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ABSTRACT

Modeling how individual units interact to determine aggregate outcomes can be a

rich source of identifying information. We use this insight to develop a generalization

of granular instrumental variables estimation and show how parameters of a dynamic

structural model can be estimated using full-information maximum likelihood. We

apply the method to a study of the world oil market. We conclude that the supply

responses of Saudi Arabia and adjustments of inventories have historically played a

key role in stabilizing the price of oil.
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1 Introduction

Aggregate economic outcomes result from the interactions of many individual units.

Modeling what those individual units have in common and the ways in which they

differ can help identify the local and aggregate effects of structural shocks. A pop-

ular example is Bartik-type instruments, which use a weighted average of aggregate

conditions with weights given by local shares as an instrument to estimate local

elasticities; see Bartik (1991), Blanchard et al. (1992), Goldsmith-Pinkham, Sorkin

and Swift (2020), and Carlino and Drautzburg (2020). Gabaix and Koijen (2020)

demonstrated that in some situations one can use the difference between the arith-

metic average and a share-weighted average of observations across units as a valid

instrument, which they described as “granular instrumental variables.” Qian (2023)

extended granular instrumental variables to allow for heterogeneous responses of in-

dividual units. Banafti and Lee (2022) considered granular instrumental variables

in large panels and Sarto (2022) in panel vector autoregressions. Another nice illus-

tration of the underlying idea is Caldara, Cavallo and Iacoviello (2019), who used

known exogenous shortfalls in oil production in certain countries as an instrument to

estimate the response of producers in other countries to an exogenous increase in the

price of oil.

In all these applications, the focus has been on developing a valid instrument for

purposes of estimating a particular elasticity of interest. In this paper, we adopt a

broader systemwide approach based on modeling how the actions of individual units

interact to produce the aggregate outcome. We show that while such an approach

could be used to motivate instrumental-variable estimation used in other studies,

the underlying assumptions in fact provide a full characterization of the joint deter-

mination of local and aggregate magnitudes. Full-information maximum likelihood

estimation of the general system can then be used as a framework to develop optimal

instruments for every structural magnitude. In the case of a dynamic model, this

amounts to the familiar approach in structural vector autoregressions of interpret-

ing the correlations between the errors in forecasting individual observed variables as

arising from an underlying set of structural shocks. The dynamic effects of structural

shocks on local and aggregate variables can then be consistently estimated. Our ap-

proach typically produces a rich set of overidentifying restrictions that can be tested

against the data.

We illustrate our approach with an analysis of the world oil market. We model

market dynamics using a small-scale vector autoregression that includes production

2



of oil from the three largest producers (the United States, Saudi Arabia, and Russia),

consumption of oil by the three largest historical consumers (the United States, Japan,

and Europe), and aggregate magnitudes. Our estimates imply a global short-run price

elasticity of oil supply of 0.06, consistent with the estimates of Caldara, Cavallo and

Iacoviello (2019, Table 3) of 0.05 to 0.08 and Baumeister and Hamilton (2019) of

0.15. Unlike any previous studies, our estimates are calculated by aggregating the

heterogeneous responses for individual producing countries. We estimate a short-run

supply elasticity of 0.26 for Saudi Arabia and 0.02 to 0.04 for other countries. A few

studies have estimated separate supply elasticities for different countries or regions,

and where this has been done these earlier estimates are consistent with our findings.

Alonso-Alvarez, Di Nino and Venditti (2022) arrived at separate supply elasticities of

0.20 for OPEC and 0.06 for non-OPEC. When Caldara, Cavallo and Iacoviello (2019)

estimated elasticities separately for different groups of countries, their estimates were

0.21 for Saudi Arabia, 0.19 for other OPEC countries, and essentially zero for non-

OPEC countries, again in line with our findings. A substantially larger price elasticity

for OPEC versus non-OPEC countries is also supported by the analysis in Almutairi,

Pierru and Smith (2023). Our estimates also imply a large short-run supply elasticity

coming from a willingness to sell oil out of inventories, which we conclude has been a

very important stabilizing factor in world oil markets.

