnitude is the average share of country i in total

world production,

sqi = T−1
∑T

t=1

Qit

Qt

,

which we collect in an (n× 1) vector sq. In our data set, sq = (0.12, 0.12, 0.15, 0.61)′.

We will approximate the annual growth in global production using the share-weighted

average of individual country growth rates:

Qt −Qt−12

0.5(Qt +Qt−12)
=

∑n
i=1Qit −

∑n
i=1Qi,t−12

0.5(Qt +Qt−12)
=
∑n

i=1

[
Qit −Qi,t−12

0.5(Qit +Qi,t−12)

(Qit +Qi,t−12)

(Qt +Qt−12)

]
≃
∑n

i=1

[
Qit −Qi,t−12

0.5(Qit +Qi,t−12)
sqi

]
=
∑n

i=1sqiqit. (3)
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Similarly, our consumption data describe countries j = 1, 2, ...,m where country

m is defined as “rest of world” so that
∑m

j=1Cjt exactly equals total measured world

petroleum consumption in month t. Our procedure does not require n to equal m nor

does it require the producers to be the same countries as the consumers. Our baseline

results use the historically three largest consuming countries (the U.S., Japan, and

Europe) so that m = 4. Average consumption shares are summarized by the (m× 1)

vector sc = (0.25, 0.07, 0.08, 0.60)′. We approximate the year-over-year growth rate of

global consumption as
Ct − Ct−12

0.5(Ct + Ct−12)
≃
∑m

j=1scjcjt. (4)

It is not the case in EIA reported data that global oil consumption Ct is the same

number as global oil production Qt. There are three reasons for this. First, there

are conceptual differences in definition. Production is measured in the number of

barrels of oil taken out of the ground. One barrel of oil produces more than one

barrel of refined product used by consumers, and additional consumable product

comes from biofuels and processing of natural gas. For these reasons, measured

global consumption exceeds measured global production. Second, consumption and

production numbers are collected from different underlying data sources and there

are acknowledged errors in measuring all of these variables. Third, global production

could be greater or less than global consumption in a given month t if there is an

increase or decrease in global oil inventories. We will take all these factors into account

in the model developed below.

Although oil is produced and consumed in different locations around the world,

it is a world market for oil in which the quality-adjusted product sells for essentially

the same price everywhere in the world. We measure the global real price of oil in

month t (denoted Pt) as the dollar price of a barrel of Brent crude oil deflated by the

U.S. consumer price index.1 We convert this to monthly growth rates pt = log(Pt)−
log(Pt−1). The observed data for month t are summarized by the [(n +m + 1) × 1]

vector yt = (q′
t, c

′
t, pt)

′ consisting of the growth rates of production and consumption

for each country in the world along with the world price of oil.

2.2 Data during the COVID-19 pandemic

The pandemic shut-downs in 2020 completely disrupted both oil supply and demand;

for a description and analysis of these disruptions see Baumeister (2023). Events of

1The CPI is from FRED (https://fred.stlouisfed.org/series/CPIAUCSL). The Brent spot price
is available from EIA since May 1987 and was extended back to 1973 by Baumeister, Korobilis and
Lee (2022) using the growth rate of the refiners’ acquisition cost for imported oil.

6



2020 also show up very dramatically in a broad range of other economic indicators.

A number of approaches for dealing with this structural break have been proposed.

Lenza and Primiceri (2022) suggested we could treat the underlying structural rela-

tions as unchanged but allow for a big increase in the magnitude of structural shocks.

Ng (2021) argued that these disruptions were an entirely new shock that we could

model using direct observations on measures of hospitalization, positive cases, or

deaths. In our paper we adopt the more general view that potentially all the struc-

tural relations and structural shocks were different during the pandemic, implying

that structural and reduced-form parameters during this episode should be estimated

separately from the rest of the sample. Since there are not enough observations during

the pandemic to estimate a full set of parameters over this short episode, in practice

this means dropping these observations from the sample and pooling post-COVID and

pre-COVID observations into a single sample. Schorfheide and Song (2024), Lenza

and Primiceri (2022), and Hamilton (2025) noted that this is what researchers might

often want to do, and this is the approach followed in this paper.

Year-over-year growth rates of oil production and consumption are profoundly

impacted for 2020:M3 through 2021:M2. Since we use twelve lags of these as explana-

tory variables, we therefore drop two years of data associated with the pandemic.

The left-hand variable in our equations covers observations from 1975:M1 through

2020:M2 and 2022:M2 through 2023:M2, for a total of T = 555 observations. For no-

tational convenience, we will write
∑

t∈{1975:M1-2020:M2 ∪ 2022:M2-2023:M2} simply as
∑T

t=1

where T is the total number of observations on the dependent variable in our pooled

sample. We obtained very similar results if we just end the sample in 2019:M12.

3 Market equilibrium

The production of oil from country i is presumed to be governed by the structural

equation

qit = ϕqipt + b′
qixt−1 + uqit (5)

for i = 1, ..., n. Here xt−1 = (1,y′
t−1, ...,y

′
t−r)

′ is a (k × 1) vector consisting of a

constant term and r lags of the production and consumption of every country in

the world along with the world price; thus k = 1 + r(n + m + 1). The term uqit

represents factors other than the lags xt−1 and the current price pt that influence the

production in country i. The term b′
qixt−1 governs the dynamic behavior of oil supply

in country i. We assume that structural dynamics are incorporated in the definition

of bqi so that uqit can be regarded as serially uncorrelated; see Appendix A.2 for more
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discussion. The appendix also provides examples of how equation (5) could arise with

perfect competition, market power, or forward-looking behavior by producers. In our

empirical analysis we take r = 12. Note that although we are measuring qit in year-

over-year growth rates, the inclusion of lags means that ϕqi represents the response

of supply to an unanticipated change in price. Thus ϕqi should be interpreted as the

within-month price elasticity of supply for country i.

Likewise the structural demand equation for country j takes the form

cjt = ϕcjpt + b′
cjxt−1 + ucjt (6)

for j = 1, ...,m. Here ϕcj is the short-run demand elasticity in country j and ucjt is a

shock to country j demand.

Let vt denote the difference between global production and global consumption:

vt =
∑n

i=1sqiqit −
∑m

j=1scjcjt. (7)

If production and consumption data were completely accurate, vt would represent the

change in global oil inventories. We interpret it here as the change in inventories plus

measurement error. We allow vt to respond to prices and be serially correlated:

vt = ϕvpt + b′
vxt−1 + uvt. (8)

We interpret ϕv as the short-run price elasticity of inventory demand and uvt as a

combination of measurement error and a shock to inventory demand.2 Note that

inclusion of a constant term in (8) allows for systematic average differences between

measured production and consumption that have no implications for the price of oil.

We discuss the relation between our measure of changes in inventories and those

available from other data sources in Appendix A.3.

The equilibrium price is determined by equations (5)-(8). It is helpful to rewrite

these in vector form as3

qt
(n×1)

= ϕq
(n×1)

pt + Bq
(n×k)

xt−1 + uqt
(n×1)

(9)

2An earlier version of this paper allowed for the possibility of separate measurement error terms
in individual country-level production and consumption figures. The empirical results were similar
to those obtained in the current version, which interprets all measurement error as entering through
uvt.

3Equation (9) is obtained by stacking the n equations in (5) defining qt = (q1t, ..., qnt)
′, ϕq =

(ϕq1, .., ϕqn)
′, Bq =

[
bq1 bq2 · · · bqn

]′
, and uqt = (uq1t, ..., uqnt)

′. Equation (10) is likewise
obtained by stacking the m equations in (6).
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ct
(m×1)

= ϕc
(m×1)

pt + Bc
(m×k)

xt−1 + uct
(m×1)

(10)

s′qqt − s′cct = ϕvpt + b′
vxt−1 + uvt. (11)

The structural model consists of equations (9), (10), and (11). Identification comes

from restrictions on the covariances between the structural shocks and possible re-

strictions on the elasticities ϕq and ϕc.

Let yt = (q′
t, c

′
t, pt)

′ denote the (N × 1) vector of observed variables with N =

n + m + 1 and ut = (u′
qt,u

′
ct, uvt)

′ the (N × 1) vector of structural shocks. The

structural model can be written more compactly as

Ayt = Bxt−1 + ut (12)

A
(N×N)

=

 In 0nm −ϕq

0mn Im −ϕc

s′q −s′c −ϕv

 (13)

B
(N×k)

=

 Bq

Bc

b′
v

 .
Given any value for the structural shocks ut, equation (12) describes how price and

quantities adjust to equate global supply and demand.

4 Identification and maximum likelihood estimation

In this section we discuss how elasticities and other structural parameters can be

estimated from the data.

4.1 Granular instrumental variables

To start with a simple example, suppose we were willing to assume that demand

shocks are uncorrelated with supply shocks (E(uqtu
′
ct) = 0nm) and that demand elas-

ticities are the same across countries (ϕc = ϕc1m for ϕc the common demand elasticity

and 1m an (m×1) vector of ones). Notice that s′cct represents global consumption and

let w′
cct denote some other linear combination of individual countries consumption

where wc is any (m× 1) vector satisfying 1′
mwc = 1. Consider premultiplying (10) by
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(sc −wc)
′:

(sc −wc)
′ct = (sc −wc)

′ϕc1mpt + (sc −wc)
′Bcxt−1 + (sc −wc)

′uct

= (sc −wc)
′Bcxt−1 + (sc −wc)

′uct. (14)

Note that under these assumptions, (sc − wc)
′ct is uncorrelated with the vector of

supply shocks uqt. Thus any of the supply equations in (5) could be estimated by

instrumental variables using (sc−wc)
′ct and xt−1 as instruments. This is the granular

instrumental variable idea of Gabaix and Koijen (2024). A popular approach is to

take wc = m−11m. In this case, granular IV uses the difference between a share-

weighted average and an unweighted average of consumption across countries as an

instrument for price for purposes of estimating supply elasticities.4

Similarly, if we assume that supply elasticities are the same across countries (ϕq =

ϕq1n for ϕq the common supply elasticity and 1n an (n× 1) vector of ones), we could

use (sq − wq)
′qt (for example, the difference between production weighted by each

country’s production share and an unweighted average) as an instrument for any of

the demand equations.

If we believed that both demand and supply elasticities are homogeneous across

countries, we would want to pool them individual country demand regressions in (10)

to estimate the common value of ϕc. This raises the questions, what is the optimal way

to pool the regressions and what are the optimal choices for wc and wq? Moreover,

under these maintained assumptions, is there a way to generalize the approach to

produce estimates of ϕc and ϕq that are more precise than those that would result from

granular IV? Our proposal in this paper is to answer these questions by considering

estimation from the perspective of full-information maximum likelihood.