We estimate the global short-run price elasticity of the demand for oil to be −0.14,

which is again consistent with the conclusions that earlier studies arrived at using

very different methods from ours. Caldara, Cavallo and Iacoviello (2019, Table 3) esti-

mated the short-run price elasticity of world petroleum demand to be −0.03 to −0.08,

similar to the −0.05 estimate of Pierru, Smith and Zamrik (2018). Slightly larger

estimates were obtained by Alonso-Alvarez, Di Nino and Venditti (2022) (−0.28),

and Baumeister and Hamilton (2019) (−0.35). Meta-analyses of hundreds of earlier

studies estimated short-run gasoline demand elasticities from −0.25 to −0.34 and

short-run elasticities for the demand for crude oil from −0.05 to −0.07 (Hamilton

(2009, Table 3)). Again our global elasticity is calculated directly by aggregating

the demand responses for individual countries, which range from −0.02 for Japan to

−0.22 for Europe.

To our knowledge, ours is the first study to simultaneously estimate demand and

supply elasticities that differ across all countries. We do this in a unified statistical

framework motivated by the principle that the price of oil equilibrates global supply

and demand. Estimates like ours could prove helpful in calibrating theoretical models

of oil markets and their effects on the world economy such as Bornstein, Krusell and
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Rebelo (2023) and Balke, Jin and Yücel (2020).

We use our model to analyze the effects of different local and global shocks to

supply or demand. We find that Saudi Arabian production is an important factor

in stabilizing the price of oil, consistent with the conclusions of Almutairi, Pierru

and Smith (2023). We further conclude that changes in inventories play a critical

role in smoothing out temporary price shocks, supporting the conclusions of Knittel

and Pindyck (2016) and in contrast to the claim sometimes made that inventory

speculation is a destabilizing factor in world oil markets. In the absence of an ability

to draw down or accumulate inventories, most of the short-run adjustment to shocks

would come in the form of changes in demand rather than changes in supply.

As a case study, we use our model to analyze what would happen in response to

a 50% cut in Russian oil production arising from exogenous political factors unique

to that country. Our model predicts that about 1.5 million barrels a day of the 5.3

mb/d shortfall would be met by increased production, primarily from Saudi Arabia,

and the rest by lower consumption.

The plan of the paper is as follows. The data are described in Section 2. Section

3 presents the model of market equilibrium that underlies our structural analysis.

Section 4 discusses identification, or how we can use heterogeneous observations on

price, production, and consumption to estimate supply and demand elasticities. Sec-

tion 5 presents empirical estimates. Section 6 develops case studies illustrating how

the model can be used. Section 7 briefly concludes.

2 Data

The U.S. Energy Information Administration publishes monthly data on the produc-

tion of crude oil in a number of different countries going back to 1973 and consumption

of petroleum products for a different set of countries going back to 1982. For purposes

of this study, we used historical published issues of the Monthly Energy Review to

extend the consumption data back to 1973 for a small number of countries.

2.1 Measuring growth rates

There is a strong seasonal component to petroleum consumption for some countries.

For this reason we use year-over-year growth rates, which we measure as

qit =
Qit −Qi,t−12

0.5(Qit +Qi,t−12)
(1)
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cjt =
Cjt − Cj,t−12

0.5(Cjt + Cj,t−12)
. (2)

Here Qit is the quantity of oil produced in country i in month t and Cjt is the quantity

of oil consumed in country j in month t. This is preferable to alternative measures of

the growth rate such as (Qit − Qi,t−12)/Qi,t−12 or log(Qit) − log(Qi,t−12). The latter

gets arbitrarily large when either Qit or Qi,t−12 get small, and would diverge to minus

or plus infinity for example in the case of the complete cessation and subsequent

resumption of production from Iraq and Kuwait in 1990. Expression (1) can be viewed

as a first-order Taylor approximation to the function logQit − logQi,t−12 where the

approximation is taken at a point halfway between Qit and Qi,t−12. The approximation

is almost exact as long as Qit is not less than half the size of Qi,t−12 and not more

than twice the size of Qi,t−12; see Figure 1. For larger changes, expression (1) is less

extreme than log(Qit)− log(Qi,t−12), and is bounded between ±2 for all values of Qit

and Qi,t−12.