4.2 Maximum likelihood estimation

Since structural dynamics are modeled through the lagged coefficients on xt−1 in (5)-

(8), the vector of structural shocks ut is uncorrelated with its own lags or lags of yt. If

we were willing to further assume that structural shocks have a Gaussian distribution

with ut ∼ N(0,D), the log likelihood function of the observed data {y1,y2, ...,yT}
4There are other ways to motivate granular IV, for example, by assuming that the correlations

between demand shocks can be described by a factor structure. The derivation used here establishes
that absence of correlation between supply shocks and demand shocks is enough by itself to motivate
the use of granular IV without needing to assume a factor structure.
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conditional on the initial observations x0 would be given by

ℓ(θ,B) = −(TN/2) log(2π) + (T/2) log(|A|2)− (T/2) log |D|

− (1/2)
∑T

t=1(Ayt −Bxt−1)
′D−1(Ayt −Bxt−1). (15)

Here θ collects unknown elements of A and D and the determinant |A| is the inverse
of the Jacobian of the transformation from yt = (qt, ct, pt)

′ to ut. The principle of

maximum likelihood estimation calls for choosing as estimates the values of θ and B

that maximize the likelihood function (15). An important reason to rely on maximum

likelihood for estimation of θ is that when yt is stationary, any other way to use the

observed data to produce a consistent and asymptotically Normal estimate of θ cannot

have a smaller asymptotic variance than θ̂MLE.

Finding the values of θ and B that maximize (15) is greatly facilitated by using

OLS regressions to concentrate the likelihood function. Define Π̂ to be the (N × k)

matrix of coefficients from OLS regressions of each variable on lags of all the variables:

Π̂ =
[∑T

t=1ytx
′
t−1

] [∑T
t=1xt−1x

′
t−1

]−1

. (16)

Let ϵ̂t be the (N × 1) vector of residuals from these OLS regressions and Ω̂ their

(N ×N) sample variance-covariance matrix:

ϵ̂t = yt − Π̂xt−1 (17)

Ω̂ = T−1
∑T

t=1ϵ̂tϵ̂
′
t. (18)

Although many of the details for applications like ours are well known,5 for the

reader’s convenience we collect some key results in the form of a proposition, which

we prove in Appendix A.4.

Proposition 1. Define

η(θ) = −(TN/2) log(2π) + (T/2) log
[(
s′qϕq − s′cϕc − ϕv

)2]
− (T/2) log |D| − (1/2)

∑T
t=1(Aϵ̂t)

′D−1(Aϵ̂t). (19)

If there are no restrictions on B, then the values of θ and B that maximize (15) are

given by

θ̂MLE = argmax η(θ)

5See for example Hamilton (1994, pp. 331-332).
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B̂MLE = A(θ̂MLE)Π̂.

The function η(θ) can alternatively be calculated as

η(θ) = −(TN/2) log(2π) + (T/2) log
[(
s′qϕq − s′cϕc − ϕv

)2]
− (T/2) log |D| − (T/2)trace

[
A′D−1AΩ̂

]
. (20)

Moreover, the value achieved for (15) at the maximum likelihood estimates is equal to

ℓ(θ̂MLE, B̂MLE) = η(θ̂MLE).

Proposition 1 tells us that maximum likelihood estimates of elasticities are based

on the covariances Ω̂ between the errors we make in forecasting the observed vari-

ables, for example, the covariances between the errors in predicting production or

consumption in individual countries and the error in forecasting the price of oil.

The structural parameter θ is said to be identified if there exists a unique value of

θ that maximizes (20).6 Identification requires prior information about the structure

that implies restrictions on the values A and D can take on. A necessary requirement

for identification is the order condition that the number of unknown elements of A

and D is no greater than the number of unique elements in Ω̂, which is N(N + 1)/2.

4.3 Maximum likelihood estimation assuming homogeneous elastici-

ties

In this subsection we discuss maximum likelihood estimation in the special case when

supply shocks are uncorrelated with demand shocks,

D
(N×N)

=


Dq

(n×n)
0nm 0n1

0mn Dc
(m×m)

0m1

01n 01m σ2
v

(1×1)

 , (21)

and elasticities are the same across countries: ϕq = ϕq1n and ϕc = ϕc1m. Partition

the OLS forecasting residuals ϵ̂t into the errors made in forecasting each country’s

6See Definition 2 in Rothenberg (1971). Other researchers take identification to mean that the
population parameter θ can be consistently estimated, which requires the population analog of (20),
namely

log
[(
s′qϕq − s′cϕc − ϕv

)2]− log |D| − trace
[
A′D−1AE(ϵtϵ

′
t)
]
,

to have a unique maximum.
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production, each country’s consumption, and the world price:

ϵ̂t
(N×1)

=


ϵ̂qt

(n×1)

ϵ̂ct
(m×1)

ε̂pt
(1×1)

 .

In this special case (19) becomes

η(θ) = −(TN/2) log(2π) + (T/2) log
[
(ϕq − ϕc − ϕv)

2]− (T/2) log |Dq| − (T/2) log |Dc|

− (T/2) log(σ2
v)− (1/2)

∑T
t=1(ϵ̂qt − ϕq1nε̂pt)

′D−1
q (ϵ̂qt − ϕq1nε̂pt)

− (1/2)
∑T

t=1(ϵ̂ct − ϕc1mε̂pt)
′D−1

c (ϵ̂ct − ϕc1mε̂pt)− (1/2)
∑T

t=1

(ε̂vt − ϕvε̂pt)
2

σ2
v

(22)

where

ε̂vt = s′qϵ̂qt − s′cϵ̂ct (23)

and θ consists of (ϕq, ϕc, ϕv, σv) and the nonredundant elements of the symmetric

matrices Dq and Dc.

Proposition 2. Define ûqt = ϵ̂qt − ϕ̂q1nε̂pt, ûct = ϵ̂ct − ϕ̂c1mε̂pt, and ûvt =

ε̂vt − ϕ̂vε̂pt. The first-order conditions for maximization of (22) are given by

D̂q = T−1
∑T

t=1ûqtû
′
qt D̂c = T−1

∑T
t=1ûctû

′
ct σ̂2

v = T−1
∑T

t=1û
2
vt (24)

ϕ̂q =

∑T
t=1z̃qtq̃t∑T
t=1z̃qtε̂pt

(25)

ϕ̂c =

∑T
t=1z̃ctc̃t∑T
t=1z̃ctε̂pt

(26)

ϕ̂v =

∑T
t=1z̃vtε̂vt∑T
t=1z̃vtε̂pt

(27)

q̃t = ŵ′
qϵ̂qt ŵ′

q = 1′
nD̂

−1
q /(1′

nD̂
−1
q 1n) (28)

c̃t = ŵ′
cϵ̂ct ŵ′

c = 1′
mD̂

−1
c /(1′

mD̂
−1
c 1m) (29)

z̃qt = (sc − ŵc)
′ϵ̂ct + (c̃t − ϕ̂cε̂pt) + (ε̂vt − ϕ̂vε̂pt) (30)

z̃ct = −(sq − ŵq)
′ϵ̂qt − (q̃t − ϕ̂qε̂pt) + (ε̂vt − ϕ̂vε̂pt) (31)
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z̃vt = (sc − ŵc)
′ϵ̂ct − (sq − ŵq)

′ϵ̂qt − (q̃t − ϕ̂qε̂pt) + (c̃t − ϕ̂cε̂pt). (32)

Estimating the variances of structural disturbances (Dq, Dc, σ
2
v) given estimates

of the elasticities ϕq, ϕc, and ϕv comes from the straightforward and highly intuitive

expressions in (24). For example, the MLE of the variance of the structural shock for

inventory demand σ2
v is just the average squared value of û2vt.

Expression (25) characterizes the MLE of ϕq as an IV estimate coming from a

regression of q̃t on ε̂pt using z̃qt as an instrument for the price of oil. The first term in

the characterization of the instrument z̃qt in (30) incorporates the insight of granular

instrumental variables, specifying (sc − ŵc)
′ϵ̂ct as one component of the instrument

z̃qt used by MLE. Note that the principle of maximum likelihood estimation instructs

us how to aggregate individual production magnitudes in calculating the left-hand

variable in the IV regression, namely q̃t = ŵ′
qϵ̂qt.

But maximum likelihood says that we can do much better than just rely on the

standard granular instrument based on consumption across different regions. The

assumption that we used to motivate granular IV was that supply shocks uqt are

uncorrelated with the demand shocks uct = ϵct − ϕc1mεpt. Thus a consistent esti-

mate of any individual demand shock ε̂cjt − ϕ̂cε̂pt would also be a valid instrument

for estimating the supply elasticity. MLE utilizes the particular linear combination

ŵ′
c(ϵ̂ct− ϕ̂c1mε̂pt). Finally, the model maintains that ε̂vt− ϕ̂vε̂pt is also a valid instru-

ment. MLE combines all the available sources of information about ϕq to produce

the consistent estimate ϕ̂q with the smallest possible asymptotic variance.7

Note that while equations (24)-(32) provide an analytical characterization of the

maximum likelihood estimates, they do not offer a closed-form expression. To use

(24) to calculate D̂q we need to know ϕ̂q. And to use (25) to calculate ϕ̂q we need to

know D̂q. Nevertheless, the analytical expressions suggest a constructive algorithm

that could be used to find an estimate θ̂ that simultaneously satisfies all the equations

and also helps us understand the nature of the identification behind MLE. We could

construct an initial estimate of the supply elasticity ϕq using standard granular IV

with aggregate production q̃
(1)
t = s′qϵ̂qt as the dependent variable and z̃

(1)
qt = (sc −

7The instrument z̃qt can be further simplified by noting that c̃t = ŵ′
cϵ̂ct and ε̂vt = s′q ϵ̂qt − s′cϵ̂ct:

z̃qt = (sc − ŵc)
′ϵ̂ct + (ŵ′

cϵ̂ct − ϕ̂cε̂pt) + (s′q ϵ̂qt − s′cϵ̂ct − ϕ̂v ε̂pt)

= s′q ϵ̂qt − (ϕ̂c + ϕ̂v)ε̂pt.

We write z̃qt in the form of (30) to better explain the intuition for why it is a valid instrument and
the relation to granular IV.
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m−11m)
′ϵ̂ct as an instrument for price:

ϕ̂(1)
q =

∑T
t=1z̃

(1)
qt q̃

(1)
t∑T

t=1z̃
(1)
qt ε̂pt

. (33)

This estimate is consistent, but does not efficiently use all the available information.

Likewise we could get an initial consistent but inefficient estimate of the demand

elasticity using

ϕ̂(1)
c =

∑T
t=1z̃

(1)
ct c̃

(1)
t∑T

t=1z̃
(1)
ct ε̂pt

. (34)

with c̃
(1)
t = s′cϵ̂ct and z̃

(1)
ct = (n−11n − sq)

′ϵ̂qt. We could now use z̃
(1)
vt = c̃

(1)
t − ϕ̂

(1)
c ε̂pt as

an instrument to estimate the inventory elasticity

ϕ̂(1)
v =

∑T
t=1z̃

(1)
vt (s

′
qϵ̂qt − s′cϵ̂ct)∑T

t=1z̃
(1)
vt ε̂pt

.

With these initial estimates, we can then form

D̂(1)
q = T−1

∑T
t=1

(
ϵ̂qt − ϕ̂(1)

q 1nε̂pt

)(
ϵ̂qt − ϕ̂(1)

q 1nε̂pt

)′
D̂(1)
c = T−1

∑T
t=1

(
ϵ̂ct − ϕ̂(1)

c 1mε̂pt

)(
ϵ̂ct − ϕ̂(1)

c 1mε̂pt

)′
(
σ̂2
v

)(1)
= T−1

∑T
t=1(s

′
qϵ̂qt − s′cϵ̂ct − ϕ̂(1)

v ε̂pt)
2.