Figure 1: Plot of log(Qt)−log(Qt−12) and (Qt −Qt−12)/0.5(Qt +Qt−12) as a function
of Qt
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Our production data describes countries i = 1, 2, ..., n where country n is defined

as “rest of world” so that
∑n

i=1Qit exactly equals total measured world oil production

in month t. Our baseline results use n = 4 where i = 1, 2, or 3 correspond to the

three largest producing countries over our historical sample, which were the U.S.,

Saudi Arabia, and Russia. A key magnitude is the average share of country i in total

world production,

sqi = T−1
∑T

t=1

Qit

Qt

,

which we collect in an (n× 1) vector sq. In our data set, sq = (0.12, 0.12, 0.15, 0.61)′.

We will approximate the annual growth in global production using the share-weighted

average of individual country growth rates:

Qt −Qt−12

0.5(Qt +Qt−12)
=

∑n
i=1Qit −

∑n
i=1Qi,t−12

0.5(Qt +Qt−12)
=

∑n
i=1

[
Qit −Qi,t−12

0.5(Qit +Qi,t−12)

(Qit +Qi,t−12)

(Qt +Qt−12)

]
≃

∑n
i=1

[
Qit −Qi,t−12

0.5(Qit +Qi,t−12)
sqi

]
=

∑n
i=1sqiqit. (3)

Similarly, our consumption data describes countries j = 1, 2, ...,m where country

m is defined as “rest of world” so that
∑m

j=1Cjt exactly equals total measured world

oil consumption in month t. Our procedure does not require n to equal m nor does it

require the producers to be the same countries as the consumers. Our baseline results

use the historically three largest consuming countries (the U.S., Japan, and Europe)

so that m = 4. Average consumption shares are summarized by the (m × 1) vector

sc = (0.25, 0.07, 0.08, 0.60)′. We approximate the year-over-year growth rate of global

consumption as
Ct − Ct−12

0.5(Ct + Ct−12)
≃

∑m
j=1scjcjt. (4)

It is not the case in EIA reported data that global oil consumption Ct is the same

number as global oil production Qt. There are three reasons for this. First, there

are conceptual differences in definition. Production is measured in the number of

barrels of oil taken out of the ground. One barrel of oil produces more than one

barrel of refined product used by consumers, and additional consumable product

comes from biofuels and processing of natural gas. For these reasons, measured

global consumption exceeds measured global production. Second, consumption and

production numbers are collected from different underlying data sources and there are

acknowledged errors in measuring all of these variables. Third, true global production

could be greater or less than true global consumption in a given month t if there is

an increase or decrease in global oil inventories. We will take all these factors into
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account in the model developed below.

Although oil is produced and consumed in different locations around the world,

it is a world market for oil in which the quality-adjusted product sells for essentially

the same price everywhere in the world. We measure the global real price of oil in

month t (denoted Pt) as the dollar price of a barrel of Brent crude oil deflated by the

U.S. consumer price index. We convert this to monthly growth rates pt = log(Pt) −
log(Pt−1). The observed data for month t are summarized by the [(n + m + 1) × 1]

vector yt = (q′
t, c

′
t, pt)

′ consisting of the growth rates of production and consumption

for each country in the world along with the world price of oil.