We thus have a consistent initial estimate of the full vector θ̂
(1)
.

We can then use this value of θ̂
(1)

on the right-hand sides of (28) and (29) to

construct improved aggregates q̃
(2)
t and c̃

(2)
t . These along with ϕ̂

(1)
q , ϕ̂

(1)
c , ϕ̂

(1)
v give

improved instruments z̃
(2)
qt , z̃

(2)
ct , and z̃

(2)
vt from (30)-(32), and then improved estimates

ϕ̂
(2)
q , ϕ̂

(2)
c , and ϕ̂

(2)
v from (25)-(27). Plugging these estimates into (24) completes the

new estimate θ̂
(2)
. Iterating in this fashion until convergence (that is, until θ̂

(j+1)
=

θ̂
(j)
) is a constructive algorithm to arrive at the single value of θ̂ that simultaneously

solves equations (24)-(32). This is identical to the value θ̂ that could be obtained by

maximizing (20) by numerical search, and also identical to the value of θ̂ that would

be obtained by maximizing (15) jointly with respect to θ and B. This is a form of

iterated three-stage least squares as a way to calculate the full-information maximum

likelihood estimates.
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4.4 Benefits of estimation by maximum likelihood

We have seen that the principle of maximum likelihood allows us to use granular in-

formation in an optimal way. It moreover instructs us how to aggregate observations

across equations to calculate common parameters, how to use all information effi-

ciently, and how to estimate all structural parameters simultaneously. Furthermore,

it does this in a way that is invariant with respect to normalization. For example, if

we were to take the goal to be to estimate the inverse of the demand elasticity, the

MLE of ϕ−1
q is numerically identical to the inverse of the MLE of ϕq. This invariance

with respect to parameterization is an advantage of MLE that is not shared by typical

instrumental variables applications or GMM. Indeed, the parameterization issue is a

well known problem associated with IV and GMM, as shown for example by Yogo

(2004).

We have characterized MLE analytically for the special case of homogeneous elas-

ticities and supply shocks that are uncorrelated with demand shocks. But one does

not need to know the analytical characterization of the first-order conditions in or-

der to implement maximum likelihood estimation. If we simply maximize (20) by

numerical search over allowable values of θ, we will arrive at exactly the same esti-

mates. Doing so of course requires that the model, like the one we analyzed above,

is identified. A first step in any application is to verify that the order condition

for identification is satisfied (dim(θ) ≤ N(N + 1)/2)) and that θ̂ = argmax η(θ) is

unique.

Maximum likelihood estimation also allows us to use a likelihood ratio test to

check whether proposed restrictions on θ are consistent with the data. If θ̂0 denotes

the MLE of a restricted model and θ̂1 the MLE when some of the restrictions are

relaxed, we can test the null hypothesis that the restrictions are correct by treating

2
[
η(θ̂1)− η(θ̂0)

]
(35)

as approximately χ2 with degrees of freedom equal to the number of additional pa-

rameters estimated in the less restricted model, namely dim(θ̂1) − dim(θ̂0). In this

paper we will typically follow the suggestion of Sims (1980, p. 17) and Hamilton

(1994, p. 297) of replacing (35) with the small-sample correction

2(T − k)

T

[
η(θ̂1)− η(θ̂0)

]
. (36)

A leading case is to test jointly all the overidentifying restrictions of a proposed
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model by comparing the value of the likelihood achieved by the model with that for

a completely unrestricted model. A model with no restrictions and a perfect fit to

the data would result in Â−1D̂
(
Â′
)−1

= Ω̂ or from (20),

η(θ̂unrestricted) = −(TN/2)[1 + log(2π)]− (T/2) log
∣∣∣Ω̂∣∣∣ (37)

where Ω̂ is the covariance matrix of the OLS forecasting residuals in (18). An un-

restricted model imposes no restrictions on how production, consumption, and price

could covary, that is, no restrictions on Ω̂. The likelihood ratio test of a proposed

model is calculated as

2(T − k)

T

[
η(θ̂unrestricted)− η(θ̂MLE)

]
(38)

which if the restrictions are all valid would have an asymptotic χ2 distribution with

degrees of freedom equal to the number of overidentifying restrictions, that is, degrees

of freedom equal to N(N+1)/2−dim(θ̂MLE). Our specification strategy is to develop

a parsimonious structural model whose restrictions are not rejected by a likelihood

ratio test.

We calculate approximate standard errors for θ̂MLE from the square roots of

diagonal elements of

V̂ =

[
− ∂2η(θ)

∂θ∂θ′

∣∣∣∣
θ=θ̂

]−1

. (39)

4.5 Empirical estimates assuming homogeneous elasticities

We begin by reporting an estimate of the demand elasticity ϕc that results from a

simple application of granular IV. We estimated a regression of s′cct on pt and xt−1

using (n−11n − sq)
′qt and xt−1 as instruments,

β̂
(IV )

c =
[∑T

t=1z
(IV )
ct x̃′

t

]−1 [∑T
t=1z

(IV )
ct (s′cct)

]
, (40)

for zIVct =
[
(n−11n − sq)

′
qt,x

′
t−1

]′
and x̃t = (pt,x

′
t−1)

′.We first note that the resulting

estimate of ϕc (the first element of β̂
(IV )

c ) is in fact numerically identical to the

estimate ϕ̂
(1)
c that results from the first iteration of our iterated 3SLS procedure

described in (34).

Proposition 3. The coefficient on pt in the granular IV regression (40) is nu-

merically identical to the estimate ϕ̂
(1)
c in (34).
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Table 1: Parameter estimates assuming homogeneous elasticities and that supply
shocks are uncorrelated with demand shocks

Parameter IV MLE MLE
(restricted)

Demand elasticity ϕc -0.106 -0.130 -0.130
(0.252) (0.026) (0.026)

Supply elasticity ϕq -3.699 0.054 0.053
(7.717) (0.009) (0.009)

Inventory demand elasticity ϕv -0.373 -0.375
(0.052) (0.053)

Notes to Table 1. Standard errors in parentheses. Last column is based on MLE in
which structural shocks follow a factor structure as in (41).

This estimate is ϕ̂
(1)
c = −0.11, which is plausible, but the standard error8 is twice

the size of the coefficient estimate; see Table 1. Thus the estimate ϕ̂
(IV )
c , while

asymptotically valid, is in practice not very useful for this sample. Even more striking,

if we were to estimate the supply elasticity ϕq from a regression of s′qqt on pt and xt−1

using z
(IV )
qt =

[
(m−11m − sc)

′
ct,x

′
t−1

]′
as instruments (or equivalently, simply use

the first iteration from 3SLS in equation (33)), the estimate proves to be completely

useless with a standard error of 7.7. The reason is that there is not much difference

in these data between the share-weighted and unweighted average of consumption

across countries.

Rather than stop with the initial estimates in (34) and (33), we next iterated on

the 3SLS system of equations to find the maximum likelihood estimates. These are

reported in the second column of Table 1. The MLE of the demand elasticity ϕc

8We calculated IV standard errors using the usual asymptotic formula, namely the square root
of the first diagonal element of

s(IV )
c

[∑T
t=1z

(IV )
ct x̃′

t

]−1 [∑T
t=1z

(IV )
ct z

(IV )′
ct

] [∑T
t=1x̃tz

(IV )′
ct

]−1

where

s(IV )
c = T−1∑T

t=1

[
s′cct − x̃′

tβ̂
(IV )

c

]2
.

This again turns out to be numerically identical to

s(1)c

∑T
t=1

[
(n−11n − sq)

′ϵ̂qt
]2[∑T

t=1(n
−11n − sq)′ϵ̂qtε̂pt

]2
where

s(1)c = T−1∑T
t=1

[
s′cϵ̂ct − ϕ̂(1)

c ε̂pt

]2
which is the natural standard error associated with (34).
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is in fact not that different from the IV estimate, but the standard error is much

lower.9 We can have considerably more confidence in the estimate once we combine

all the different sources of information that are available to confirm it, namely, all

the terms in (31). Using all the available information makes a world of difference

for estimating the supply elasticity. The reason MLE is so much better than IV

for estimating the supply elasticity is that we can get a fairly good estimate of the

demand elasticity ϕ̂c and thus good estimates of ϵ̂ct − ϕ̂c1mε̂pt. Using these demand

shocks as additional instruments for estimating the supply elasticity (i.e., the second

term in (30)) is extremely helpful. Note that the assumption that the demand shocks

uct are uncorrelated with supply shocks was the key assumption that we used above

to verify that the granular difference (m−11m−sc)
′ct could serve as a valid instrument

for estimating the supply elasticity. MLE uses all the implications of this underlying

assumption to get much better estimates. When we use all the available information,

we can say with confidence that the supply elasticity is small but positive (see Table

1).

Another advantage of MLE is that we obtain estimates of all the structural param-

eters of the model. For example, MLE finds the response of inventories to price ϕv to

be even larger than that of consumption itself. We will comment on the importance

of this finding in the analysis of a more sophisticated model in Section 6.

4.6 Specification tests

Maximum likelihood also give us convenient tools for testing any proposed specifi-

cation. For example, in the model described above we assumed that the variance-

covariance matrices for supply shocks Dq and demand shocks Dc were completely

unrestricted. We could consider a more parsimonious specification if we conjecture

that the covariances between the supply shocks in different regions have a factor

structure:

Dq = Σq + γqγ
′
q (41)

where Σq is a diagonal (n× n) matrix and γq is an (n× 1) vector. The unrestricted

general model of Dq used in (21) requires n(n+ 1)/2 = 10 parameters, whereas (41)

9To calculate standard errors, we parameterized Dq = HqH
′
q and Dc = HcH

′
c with

Hq =


hq
11 0 0 0

hq
21 hq

22 0 0
hq
31 hq

32 hq
33 0

hq
41 hq

42 hq
43 hq

44

 Hc =


hc
11 0 0 0

hc
21 hc

22 0 0
hc
31 hc

32 hc
33 0

hc
41 hc

42 hc
43 hc

44

 .

We then let θ be the (24× 1) vector (ϕq, ϕc, ϕv, σv,vech(Hq)
′,vech(Hc)

′) to calculate second deriva-
tives of (20) with respect to each element in this vector.
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needs only the n diagonal elements of Σq and the n elements of γq, a total of 8

parameters. Assuming a similar factor structure for the demand shocks eliminates

two more parameters. Comparing the model with unrestricted covariances with a

model in which covariances admit a factor structure leads to a likelihood ratio test

statistic in (36) of 2.48. Comparing this with a χ2(4) distribution gives a p-value

of 0.65. The hypothesis that shocks admit a factor structure is consistent with the

observed data. Imposing a factor structure turns out to result in virtually no change

in the maximum likelihood estimates; see the last column of Table 1.

More importantly, we can directly test the assumptions that elasticities are ho-

mogeneous and that demand shocks are uncorrelated with supply shocks by testing

that specification against an unrestricted model. Unfortunately, the likelihood ratio

test (38) produces a χ2 statistic of 142.9 with 45 − 24 = 21 degrees of freedom– the

data overwhelmingly reject the specification. What feature of the observed data leads

to this conclusion? The specification requires that there exist scalars ϕq and ϕc such

that the 16 elements of the matrix

E(ϵqt − ϕq1nεpt)(ϵct − ϕc1mεpt)
′ = 0nm

are all zero. We can estimate the elements of E(ϵtϵ
′
t) sufficiently accurately from

Ω̂ = T−1
∑T

t=1ϵ̂tϵ̂
′
t to conclude that no values of ϕq, ϕc exist that could make

[
In 0nm −ϕq1n

]
Ω̂

 0nm

Im

−ϕc1′
m


plausibly close to zero.

We can generalize the model by allowing each country to have different demand

and supply elasticities. If demand shocks are nevertheless still uncorrelated with

supply shocks, the specification implies that there exist an (n× 1) vector ϕq and an

(m× 1) vector ϕc such that

E(ϵqt − ϕqεpt)(ϵct − ϕcεpt)
′ = 0nm.

This still involves some testable overidentifying assumptions, in that there arem+n =

8 parameters in ϕq and ϕc to be chosen to set nm = 16 observed moments of the

data to zero. This hypothesis also turns out to be rejected by the data. We conclude

that to describe the data, one needs to allow for some correlation between supply and
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demand shocks.

4.7 A structural model of the world oil market that is consistent with

the observed data

We allow for correlation between supply and demand shocks by hypothesizing the

existence of a global shock ft that influences both supply and demand. For example,

a global economic downturn might affect both producers and consumers. In addition,

we allow for a second global shock fct that affects consumption in every country

and a third global shock fqt that affects production in every country. Under this

specification, the structural disturbances in equations (9) and (10) are characterized

by

uqt = hqft + γqfqt + ηqt (42)

uct = hcft + γcfct + ηct. (43)

Here hq is an (n × 1) vector whose ith element summarizes how the global shock

ft affects production in country i. Since ft is not observed directly and only affects

the observed data through the product hqft, a normalization is needed for the units

in which ft is measured. We follow a common normalization in factor models of

specifying that ft has unit variance. Likewise, γq is an (n × 1) vector whose ith

element summarizes how the global supply shock fqt affects production in country

i with E(f 2
qt) again normalized at one. We also follow the standard representation

that the factors ft and fqt are uncorrelated with each other. This is again just a

normalization; given a proposed second factor f̃qt that is correlated with ft, one can

define a new factor fqt as the residual from a projection of f̃qt on ft with the same

observable implications. Appendix A.7 describes how we implement this normaliza-

tion in practice. Finally, we hypothesize that the shocks ηqt are purely idiosyncratic

supply shocks that are uncorrelated across countries: E(ηqtη
′
qt) = Σq, a diagonal

matrix. Similar assumptions for the terms in (43) imply a variance-covariance matrix

of structural shocks given by

D = E(utu
′
t) =

 hqh
′
q + γqγ

′
q +Σq hqh

′
c 0n1

hch
′
q hch

′
c + γcγ

′
c +Σc 0m1

01n 01m σ2
v

 (44)

with Σq and Σc diagonal matrices. Note this is a restriction relative to (21) in that

it imposes a factor structure on Dq and Dc but also generalizes (21) by allowing
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for nonzero correlations between uqt and uct arising from the common global factor

ft. Our favored specification also allows each country to have different supply and

demand elasticities with ϕq and ϕc unrestricted vectors.

The model thus has (n+m+1) elasticity parameters represented by {ϕq,ϕc, ϕv},
(n + m + 1) parameters that capture the variances of idiosyncratic shocks (namely

σ2
v and the diagonal elements of Σq and Σc), (n +m) parameters in hq and hc that

capture the effects of the global factor on supply and demand, (n− 1) parameters in

γq, and (m − 1) parameters in γc. Note that only (n − 1) parameters are needed to

describe the (n×1) vector γq since we estimate the model subject to the orthogonality

normalizations h′
qγq = h′

cγc = 0 as described in Appendix A.7. The vector θ thus

contains 4(n + m) parameters, or 32 parameters in the case when n = m = 4. For

comparison, an unrestricted model describes Ω̂ perfectly with (n +m + 1)(n +m +

2)/2 = 45 parameters. The proposed model thus has 45 − 32 = 13 overidentifying

restrictions that can be tested.

We maximized the likelihood (20) with A given by (13) and D given by (44) by

numerical search over values of θ. The resulting value for η(θ̂MLE) is −12, 636.25. This

compares with a likelihood for an unrestricted model of η(θ̂unrestricted) = −12, 625.38

and results in a value for the test statistic (36) of 17.47. Comparing this with a

χ2(13) distribution gives a p-value of 0.18. We conclude that the restrictions in (44)

are consistent with the observed data.

The third factor fqt does not contribute much to the fit. Setting γq = 0 frees

up three more degrees of freedom but still achieves almost as high a log likelihood

(−12, 637.54). The statistic (36) for testing all the overidentifying restrictions of this

further restricted specification generates a χ2(16) test statistic with a p-value of 0.24.

The specification (44) with γq = 0 is used for the results reported in Section 5. We

obtained very similar results to those reported below when we estimated a three-factor

model that did not impose γq = 0.

4.8 Estimating the contemporaneous effects of structural shocks on

impact

An alternative to the structural model developed above is to start with simple equa-

tions to forecast each variable based on the r most recent values of all the variables:

yt = Πxt−1 + ϵt. (45)

A reduced-form approach to estimate the forecasting coefficients Π is by the OLS re-

gressions in (16), which minimize the average squared forecast errors. Our structural
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model of the oil market implies that the forecast errors ϵt can be interpreted as result-

ing from linear combinations of the structural shocks ut. Specifically, premultiplying

(12) by A−1 puts (12) in the form of (45) with

ϵt = A−1ut.

From equations (42) and (43) we have

ut =

 hqft + γqfqt + ηqt

hcft + γcfct + ηct

uvt


and for the matrix A given by (13) it turns out that

A−1 =

 In − αϕqs
′
q αϕqs

′
c αϕq

−αϕcs
′
q Im + αϕcs

′
c αϕc

−αs′q αs′c α

 (46)

α =
(
s′qϕq − s′cϕc − ϕv

)−1
(47)

as can be verified by observing that the product of (13) with (46) is indeed the identity

matrix.

We can use these equations to calculate the effect on impact of any structural

shock ukt on the (n + m + 1) × 1 vector of observed variables yt at time t using

∂yt/∂ukt = ∂ϵt/∂ukt = A−1∂ut/∂ukt. For example, a one-percent increase in the

supply from country i alone resulting from a one-unit increase in ηqit would increase

uqt by e
(n)
i , the ith column of In. Thus

∂ϵt
∂ηqit

= A−1

 e
(n)
i

0

0

 =

 e
(n)
i − αϕqs

′
qe

(n)
i

−αϕcs
′
qe

(n)
i

−αs′qe
(n)
i

 =

 e
(n)
i − αϕqsqi

−αϕcsqi

−αsqi

 (48)

where sqi is the share of country i in global production. In equilibrium the increase in

supply lowers the world price by −αsqi. This leads to higher consumption in country j

of −αϕcjsqi where ϕcj < 0 is the demand elasticity of country j and lowers production

of country k ̸= i by −αϕqksqi where ϕqk > 0 is the supply elasticity of country k.
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Similarly, a 1% increase in the demand for country j alone has an effect on impact of

∂ϵt
∂ηcjt

= A−1

 0

e
(m)
j

0

 =

 αϕqscj

e
(m)
j + αϕcscj

αscj


for e

(m)
j the jth column of Im and scj the share of country j in world consumption. For

example, the increased consumption raises the world price by αscj. A one-standard-

deviation increase in the global demand factor fct raises uct by γc with equilibrium

impact effects given by

∂ϵt
∂fct

= A−1

 0

γc

0

 =

 αϕqs
′
cγc

γc + αϕcs
′
cγc

αs′cγc

 . (49)

Equation (48) assumes that when the supply curve for country i shifts by 1%, in

response to the induced αsqi percent drop in global price, supply from i then decreases

by ϕiαsqi as we move back down along the new supply curve, so that the net change in

country i’s production is only 1− ϕiαsqi. In some cases we might instead be interested

in the effects of a net increase in country i’s production of 1% without the endogenous

response of country i to the change in price. In this case, the world price would fall

by αisqi where

αi =
1∑n

k=1,k ̸=iϕqksqk −
∑m

j=1ϕcjscj − ϕv
. (50)

The change in quantity consumed by country j would in this case be −αisciϕcj and
the change in quantity produced by country k ̸= i would be −αisqiϕqk.

4.9 Dynamic effects of structural shocks

If r lags are enough to capture forecasting dynamics, one can use the reduced-form

OLS coefficients Π̂ to summarize how new information about any variable causes us

to revise a forecast of what will happen s periods later:

Ψs =
∂E(yt+s|ϵt,yt−1,yt−2, ...,yt−m)

∂ϵ′t
.

The value of Ψs can be estimated from the value of Π̂ using well-known recursions

(see for example Hamilton (1994, eq (10.1.19))). We can then calculate a structural

dynamic multiplier interpreted as the answer to the following question: if there is a
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structural shock to ukt, how does this cause us to change our forecast of yt+s:

∂E(yt+s|yt,yt−1, ...yt−r+1)

∂ukt
= Ψs

∂ϵt
∂ukt

.

To get this, we just plug in one of the above expressions for ∂ϵt/∂ukt. For example,

∂E(yt+s|yt,yt−1, ...yt−r+1)

∂fct
= ΨsA

−1

 0

γc

0

 . (51)

We can calculate confidence bands for these estimates as described in Appendix A.8.

5 Empirical results

To summarize, our observations for month t are represented by the N = 9× 1 vector

yt consisting of production growth rates in our four regions, consumption growth

rates in our four regions, and the percent change in the real price of oil. The depen-

dent variable is observed from t = 1975:M1 through 2020:M2 and 2022:M2 through

2023:M2 for a total number of observations of T = 555. The vector of predictor vari-

ables xt−1 is a k = 109× 1 vector consisting of a constant term and 12 lags of each of

the nine variables. Our structural model is given by equations (9)-(11). Identification

is achieved by modeling the correlations between structural shocks using the factor

structure

D = E

 uqtu
′
qt uqtu

′
ct uqtuvt

uctu
′
qt uctu

′
ct uctuvt

uvtu
′
qt uvtu

′
ct u2vt

 =

 hqh
′
q +Σq hqh

′
c 0n1

hch
′
q hch

′
c + γcγ

′
c +Σc 0m1

01n 01m σ2
v


with Σq and Σc diagonal matrices. As shown in Section 4.7, this specification implies

16 testable overidentifying restrictions that are not rejected by the data.