2.2 Data during the COVID-19 pandemic

The pandemic shut-downs in 2020 completely disrupted both oil supply and demand

and had consequences that continue to affect world oil markets in 2023; for a descrip-

tion and analysis of these disruptions see Baumeister (2023). Events of 2020 also

show up very dramatically in a broad range of other economic indicators. A number

of approaches for dealing with this structural break have been proposed. Lenza and

Primiceri (2022) suggested we could treat the underlying structural relations as un-

changed but allow for a big increase in the magnitude of structural shocks. Ng (2021)

argued that these disruptions were an entirely new shock that we could model using

direct observations on measures of hospitalization, positive cases, or deaths. In our

paper we adopt the more general view that potentially all the structural relations and

structural shocks were different during the pandemic, implying that structural and

reduced-form parameters during this episode should be estimated separately from the

rest of the sample. Since there are not enough observations during the pandemic to

estimate a full set of parameters over this short period, in practice this means drop-

ping these observations from the sample and pooling post-COVID and pre-COVID

observations into a single sample. Schorfheide and Song (2021), Lenza and Primiceri

(2022), and Hamilton (2023) noted that this is what researchers might often want to

do, and this is the approach followed in this paper.

Year-over-year growth rates of oil production and consumption are profoundly

impacted for 2020:M3 through 2021:M2. Since we use twelve lags of these as explana-

tory variables, we therefore drop two years of data associated with the pandemic.

The left-hand variable in our forecasting equations covers observations from 1975:M1

through 2020:M2 and 2022:M2 through 2023:M2, for a total of T = 555 observations.

For notational convenience, we will write
∑

t∈{1975:M1-2020:M2 ∪ 2022:M2-2023:M2} simply

as
∑T

t=1 where T is the total number of observations on the dependent variable in
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our pooled sample. We obtained very similar results if we just end the sample in

2019:M12.

3 Market equilibrium

The production of oil from country i is presumed to be governed by the structural

equation

qit = ϕqipt + b′
qixt−1 + uqit + uχit (5)

for i = 1, ..., n. Here xt−1 = (1,y′
t−1, ...,y

′
t−r)

′ is a (k × 1) vector consisting of a

constant term and r lags of the production and consumption of every country in

the world along with the world price; thus k = 1 + r(n + m + 1). The term uqit

represents factors other than the lags xt−1 and the current price pt that determine

the production in country i while uχit is the error in measuring the production of

country i. The strategy for distinguishing a true supply shock uqit from measurement

error uχit will be the assumption that uqit affects the equilibrium price pt whereas uχit

does not. The term b′
qixt−1 governs the dynamic behavior of oil supply in country i.

We assume that structural dynamics are incorporated in the definition of bqi so that

uqit + uχit can be regarded as serially uncorrelated. In our empirical analysis we take

r = 12. Note that although we are measuring qit in year-over-year growth rates, the

inclusion of lags means that ϕqi represents the response of supply to an unanticipated

change in price. Thus ϕqi should be interpreted as the within-month elasticity of

supply for country i. The longer-run elasticity of supply is a function of bqi.

Likewise the structural demand equation for country j takes the form

cjt = ϕcjpt + b′
cjxt−1 + ucjt + uψjt (6)

for j = 1, ...,m. Here ϕcj is the short-run demand elasticity in country j, ucjt is a

shock to country j demand, and uψjt is measurement error.

If correctly measured global production is greater than consumption, the excess

must have gone into inventories. If we knew the values of the measurement errors

uχit and uψjt, we could infer a growth rate of global inventories vt from

vt =
∑n

i=1sqi(qit − uχit)−
∑m

j=1scj(cjt − uψjt). (7)

We assume that inventories also respond to global conditions according to the struc-

tural equation
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vt = ϕvpt + b′
vxt−1 + uvt (8)

where ϕv is the short-run price elasticity of inventory demand and uvt a shock to

inventory demand. Note that inclusion of a constant term in (8) allows for system-

atic average differences between measured production and consumption that have no

implications for the price of oil.

The equilibrium price is determined by equations (5)-(8). It is helpful to rewrite

these in vector form as1

qt
(n×1)

= ϕq
(n×1)

pt + Bq
(n×k)

xt−1 + uqt
(n×1)

+ uχt
(n×1)

(9)

ct
(m×1)

= ϕc
(m×1)

pt + Bc
(m×k)

xt−1 + uct
(m×1)

+ uψt
(m×1)

. (10)

The equilibrium condition (7) can then be written

s′q(qt − uχt) = s′c(ct − uψt) + ϕvpt + b′
vxt−1 + uvt

s′qϕqpt + s′qBqxt−1 + s′quqt = s′cϕcpt + s′cBcxt−1 + s′cuct + ϕvpt + b′
vxt−1 + uvt

(s′qϕq − s′cϕc − ϕv)pt = (s′cBc − s′qBq + b′
v)xt−1 + s′cuct − s′quqt + uvt. (11)

The structural model thus consists of equations (9), (10), and (11).