The first column of Table 2 reports the parameter values that maximize the like-

lihood (20).10 We estimate a short-run price elasticity of oil supply of 0.25 for Saudi

Arabia and 0.02 to 0.07 for other countries. These are all estimated to be positive

without the need to impose sign constraints. Using equation (3), these estimates

imply an overall world oil short-run supply elasticity of

ϕq =
∑n

i=1sqiϕqi = 0.077. (52)

10An earlier version of this paper allowed for separate measurement errors in the individual country
production and consumption observations and arrived at similar estimates to those reported here.
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This is close to the estimate of 0.054 that we obtained in Table 1 when we assumed

that the supply elasticity was the same across all countries. Our estimate of 0.077 is

also very similar to the estimates of Caldara, Cavallo and Iacoviello (2019, Table 3) of

0.05 to 0.08 and of Balke, Jin and Yücel (2024) of 0.07 to 0.10, but a little below the

estimate in Baumeister and Hamilton (2019) of 0.15. Our country-specific elasticities

further support the conclusions of previous researchers including Pierru, Smith and

Zamrik (2018), Caldara, Cavallo and Iacoviello (2019), Alonso-Alvarez, Di Nino and

Venditti (2022), Almutairi, Pierru and Smith (2023), and Balke, Jin and Yücel (2024)

that OPEC production is much more responsive to price than production outside of

OPEC.

Our estimates of the short-run price elasticity of demand range from −0.001 for

Japan to −0.20 for Europe. These are all estimated to be negative without imposing

any sign constraints, though the Japanese estimate is indistinguishable from zero.

From equation (4), our estimates imply a global short-run price elasticity of demand

of

ϕc =
∑m

j=1scjϕcj = −0.119. (53)

This is almost identical to the estimate of −0.130 that we obtained in Table 1 when

we assumed that demand elasticity was the same across all countries. Our estimate

concludes that demand is a little more responsive to price than the estimates of

−0.03 to −0.08 in Cooper (2003), Caldara, Cavallo and Iacoviello (2019, Table 3),

and Pierru, Smith and Zamrik (2018) and a little less responsive to price than the

estimates obtained by Balke, Jin and Yücel (2024) (−0.17), Alonso-Alvarez, Di Nino

and Venditti (2022) (−0.28), and Baumeister and Hamilton (2019) (−0.35).

Shocks to Saudi Arabian production (whose standard deviation is σq,Saudi = 6.3)

are significantly larger than those to other producing countries and also larger than

any shocks to consumption demand. The variance of shocks to inventory demand is

comparable in magnitude to the variances of demand shocks for individual countries,

and inventory demand is more responsive to price than is the product demand from

any individual country. The feature of the data leading to the estimate of ϕ̂v < 0 is

the observation that the correlations between price and share-weighted consumption

and production are smaller than they would be in the absence of adjustment of

inventories. We interpret these estimates as consistent with the view that inventory

investment responds to price changes in a stabilizing way. A shortfall in supply from

any producing country is partially met by selling out of inventories.

The global factor ft shows up primarily as an increase in demand from the rest

of the world and an increase in production from Saudi Arabia and the rest of the
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Table 2: Maximum likelihood estimates

Full sample Post 2005
Parameter MLE Std err MLE Std err

ϕq,US 0.021 (0.016) 0.063 (0.032)
ϕq,Saudi 0.248 (0.058) 0.134 (0.034)
ϕq,Russia 0.034 (0.010) 0.017 (0.012)
ϕq,ROW 0.066 (0.020) 0.023 (0.010)
ϕc,US -0.077 (0.025) -0.063 (0.034)
ϕc,Japan -0.001 (0.031) -0.029 (0.049)
ϕc,Europe -0.202 (0.037) -0.247 (0.051)
ϕc,ROW -0.139 (0.038) -0.145 (0.042)
σq,US 2.508 (0.076) 1.949 (0.104)
σq,Saudi 6.321 (0.256) 1.023 (0.184)
σq,Russia 1.529 (0.046) 0.638 (0.036)
σq,ROW 1.331 (0.314) 0.414 (0.032)
σc,US 1.935 (0.107) 1.080 (0.075)
σc,Japan 3.067 (0.120) 1.743 (0.110)
σc,Europe 3.492 (0.152) 1.277 (0.170)
σc,ROW 2.460 (0.172) 0.951 (0.079)
hq,US -0.028 (0.142) 0.294 (0.190)
hq,Saudi 2.430 (0.452) 1.514 (0.171)
hq,Russia 0.125 (0.085) 0.292 (0.062)
hq,ROW 1.634 (0.275) 0.375 (0.051)
hc,US -0.120 (0.118) 0.263 (0.113)
hc,Japan -0.298 (0.151) 0.380 (0.161)
hc,Europe -0.167 (0.139) -0.255 (0.091)
hc,ROW 1.061 (0.258) -0.193 (0.120)
ϕv -0.355 (0.061) -0.187 (0.040)
σv 2.825 (0.322) 1.196 (0.148)

γc,US 1.367 (0.425) 0.699 (0.783)
γJapan 1.495 (0.499) 1.023 (0.622)
γEurope 1.981 (0.537) 1.621 (0.638)
γROW 0.881 (0.321) 0.651 (0.665)

α 1.813 (0.101) 2.811 (0.202)
ϕq 0.077 (0.017) 0.041 (0.012)
ϕc -0.119 (0.030) -0.128 (0.037)

Notes to Table 2. The four elements of γc were not estimated directly but were
calculated from the three elements of ωc (not reported in the table) along with the
four elements of hc reported in the table using equations (A26) and (A25). Standard
errors for γc were calculated by simulating draws from the asymptotic distribution
of θ̂ as a byproduct of the algorithm used to calculate confidence bands for impulse-
response functions. The values of α, ϕq and ϕc were not estimated directly but were

inferred from θ̂ using equations (47), (52), and (53) with standard errors for α̂, ϕ̂q,

and ϕ̂c obtained by simulation. Full sample: 1975:M1-2023:M2 (excluding COVID);
Post-2005: 2006:M1-2023:M2 (excluding COVID).27



world. One possibility is that this represents a direct response of OPEC to strong

global demand that is not mediated through price changes. The coefficients γc on the

global demand factor are similar across countries. A one-standard-deviation increase

in fct leads to a 1-2% increase in oil demand everywhere in the world.

6 Applications

In this section we use our model to analyze the effects of certain structural shocks.

6.1 Example 1: The effects of a global demand shock

We first examine the effects of a one-standard-deviation shock to the global demand

factor fct. This raises demand for country j by γcj, which is around 1-2% for every

country. From the last row of equation (49), this leads to an immediate increase in

the price of oil of αs′cγc, which equals 2.055%. These immediate impact effects are

summarized in column 1 of Table 3.

Table 3: Impact effects of a global demand shock

with estimated ϕv with ϕv = 0
as % of country % of world as % of country % of world

Variable direct response net net direct response net net
effect to price effect effect effect to price effect effect
(1) (2) (3) (4) (5) (6) (7) (8)

p 2.055 5.766
qUS 0 0.044 0.044 0.005 0 0.122 0.122 0.015
qSaudi 0 0.509 0.509 0.061 0 1.429 1.429 0.172
qRussia 0 0.070 0.070 0.010 0 0.196 0.196 0.029
qROW 0 0.135 0.135 0.082 0 0.378 0.378 0.231
q 0.159 0.446
cUS 1.367 -0.159 1.208 0.302 1.367 -0.446 0.921 0.230
cJapan 1.495 -0.002 1.493 0.105 1.495 -0.005 1.490 0.104
cEurope 1.981 -0.416 1.565 0.125 1.981 -1.166 0.815 0.065
cROW 0.881 -0.286 0.595 0.357 0.881 -0.804 0.078 0.047
c 0.889 0.446
v 0.730 0.000

Notes to Table 3. Impact effects of a one-standard-deviation increase in the global
demand factor fct both given the historical average response of inventories (columns
1-4) and under the counterfactual of no adjustment of inventories (columns 5-8).

The change in price in turn induces responses of quantities produced and con-

sumed. Column 2 of Table 3 calculates the size of these responses by multiplying

the price change 2.055 by the respective elasticities ϕqi or ϕcj. Saudi oil production
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increases by about 0.5% in response to the higher world demand. The price increase

also substantially reduces the effect of the demand increase on realized consumption.

The net effect (column 3) is the sum of columns 1 and 2.

Figure 1 plots the dynamic effects of the shock calculated using expression (51).

Production of oil from Saudi Arabia and the rest of the world continue to climb in

the first few months following the shock. These estimates support the conclusion

of Almutairi, Pierru and Smith (2023) that Saudi Arabia and OPEC play a major

role in stabilizing the world oil market. The effects of the shock on consumption of

individual countries dies out relatively quickly.

Figure 1: Dynamic effects of a global demand shock
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Notes to Figure 1. Dynamic effects of a one-standard-deviation increase in the global

demand factor fct assuming the historical average response of inventories. First panel plots

the cumulative effect on 100 times the log of the real price of oil. Other panels plot year-

over-year changes of quantities as a percent of that country’s production or consumption.

Solid lines are median draws from the asymptotic distribution and shaded regions indicate

68% confidence bands.

Column 4 of Table 3 restates the magnitudes as a percent of the world total by
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multiplying the entries in column 3 by sqi or scj. The total initial gains in production

(the sum of the first four rows of column 4) only amount to a 0.16% increase in

global production, compared with a 0.89% increase in consumption. Thus sales out

of inventory play a major role in meeting the temporarily strong demand. Columns

5-8 of Table 3 report what the response to the demand shock would be if there were

no changes in inventories, which can be calculated by setting ϕv = 0. The immediate

impact on price in that scenario would be α̃s′cγc where α̃ = 1/(ϕ′
qsq − ϕ′

csc) = 5.09.

In this counterfactual, the demand increase would lead to a 5.8% increase in prices,

almost three times as large as in column 1. If there is no inventory response, the

increase in production (0.45% of world supply in column 8 of Table 3) would of

necessity exactly equal the increase in world consumption. Comparing column 8 with

column 4, most of the balancing in this case comes from the demand side, with the

effect of price increases undoing much of the original stimulus to demand.

6.2 Example 2: The effects of a 50% decrease in Russian production

As a second example we examine the consequences if exogenous political events were

to lead to a 50% decline in uq,Russia and that Russia stops responding to price

(ϕq,Russia = 0). This would represent a loss of over 5 million barrels per day. For

this scenario, we use production and consumption shares as of the end of our sample

(February 2023).11 Table 4 summarizes the effect on impact. We first highlight the

calculations in columns 5-8 which assume that none of the shock is offset by use of

inventory drawdowns (ϕv = 0). The model estimates imply that the price of oil would

increase by about a third.12 For convenience we summarize effects on production and

consumption in column 8 in units of million barrels per day. This was calculated by

multiplying the number reported in column 7 by sqiTQT or scjTQT where QT = 82.3

mb/d is total world oil production in February 2023. Increased production from Saudi

Arabia and the rest of the world makes up about 1.9 mb/d of the 5.35 mb/d shortfall.

A much bigger part of the adjustment comes from the demand side, with a 400,000

b/d drop in U.S. consumption and a 3.4 mb/d drop in global oil consumption.

Columns 1-4 of Table 4 report the impact response if instead inventories responded

to this shock the same way they did to typical historical shocks. This would require

drawing down inventories by 3.3 mb/d, or nearly a hundred million barrels in the first

month, which clearly is not sustainable.13 For this reason we emphasize the calcula-

11These were sqT = (0.15,0.12,0.13,0.60)′ and scT = (0.20,0.04,0.05,0.71)′.
12This was calculated as −0.5sq,Russia,T /(sq,US,Tϕq,US + sq,Saudi,Tϕq,Saudi + sq,ROW,Tϕq,ROW −

s′cTϕc).
13In January 2022, the U.S. had 415 million barrels of crude oil in commercial inventories and
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Table 4: Impact effects of a shock to Russia supply

with estimated ϕv with ϕv = 0
as % of country in mb/d as % of country in mb/d

Variable direct response net net direct response net net
effect to price effect effect effect to price effect effect
(1) (2) (3) (4) (5) (6) (7) (8)

p 12.712 33.020
qUS 0 0.269 0.269 0.033 0 0.699 0.699 0.086
qSaudi 0 3.152 3.152 0.311 0 8.186 8.186 0.808
qRussia -50 0.000 -50.000 -5.350 -50 0.000 -50.000 -5.350
qROW 0 0.834 0.834 0.412 0 2.165 2.165 1.069
q -4.593 -3.386
cUS 0.000 -0.983 -0.983 -0.162 0.000 -2.554 -2.554 -0.420
cJapan 0.000 -0.010 -0.010 0.000 0.000 -0.026 -0.026 -0.001
cEurope 0.000 -2.571 -2.571 -0.106 0.000 -6.679 -6.679 -0.275
cROW 0.000 -1.772 -1.772 -1.035 0.000 -4.603 -4.603 -2.690
c -1.303 -3.386
v 3.290 0.000

Notes to Table 4. Impact effects of a 50% cut in Russian oil production both given the
historical average response of inventories (columns 1-4) and under the counterfactual
of no adjustment of inventories (columns 5-8).

tions in column 8 which assume that 100% of the shortfall must be met through a

combination of decreased consumption and increased production from other countries.

Figure 2 plots the dynamic response under the assumptions that the shortfall

in Russian production and inability to draw down global inventories persist for six

months. After six months, we assume that the dynamic equations for Russian produc-

tion and inventory changes revert to their average historical relations.14 Under this

scenario, the price of oil would continue to climb for several months before increasing

Saudi production starts to bring the price back down.

7 Changes over time

The estimates above treated shares and elasticities as constant over time. In practice,

shares change very gradually over time. The top panel of Figure 3 shows production

shares for each country and each month over our entire sample. There was a period

an additional 589 million barrels in the Strategic Petroleum Reserve. As discussed by Baumeister
(2023), over the course of the next year, 225 million barrels were released from the SPR.

14Appendix A.8 provides details for how we generate draws for parameters under restricted coun-
terfactual scenarios like this one.
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Figure 2: Dynamic effects of a 50% Russian supply shock
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Notes to Figure 2. The fall in Russian production and inability to use global inventories

to offset are assumed to last for six months. First panel plots the cumulative effect on 100

times the log of the real price of oil. Other panels plot year-over-year changes of quantities

as a percent of that country’s production or consumption. Solid lines are median draws

from the constrained asymptotic distribution and shaded regions indicate 68% confidence

bands.

in the 1980s when Saudi Arabia’s share was unusually low as the kingdom tried to

stabilize the price, and a decline in the U.S. share up until the contributions from

shale oil. Consumption shares have strong seasonal patterns across different countries.

When we correct for this by looking at 12-month moving averages, consumption shares

are even more stable than production shares over time, with a trend up over time in

the share of oil consumed by emerging economies.

There is much interest in whether changes in how oil is produced and consumed

have affected the elasticities of oil supply or demand. To investigate this, we repeated

our analysis with a shorter sample beginning in 2005, which marks a major turning

point in shale oil production in the United States and oil consumption by emerging
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Figure 3: Monthly production and consumption shares
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Notes to Figure 3. Production and consumption shares, 1975:M1-2023:M2. Bottom panel

plots 12-month moving averages.

economies. Parameter estimates over this shorter sample are reported in the last

two columns of Table 2.15 We find that the elasticity of oil supply from the United

States has tripled after the advent of shale oil production compared to its historical

value, consistent with the conclusions of Balke, Jin and Yücel (2024) and Aastveit,

Bjørnland and Gundersen (2022). But this increase in elasticity from the U.S. was

more than offset by a decrease in the elasticity of Saudi production. Subsequent to

1990, Saudi Arabia has made much less effort to stabilize price swings, as discussed for

example in Hamilton (2009a). We estimate that supply elasticities from Russia and

the rest of the world have also declined, with the result that global supply elasticity

has fallen from 0.08 to 0.04 in the most recent data, consistent with the conclusions

of Baumeister and Peersman (2013).

15For this more recent subsample, the average shares are s′q = (0.10, 0.13, 0.13, 0.64)′ and s′c =
(0.21, 0.05, 0.06, 0.68)′.
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Another important change has been the huge importance of Chinese oil consump-

tion in the last two decades. This was grouped into the “rest of the world” category

in our analysis. While it would be very interesting to break out China as a separate

country, we found some striking anomalies in some of the data that are commonly

used for Chinese consumption. One market analyst noted that China “has concealed

production, import, and export data for years. While tanker tracking companies have

popped up and demystified some of the seaborne shipments to and from China, no

official China figures exist for any of it–least of all, overall demand.”16 For this rea-

son, we have not attempted the interesting exercise of trying to analyze China as a

separate country.

8 Conclusion

The key assumption behind our approach is that correlations between country-specific

supply and demand shocks can be summarized with a low-order factor structure. We

showed that this assumption allows us to jointly estimate supply and demand elas-

ticities for individual producers and consumers using maximum likelihood estimation

of a structural vector autoregression, generalizing the method of granular instrumen-

tal variables developed by Gabaix and Koijen (2024). Our method could be applied

in any context in which different units interact to determine a market equilibrium.

We used this approach to analyze the world oil market. Our estimates of aggregate

elasticities are similar to those obtained by earlier researchers who have used a vari-

ety of methods very different from ours. Our approach provides for the first time a

characterization of heterogeneity in those elasticities across countries using a unified

statistical model of the world oil market. Our estimates imply that variation in Saudi

Arabian production and the endogenous adjustment of inventories have historically

played a key role in stabilizing the world price of oil.

The method applied here of full-information maximum likelihood is only feasible

on a small-scale vector autoregression like the one used above. Larger values of n

and m would require estimation of thousands of parameters under our approach. The

same framework could be used to analyze much larger systems, though in that case it

would be necessary to incorporate some form of regularization to reduce the number

of parameters that are allowed to be freely estimated. A promising idea is to use

informative Bayesian priors about the lagged VAR coefficients Π as in Chan (2022)

16“Oil Markets Are Suffering From A Dearth Of Accurate Data,”
https://oilprice.com/Energy/Energy-General/Oil-Markets-Are-Suffering-From-A-Dearth-Of-
Accurate-Data.html.
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or Feldkircher et al. (2022), about the variance matrix Ω of forecast errors as in

Huber and Koop (2023), and about the elasticities themselves as in Baumeister and

Hamilton (2019). We leave this as a subject for future research.
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A Appendix

A.1 A better approach than using log differences for percent change

Figure A.1 compares the log difference function with its first-order Taylor approxi-

mation. Differences are small for most of the range but for large changes the latter

is much better to use.

Figure A.1: Plot of log(Qt)−log(Qt−12) and (Qt−Qt−12)/0.5(Qt+Qt−12) as a function
of Qt
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A.2 Derivation of supply equations

Here we describe how optimizing behavior by producers could give rise to supply

equations of the form of (5).

Price-taking producer.

Consider first the case of a perfectly competitive supplier i whose cost of producing

quantity Qit is given by

Cit(Qit) = (1 + ψi)
−1Q1+ψi

it exp(w∗
it). (A1)
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Here ψi > 0 is the elasticity of marginal costs with respect to Qit and w∗
it is a cost

shock arising from factors such as technological improvements, weather, or geopolitical

disruptions. Suppose for illustration that these shocks can be characterized by a first-

order autoregression17

w∗
it = δi + ρiw

∗
i,t−1 + u∗it (A2)

with u∗it ∼ i.i.d. N(0, σ∗2
i ). A perfectly competitive supplier will choose to produce at

the point where marginal cost ∂Cit(Qit)/∂Qit equals price Pt:

Qψi

it exp(w
∗
it) = Pt.

Denoting Qit = exp(qit) and Pt = exp(pt) we can write this condition as

exp(ψiqit + w∗
it) = exp(pt).

Taking logs,

ψiqit + w∗
it = pt. (A3)

The same condition holds when t is replaced by t− 1:

ψiqi,t−1 + w∗
i,t−1 = pt−1.

Multiply the latter equation by ρi and subtract the result from (A3):

ψiqit − ρiψiqi,t−1 + w∗
it − ρiw

∗
i,t−1 = pt − ρipt−1. (A4)

Substituting (A2) into (A4) and rearranging gives

qit = ψ−1
i pt − ψ−1

i δi + ρiqi,t−1 − ψ−1
i ρipt−1 − ψ−1

i u∗it. (A5)

This is an equation of the form of (5) with ϕqi = ψ−1
i , uqit = −ψ−1

i u∗it, and

b′
ixt−1 = −ψ−1

i δi + ρiqi,t−1 − ψ−1
i ρipt−1.

The elasticity of supply ϕqi for this example is the reciprocal of the elasticity of

marginal costs with respect to production, the lagged dynamics b′
ixt−1 result from

17More generally, if w∗
it ∼ AR(r) so that (1 − ρ1L − ρ2L

2 − · · · − ρrL
r)w∗

it = u∗
it for L the lag

operator, we would operate on equation (A3) by (1−ρ1L−ρ2L
2−· · ·−ρrL

r) to arrive at an equation
of the form of (5).
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serial persistence of cost shocks, and the structural supply shock uqit is negatively

related to the cost shock u∗it; something that increases costs or lowers productivity

(u∗it > 0) leads to lower production for any given price (uqit < 0).

Price-setting behavior.

Consider next a supplier that takes into account the effects of its production

decision on the world price. Profit maximization then calls for a production level at

which marginal cost equals marginal revenue where marginal revenue is given by

MRit =
∂PtQit

∂Qit

= Pt +Qit
∂Pt
∂Qit

= Pt

(
1 +

∂pt
∂qit

)
. (A6)

Suppose producer i rationally calculates the consequences of its decision on consumers

and other producers as described by equations (9)-(11). Those equations imply that

the elasticity of the world price with respect to country i’s production is given by

∂pt
∂qit

= −αisqi, (A7)

where sqi is country i’s share in world production and αi is given by (50). Thus

MRit = Pt(1− αisqi) and

logMRit = pt + log(1− αisqi). (A8)

If the cost of producing takes the same form as in the previous example (A1), then

the log of the first-order condition for profit maximization becomes log MCit = log

MRit or

ψiqit + w∗
it = pt + log(1− αisqi).

The same manipulations that led to (A5) now lead to an equation of the identical form

of (A5), with the only change being that the constant term is reduced by ψ−1
i log(1−

αisqi) < 0. The monopolist produces less than a competitive producer, but since the

model implies a constant elasticity αisqi of world price with respect to the production

of country i, the supply elasticity ϕqi is still exactly equal to the reciprocal of the

elasticity of marginal cost ψ−1
i .

Dynamic optimization.

Consider next a producer whose decisions involve intertemporal considerations

arising for example from adjustment costs when Qit ̸= Qi,t−1 or from time to build.