4 Identification

In this section we discuss how the structural elasticities can be estimated from the data

under certain assumptions about the correlations between the structural disturbances.

4.1 A motivation for granular instrumental variables

To start with a simple example, suppose we were willing to assume that the shock to

country j’s demand consisted of a global demand shock fct that affects all consumers

in the same way and a purely idiosyncratic shock ηcjt. Suppose further that there is

a common demand elasticity ϕc across all consumers. Under these assumptions, (6)

becomes

cjt = ϕcpt + b′
cjxt−1 + fct + ηcjt + uψjt (12)

1Equation (9) is obtained by stacking the n equations in (5) defining qt = (q1t, ..., qnt)
′, ϕq =

(ϕq1, .., ϕqn)
′, Bq =

[
bq1 bq2 · · · bqn

]′
, uqt = (uq1t, ..., uqnt)

′, and uχt = (uχ1t, ..., uχnt)
′.

Equation (10) is likewise obtained by stacking the m equations in (6).

9



for j = 1, ...,m. Taking a simple arithmetic average of (12) across consumers results

in

c̄t = ϕcpt + b̄′
cxt−1 + fct + η̄ct + ūψt (13)

where c̄t = m−1
∑m

j=1cjt, b̄c = m−1
∑m

j=1bcj, η̄ct = m−1
∑m

j=1ηcjt, and ūψt = m−1
∑m

j=1uψjt.

Subtracting (13) from (12) results in

cjt − c̄t = (b′
cj − b̄c)

′xt−1 + (ηcjt − η̄ct) + (uψjt − ūψt). (14)

From this equation we see that the difference between country j’s consumption and

average world consumption depends only on the idiosyncratic components of demand

shocks and measurement errors. If these are uncorrelated with the supply shock for

producer i, the value of (14) for any consumer j could serve as a valid instrument for

estimation of the supply equation (5) for any producer i. If consumer j is large enough

that its idiosyncratic demand shock has an effect on the world price, then (14) is a

relevant instrument because it is correlated with the world price pt. Since any linear

combination of (14) across different consumers j would also be a valid instrument,

we might expect to obtain a more powerful instrument by weighting each consumer

by its share in the world total. Multiplying (14) by scj and summing over j,

ct − c̄t = (b′
j − b̄j)

′xt−1 + (ηct − η̄ct) + (uψt − ūψt)

where ct =
∑m

j=1scjcjt, bj =
∑m

j=1scjbcj, ηct =
∑m

j=1scjηcjt, and uψt =
∑m

j=1scjuψjt.

In other words, the difference between the growth rate of total world consumption ct

and the arithmetic average of the growth rate of each consuming country c̄t can be

used as a valid instrument for estimation of supply elasticities. This is the basic idea

behind the granular instrumental variables proposed by Gabaix and Koijen (2020).

But under the above assumptions, even better estimates could be obtained by

using all of the values of (14) for j = 1, ...,m as instruments for all of the producing

countries i = 1, ..., n. Moreover, the above assumptions imply a host of overidenti-

fying assumptions that are informative about the demand parameters as well. One

can characterize the first-order conditions for maximum likelihood estimation as pro-

viding the ideal instruments that should be used for estimation of all the parameters

of the system; see for example Baumeister and Hamilton (2023, Section 2.2). Maxi-

mum likelihood estimation makes optimal use of all the available instruments in the

sense of obtaining consistent estimates of the structural parameters with the smallest

possible asymptotic variance (Rothenberg (1973)). We now develop a procedure for
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implementing this under a generalization of the above assumptions.