Suppose for illustration that the costs incurred at date t depend on both Qit and

Qi,t−1: Ci(Qit,Qi,t−1, u
∗
it). Suppose the producer decides at date t on a sequence
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{Qi,t+τ}∞τ=0 so as to maximize expected profits

Et
∑∞

τ=0β
τ [Pt+τQi,t+τ − Ci(Qi,t+τ , Qi,t+τ−1, u

∗
i,t+τ )]

for β a discount rate. The first-order condition for optimal choice of Qit is character-

ized by

∂(PtQit)

∂Qit

− ∂Ci(Qit, Qi,t−1, u
∗
it)

∂Qit

− βEt

[
∂Ci(Qi,t+1, Qit, u

∗
i,t+1)

∂Qit

]
= 0

log

[
∂(PtQit)

∂Qit

]
= log

{
∂Ci(Qit, Qi,t−1, u

∗
it)

∂Qit

+ βEt

[
∂Ci(Qi,t+1, Qit, u

∗
i,t+1)

∂Qit

]}
. (A9)

Consider the log-linear approximation

log

{
∂Ci(Qit, Qi,t−1, u

∗
it)

∂Qit

+ βEt

[
∂Ci(Qi,t+1, Qit, u

∗
i,t+1)

∂Qit

]}
≃ di0 + di1qit + di2qi,t−1 + di3Etqi,t+1 + di4u

∗
it. (A10)

Substitute (A8) and (A10) into (A9):

pt + log(1− αisqi) = di0 + di1qit + di2qi,t−1 + di3Etqi,t+1 + di4u
∗
it. (A11)

In principle, a rational-expectations forecast of qi,t+1 would depend on xt−1 and all

the variables in yt. If next period’s marginal cost is equal to next period’s price, then

predicting qi,t+1 is the same as predicting next period’s price pt+1. In practice, by far

the most useful predictors of qi,t+1 are going to be pt, qit and u
∗
it:

Etqi,t+1 ≃ gippt + giqqit + giuu
∗
it + g′

ixt−1. (A12)

Equation (A12) would hold exactly if producer i knows the market price pt but does

not know the contemporaneous decisions of other producers and consumers at the

time it makes the decision for qit. Substituting (A12) into (A11) and rearranging again

results in an expression of the form of (5) where now ϕqi = (1− di3gip)/(di1 + di3giq).

Although ϕqi now reflects a mix of the influence of cost elasticities, adjustment costs,

and price and output forecasts, it is still an object of interest to market analysts and

policy makers as it summarizes how, as a result of the interaction of all these factors,

an unanticipated change in price induces a change in the chosen value of qit.
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A.3 Concordance with alternative inventory measures

A key input into our analysis is given in expression (23), which is our proxy for the

unanticipated change in world oil inventories in month t. Researchers have used a

number of different measures of oil inventories, all of which include significant mea-

surement error. Here we report the correlations between our measure and alternative

estimates.

The EIA has published reasonably good data since 1973 on inventories of U.S.

crude oil and petroleum products in Table 3.4 of the Monthly Energy Review18 though

these only measure inventories for the United States. We fit an AR(12) to monthly

changes in the log of U.S. inventories and interpreted the residual as an estimate of the

unanticipated change in U.S. inventories. The correlation between the unanticipated

change in U.S. inventories and our measure ε̂vt of the unanticipated change in world

inventories over 1975:M1-2020:M2 is 0.17.

Many researchers use a broader measure of monthly petroleum and other liquid

stocks that covers all the OECD countries, which is based on the Monthly Oil Survey

carried out by the International Energy Agency and is available going back to January

1988.19 When we fit an AR(12) to monthly log changes of this estimate of OECD

inventories, the residuals have a correlation of 0.30 with our global measure ε̂vt.

The EIA also publishes a rough estimate of the monthly change in world inven-

tories, which is available since 1997.20 When we fit an AR(12) for this series, the

residuals have a correlation of 0.65 with our series for ε̂vt.

We conclude that although our estimate ε̂vt undoubtedly includes some measure-

ment error, it is correctly capturing some of the main movements in world inventories.

The big advantage of our measure of the unanticipated change in world inventories

is that it reconciles observations on country-level production and consumption data

into a unified empirical and theoretical global framework satisfying the accounting

identity relating production, consumption, and changes in inventories.

A.4 Proof of Proposition 1

We first show that the determinant of A in (13) is given by

|A| = ϕ′
qsqt − ϕ′

csct − ϕv. (A13)

18https://www.eia.gov/totalenergy/data/browser/index.php?tbl=T03.04#/?f=M&start=200001.
19https://www.eia.gov/totalenergy/data/browser/index.php?tbl=T03.04#.
20This series is labeled “total crude oil and other liquids inventory net with-

drawal” and can be downloaded using the STEO data browser for Table 3a
https://www.eia.gov/outlooks/steo/data/browser/#/?v=6&f=M&s=0&ctype=linechart&maptype=0.
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To verify (A13), define

A∗ =

 In 0nm 0n1

0mn Im 0m1

−s′q s′c 1


and notice that

A∗A =

 In 0nm −ϕq

0mn Im −ϕc

01n 01m s′qϕq − s′cϕc − ϕv

 .
Since A∗ is lower triangular with ones along the principal diagonal, its determinant

is one and the determinant of the product A∗A is the same as the determinant of

A. Since the product A∗A is upper triangular, its determinant is the product of the

terms on its principal diagonal. Hence

|A| = |A∗A| = s′qϕq − s′cϕc − ϕv (A14)

as claimed in (A13).

Next note that for any value of A and D, the value of B that maximizes (15) is

found from an OLS regression of Ayt on xt−1:

B̂(θ) =
[∑T

t=1Aytx
′
t−1

] [∑T
t=1xt−1x

′
t−1

]−1

= AΠ̂. (A15)

We then have

Ayt − B̂(θ)xt−1 = A(yt − Π̂xt−1) = Aϵ̂t. (A16)

Substituting (A13) and (A16) into (15) gives

ℓ(θ, B̂(θ)) = −(TN/2) log(2π) + (T/2) log[(s′qϕq − s′cϕc − ϕv)
2]− (T/2) log |D|

− (1/2)
∑T

t=1(Aϵ̂t)
′D−1(Aϵ̂t) (A17)

as claimed in (19).

To verify (20), recall if Q and R are matrices for which both QR and RQ exist,

then trace(QR) = trace(RQ). Hence

∑T
t=1(Aϵ̂t)

′D−1(Aϵ̂t) = trace
[∑T

t=1ϵ̂
′
tA

′D−1Aϵ̂t

]
= trace

[∑T
t=1A

′D−1Aϵ̂tϵ̂
′
t

]
= trace

[
A′D−1AT Ω̂

]
= T trace

[
A′D−1AΩ̂

]
. (A18)

Substituting (A18) into (A17) gives (20).
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A.5 Proof of Proposition 2

Maximizing (22) with respect to Dq, Dc, or σ
2
v makes use of well known results (e.g.,

Hamilton (1994, p. 295)) to produce (24). Setting the derivative of (22) with respect

to ϕq to zero, and assuming that ϕ̂q − ϕ̂c − ϕ̂v > 0, we obtain

∂η(θ)

∂ϕq

∣∣∣∣
θ=θ̂

=
T

ϕ̂q − ϕ̂c − ϕ̂v
+
∑T

t=11
′
nD̂

−1
q (ϵ̂qt − ϕ̂q1nε̂pt)ε̂pt = 0. (A19)

Multiply both sides of (A19) by (ϕ̂q − ϕ̂c − ϕ̂v)/T :

1 + T−1
∑T

t=11
′
nD̂

−1
q (ϵ̂qt − ϕ̂q1nε̂pt)(ϕ̂qε̂pt − ϕ̂cε̂pt − ϕ̂vε̂pt) = 0.

Add and subtract c̃t and ε̂vt = s′qϵ̂qt − s′cϵ̂ct to the last term in parentheses:

1 + T−1
∑T

t=11
′
nD̂

−1
q (ϵ̂qt − ϕ̂q1nε̂pt)[(−s′qϵ̂qt + ϕ̂qε̂pt)

+ (c̃t − ϕ̂cε̂pt) + (ε̂vt − ϕ̂vε̂pt)− c̃t + s′cϵ̂ct)] = 0. (A20)

Notice that the first term in the summation in (A20) can be written

T−1
∑T

t=11
′
nD̂

−1
q (ϵ̂qt − ϕ̂q1nε̂pt)(−s′qϵ̂qt + ϕ̂qε̂pt)

= −T−1
∑T

t=11
′
nD̂

−1
q (ϵ̂qt − ϕ̂q1nε̂pt)(ϵ̂qt − ϕ̂q1nε̂pt)

′sq

= −1′
nD̂

−1
q D̂qsq

= −1

where the first equation follows from 1′
nsq = 1 and the second equation from (24).

Thus (A20) becomes

T−1
∑T

t=11
′
nD̂

−1
q (ϵ̂qt − ϕ̂q1nε̂pt)[(c̃t − ϕ̂cε̂pt) + (ε̂vt − ϕ̂vε̂pt) + (sc − ŵc)

′ϵ̂ct)] = 0.

Dividing by 1′
nD̂

−1
q 1n and using the definitions of q̃t and ŵq in (28),

T−1
∑T

t=1(q̃t − ϕ̂qε̂pt)[(c̃t − ϕ̂cε̂pt) + (ε̂vt − ϕ̂vε̂pt) + (sc − ŵc)
′ϵ̂ct)] = 0

T−1
∑T

t=1(q̃t − ϕ̂qε̂pt)z̃qt = 0.

Rearranging this equation gives (25).

Similar operations on the first-order condition for maximization of (22) with re-
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spect to ϕc give

∂η(θ)

∂ϕc

∣∣∣∣
θ=θ̂

=
−T

ϕ̂q − ϕ̂c − ϕ̂v
+
∑T

t=11
′
mD̂

−1
c (ϵ̂ct − ϕ̂c1mε̂pt)ε̂pt = 0

−1 + T−1
∑T

t=11
′
mD̂

−1
c (ϵ̂ct − ϕ̂c1mε̂pt)(ϕ̂qε̂pt − ϕ̂cε̂pt − ϕ̂vε̂pt) = 0

− 1 + T−1
∑T

t=11
′
mD̂

−1
c (ϵ̂ct − ϕ̂c1mε̂pt)[(−q̃t + ϕ̂qε̂pt)

+ (s′cϵ̂ct − ϕ̂cε̂pt) + (ε̂vt − ϕ̂vε̂pt) +
(
q̃t − s′qϵ̂qt

)
] = 0

T−1
∑T

t=1(ŵ
′
cϵ̂ct − ϕ̂vε̂pt)[(−q̃t + ϕ̂qε̂pt) + (ε̂vt − ϕ̂vε̂pt) + (ŵc − sc)

′ϵ̂ct = 0

T−1
∑T

t=1(c̃t − ϕ̂cε̂pt)z̃ct = 0

as claimed in (26). Optimization with respect to ϕv likewise leads to

∂η(θ)

∂ϕv

∣∣∣∣
θ=θ̂

=
−T

ϕ̂q − ϕ̂c − ϕ̂v
+
∑T

t=1σ̂
−2
v (ε̂vt − ϕvε̂pt)ε̂pt = 0

−1 + T−1
∑T

t=1σ̂
−2
v (ε̂vt − ϕ̂vε̂pt)(ε̂vt − ϕ̂vε̂pt − q̃t + ϕ̂qε̂pt + c̃t − ϕ̂cε̂pt + q̃t − c̃t − ε̂vt) = 0

T−1
∑T

t=1(ε̂vt − ϕ̂vε̂pt)(−q̃t − ϕ̂qε̂pt + c̃t − ϕ̂cε̂pt + q̃t − c̃t − ε̂vt) = 0

T−1
∑T

t=1(ε̂vt − ϕ̂vε̂pt)z̃vt = 0

verifying (27).