4.2 A general framework for examining identification

Our first step in generalizing the above approach is to characterize the reduced-form

representation of the structural model. Define

α = (s′qϕq − s′cϕc − ϕv)
−1. (15)

Equation (11) can then be written

pt = α(s′cBc − s′qBq + b′
v)xt−1 + α

(
s′cuct − s′quqt + uvt

)
= π′

pxt−1 + εpt (16)

for π′
p = α(s′cBc − s′qBq + b′

v) and εpt = α
(
s′cuct − s′quqt + uvt

)
. If the structural

shocks uqt, uct and uvt are white noise, then εpt is the error one would make trying

to forecast pt using the lagged variables in xt−1, so that πp could be estimated by

OLS. The forecast error εpt results from unforecastable structural shocks to supply,

demand, and inventories. Substituting (16) into (9) and (10) gives

qt = (ϕqπ
′
p +Bq)xt−1 + ϕqεpt + uqt + uχt

= Πqxt−1 + ϵqt

ct = (ϕcπ
′
p +Bc)xt−1 + ϕcεpt + uct + uψt

= Πcxt−1 + ϵct

for ϵqt = ϕqεpt + uqt + uχt and ϵct = ϕcεpt + uct + uψt. Note ϵqt and ϵct are the errors

one would make forecasting production or consumption from lagged observables and

Πq and Πc can again be estimated by OLS.

The reduced-form VAR is thus

yt = Πxt−1 + ϵt

for ϵt = (ϵ′qt, ϵ
′
ct, εpt)

′. Note that ϵt is characterized by

Aϵt = ut (17)
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A =

 In 0nm −ϕq

0mn Im −ϕc

01n 01m 1

 (18)

ut =

 uqt + uχt

uct + uψt

α
(
s′cuct − s′quqt + uvt

)
 . (19)

The reduced-form parameters Π and Ω = E(ϵtϵ
′
t) can be estimated by OLS:

Π̂ =
(∑T

t=1ytx
′
t−1

)(∑T
t=1xt−1x

′
t−1

)−1

Ω̂ = T−1
∑T

t=1(yt − Π̂xt−1)(yt − Π̂xt−1)
′.

If ut ∼ i.i.d. N(0,D), these are also the maximum likelihood estimates.

Following Rothenberg (1971), a model that restricts A, D and B to a particular

class is identified if any value for {Π,Ω} is associated with at most one value for

{A,D,B} within the allowable class. Since we treat B as unrestricted, the question

is whether there is at most one value for A and D for which AΩA′ = D. We will

maintain throughout that the inventory shock uvt and measurement errors uχt and

uψt are uncorrelated with all the other structural shocks, so that D takes the form

D =

 Kqq +Σχ Kqc −αKqqsq + αKqcsc

Kcq Kcc +Σψ −αKcqsq + αKccsc

−αs′qKqq + αs′cKcq −αs′qKqc + αs′cKcc α2(s′qKqqsq − 2s′cKcqsq + s′cKccsc + σ2
v)

 .

(20)

Here Kqq = E(uqtu
′
qt), Kcc = E(uctu

′
ct), Kqc = E(uqtu

′
ct) = K′

cq, Σχ = E(uχtu
′
χt),

Σψ = E(uψtu
′
ψt), and σ2

v = E(u2
vt).

4.3 Identification when supply and demand shocks are uncorrelated

with each other

A common assumption in structural VARs is that the underlying structural shocks

are uncorrelated with each other. If demand shocks are uncorrelated with supply

shocks, Kcq = 0 and D simplifies to
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D =

 Kqq +Σχ 0nm −αKqqsq

0mn Kcc +Σψ αKccsc

−αs′qKqq αs′cKcc α2(s′qKqqsq + s′cKccsc + σ2
v)

 =

 Dqq 0nm Dqp

0mn Dcc Dcp

Dpq Dpc Dpp

 .

(21)

Recalling (17), the (2,1) block of (21) implies that

E(ϵqt − ϕqεpt)(ϵct − ϕcεpt)
′ = 0nm.