A.6 Proof of Proposition 3

This numerical equivalence comes from a similar result to the Frisch-Waugh Theorem.

Expression (40) can be rewritten[∑T
t=1z

(IV )
ct x̃′

t

]
β̂

(IV )

c =
[∑T

t=1z
(IV )
ct (s′cct)

]
∑T

t=1z
(IV )
ct

(
s′cct − x̃′

tβ̂
(IV )

c

)
= 0. (A21)

Likewise equation (34) can be written

∑T
t=1

[
(n−11n − sq)

′ϵ̂qt
]
ε̂ptϕ̂

(1)
c =

∑T
t=1

[
(n−11n − sq)

′ϵ̂qt
]
(s′cϵ̂ct)∑T

t=1

[
(n−11n − sq)

′ϵ̂qt
]
(s′cϵ̂ct − ϕ̂(1)

c ε̂pt) = 0. (A22)

46



Define

Π̂q
(n×k)

=
[∑T

t=1qtx
′
t−1

] [∑T
t=1xt−1x

′
t−1

]−1

Π̂c
(m×k)

=
[∑T

t=1ctx
′
t−1

] [∑T
t=1xt−1x

′
t−1

]−1

π̂′
p

(1×k)
=
[∑T

t=1ptx
′
t−1

] [∑T
t=1xt−1x

′
t−1

]−1

.

Note that the last term in (A22) can be written

(s′cϵ̂ct − ϕ̂(1)
c ε̂pt) = s′c(ct − Π̂cxt−1)− ϕ̂(1)

c (pt − π̂′
pxt−1)

= s′cct − ϕ̂(1)
c pt − β̂

(1)′
x xt−1

= s′cct − β̂
(1)′

x̃t

for β̂
(1)′
x = s′cΠ̂c− ϕ̂(1)

c π̂′
p and β̂

(1)′
= (ϕ̂

(1)
c , β̂

(1)′
x ). Substituting this last expression into

(A21), if we can verify that

∑T
t=1z

(IV )
ct (s′cϵ̂ct − ϕ̂(1)

c ε̂pt) = 0,

then we will have shown that β̂
(IV )

= β̂
(1)

with its first element given by ϕ̂
(1)
c . From

the definition of z
(IV )
ct , the task is to show that

∑T
t=1

[
(n−11n − sq)

′
qt

xt−1

]
(s′cϵ̂ct − ϕ̂(1)

c ε̂pt) = 0. (A23)

That the last k terms in (A23) are indeed zero follows from the facts that

∑T
t=1xt−1ϵ̂

′
ct = 0

∑T
t=1xt−1ε̂pt = 0 (A24)

since ϵ̂ct and ε̂pt are residuals from OLS regressions on xt−1. The first term in (A23)

can be written

∑T
t=1(n

−11n − sq)
′qt(s

′
cϵ̂ct − ϕ̂(1)

c ε̂pt) =
∑T

t=1(n
−11n − sq)

′(Π̂qxt−1 + ϵ̂qt)(s
′
cϵ̂ct − ϕ̂(1)

c ε̂pt)

=
∑T

t=1(n
−11n − sq)

′ϵ̂qt(s
′
cϵ̂ct − ϕ̂(1)

c ε̂pt)

with the last equality again following from (A24). But this last term is exactly the

expression we know to be zero from (A22). Thus the first element in the IV estimate

in (40) is exactly the same number as the first iteration estimate ϕ̂
(1)
c in (34), as

claimed.
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A.7 Imposing orthogonality of factor loadings

Typical applications of a factor structure such as principal component analysis use

a normalization in which the factor loadings are orthogonal to each other. Here we

describe how to implement the conditions h′
qγq = h′

cγq = 0 in our algorithm for

maximum likelihood estimation.

Let Gq⊥ denote the matrix consisting of the first n−1 columns of (h′
qhq)In−hqh

′
q:

Gq⊥
n×(n−1)

=
[
(h′

qhq)In − hqh
′
q

] [ In−1

01,n−1

]
.

Note that Gq⊥ is constructed such that each column is orthogonal to hq:

h′
qGq⊥ = (h′

qhq)(h
′
q − h′

q)

[
In−1

01,n−1

]
= 01,n−1.

We can then parameterize γq = Gq⊥ωq where ωq is an (n−1)×1 vector of parameters

to be estimated. Similarly, we define

Gc⊥
m×(m−1)

=
[
(h′

chc)Im − hch
′
c

] [ Im−1

01,m−1

]
(A25)

and parameterize

γc = Gc⊥ωc. (A26)

Thus the specification becomes[
Kqq Kqc

Kcq Kcc

]
=

[
hqh

′
q +Gq⊥ωqω

′
qG

′
q⊥ +Σq hqh

′
c

hch
′
q hch

′
c +Gc⊥ωcω

′
cG

′
c⊥ +Σc

]
.

The likelihood function is then maximized with respect to the n elements of hq, the

(n − 1) elements of ωq, the n diagonal elements of the diagonal matrix Σq, the m

elements of hc, the (m − 1) elements of ωc, and the m diagonal elements of the

diagonal matrix Σc.

A.8 Confidence bands for impulse-response functions

Let the (N×k) matrix Π̂ be the OLS estimate of the reduced-form coefficient matrices

in (16), π̂ = vec(Π̂′) the (Nk×1) vector from stacking rows of Π̂ into a single vector,

and Ω̂ the OLS estimate of the reduced-form residual variance matrix in (18). We
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know that the distribution of π̂ is approximately given by

π̂ ∼ N

(
π, (Ω⊗

(∑T
t=1xt−1x

′
t−1

)−1
)

(A27)

and that this distribution is asymptotically independent of that of Ω̂. Since the

estimates of the structural parameters θ are a function solely of Ω̂ we can calcu-

late confidence bands as follows. We draw a value for θ(d) from the distribution

θ ∼ N(θ̂MLE, V̂) where θ̂MLE is the maximum likelihood estimate and V̂ is its es-

timated variance-covariance matrix from (39). With this draw for θ(d) we calculate

the implied value for Ω(d):

Ω(d) = [A(θ(d))]−1
[
D(θ(d))

]
[A(θ(d))−1]′

D(θ(d)) =

 hqh
′
q + γqγ

′
q +Σq hqh

′
c 0n1

hch
′
q hch

′
c + γcγ

′
c +Σc 0m1

01n 01m σ2
v



[A(θ(d))]−1 =

 In − αϕqs
′
q αϕqs

′
c αϕq

−αϕcs
′
q Im + αϕcs

′
c αϕc

−αs′q αs′c α


α(θ(d)) =

(
s′qϕq − s′cϕc − ϕv

)−1

where for example we have simplified notation by writing h
(d)
q as hq.We use this value

for Ω(d) to generate a draw for π(d) from

π(d) ∼ N

(
π̂,Ω(d) ⊗

(∑T
t=1xt−1x

′
t−1

)−1
)
.

With this pair of θ(d) and Ω(d) we calculate the value of some structural magnitude

of interest such as ∂E(yt+s|yt,yt−1, ...yt−r+1)/∂ukt. We repeat this for draws d =

1, ..., 10, 000 and calculate the 68% bands for each object of interest.

Drawing parameters subject to restrictions. For the Russian cut-off scenario, we

impose 2k restrictions on π that take the form Rπ = r where

R
(2k×Nk)

=

[
R1

R2

]
r

(2k×1)
=

[
eRussia

0k1

]
(A28)
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R1
(k×Nk)

=
[
0n,2k Ik 0k,(N−3)k

]
R2

(k×Nk)
=
[
s′q ⊗ Ik −s′c ⊗ Ik 0k,k

]
.

Here eRussia is a (k × 1) vector whose value is unity for the coefficient on the first

lag of Russian production and zero for all others. The first k rows of (A28) imply

that Russian production stays at its previous value. The next k rows of (A28) force

global production to equal global consumption every period.21 Let V(d) = Ω(d) ⊗(∑T
t=1xt−1x

′
t−1

)−1

and consider the joint distribution of Rπ and π conditional on

Ω(d): [
Rπ

π

]
∼ N

([
Rπ̂

π̂

]
,

[
RV(d)R′ RV(d)

V(d)R′ V(d)

])
.

From this we can calculate the distribution of π conditional on Rπ = r:

π|(Rπ = r) ∼ N(µ(d)
r ,V(d)

r ) (A29)

µ(d)
r = π̂ +V(d)R′(RV(d)R′)−1(r−Rπ̂)

V(d)
r = V(d) −V(d)R′(RV(d)R′)−1RV(d).

The distribution in (A29) is singular. We can use the nonsingular part of this distri-

bution to generate a subset of the elements in π and fill in the rest by the restrictions.

To do this, let R† be the matrix that collects the reduced-form coefficients that are

not restricted. Without loss of generality, these could be taken to be: U.S., Saudi,

and rest-of-world production; U.S., Europe, and Japan consumption; and the price:

R†
[(N−2)k×Nk]

=



Ik 0kk 0kk 0kk 0kk 0kk 0kk 0kk 0kk

0kk Ik 0kk 0kk 0kk 0kk 0kk 0kk 0kk

0kk 0kk 0kk Ik 0kk 0kk 0kk 0kk 0kk

0kk 0kk 0kk 0kk Ik 0kk 0kk 0kk 0kk

0kk 0kk 0kk 0kk 0kk Ik 0kk 0kk 0kk

0kk 0kk 0kk 0kk 0kk 0kk Ik 0kk 0kk

0kk 0kk 0kk 0kk 0kk 0kk 0kk 0kk Ik


.

We can generate a draw for these seven of the nine equations from aN(R†µ
(d)
r ,R†V

(d)
r R′

†)

distribution. Next we set the first own-lag coefficient of πq,Russia to 1 and all other

coefficients to zero, and set the coefficient vector to predict rest-of-world consumption

21Recall that the constant terms don’t affect impulse-response functions.
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to be

π
(d)
c,ROW =

[
π

(d)
q,US π

(d)
q,Saudi π

(d)
q,Russia π

(d)
q,ROW

]
sq − sc,USπ

(d)
c,US − sc,Eurπ

(d)
c,Eur − sc,Japπ

(d)
c,Jap

sc,ROW
.

Given this complete draw for the (Nk×1) vector π
(d)
r from the restricted distribution,

we can calculate the VAR companion-form matrix F
(d)
r and calculate the IRF for s =

0, 1, ..., 5 from [F
(d)
r ]s. For s = 5+ h we drop the restrictions R and use

[
F(d)

]h
[F

(d)
r ]5

where F(d) is the companion matrix for a draw from the unrestricted distribution.
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