When n = m = 1, this is a single equation to determine the two unknowns ϕq and

ϕc, and there would be an infinite number of combinations of ϕq and ϕc that would

imply uncorrelated supply and demand shocks consistent with the data. For example,

with no inventory changes or measurement error, qt = ct and there is a continuum of

values of (ϕq, ϕc) satisfying

ωqq − ϕcωqp − ϕqωqp + ϕqϕcωpp = 0

for any specified ωqq, ωpp, ωqp. This is a very familiar identification problem, as dis-

cussed for example in Baumeister and Hamilton (2015). However, when n and m are

greater than one, there is additional information in the correlations across regions,

and we might hope to estimate the n + m elements of ϕ = (ϕ′
q,ϕ

′
c)

′ using the nm

equations

T−1
∑T

t=1(ϵ̂qt − ϕqε̂pt)(ϵ̂ct − ϕcε̂pt)
′ =

[
In 0nm −ϕq

]
Ω̂

 0nm

Im

−ϕ′
c

 = 0nm. (22)

For example, if we impose that all producers have the same supply elasticity (ϕqi = ϕq)

and all consumers have the same demand elasticity (ϕcj = ϕc), this gives us a system

of nm equations in the two unknowns ϕq and ϕc. More generally, with ϕq and ϕc

unrestricted (n × 1) and (m× 1) vectors, counting equations and unknowns, one

might suppose that the model is just identified when n = m = 2 and overidentified

for larger n,m. However, it turns out that even when nm ≥ n+m, equations (22) by

themselves would allow us to estimate at most n+m− 1 of the elements in (ϕ′
q,ϕ

′
c)

′,

as shown in the appendix. We could use (22) along with restrictions such as assuming

that some of the elasticities are common across countries to estimate the elasticities.

In the remainder of this subsection we show how in such cases we could use other
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elements of Ω̂ to estimate the rest of the structural parameters. In the next subsection

we present an alternative approach that does not rely on the assumption that demand

and supply shocks are uncorrelated with each other.

Given ϕq and ϕc, we would know the value of A and would be able to construct

D̂ = AΩ̂A
′
. Suppose we assume that measurement errors have the same variance and

are uncorrelated across countries: Σχ = σ2
χIn and Σψ = σ2

ψIm. From (21), we can

then estimate the off-diagonal elements of Kqq and Kcc from the off-diagonal elements

of D̂qq and D̂cc, respectively. The diagonal elements of D̂qq can tell us the sum of

σ2
χIn plus the diagonal elements of Kqq. We can then use the observed covariances in

D̂qp to obtain a separate estimate of diagonal elements of Kqq up to a constant of

proportionality α, where the single remaining unknown element in α is the inventory

elasticity ϕv. Combining these two sources of information, we can thus use the n

diagonal elements in D̂qq along with the n elements of D̂qp to estimate the n diagonal

elements of Kqq along with the two scalars σ2
χ and ϕv. For example, suppose that

the value of ϕ′
q,ϕ

′
c that makes D̂qc small turns out to predict a bigger correlation

between supply shocks and prices than we see in the data, that is, a bigger value for

Dpq in (21) than we observe in D̂pq. This would be interpreted either as evidence

of significant errors in measuring production (σ2
χ > 0) or as a negative value for

ϕv. A negative value for ϕv would mean that inventory adjustments help mitigate the

effects of supply shocks on the price of oil, accounting for why we observe such a small

correlation between ϵ̂qt−ϕqε̂pt and ε̂pt. On the other hand, if the observed correlation

between supply shocks and price is stronger than predicted by the structural model,

that would be interpreted as evidence that ϕv > 0, meaning that inventory changes

magnify the effects of supply shocks. Similarly we can use the m diagonal elements

of D̂cc along with the m covariances D̂cp to estimate the m diagonal elements of Kcc

along with σ2
ψ and to provide additional information about ϕv. We can then uncover

the final unknown magnitude σ2
v from D̂pp. The optimal way to use the information

in the structural model is to find the value for the full vector of structural parameters

that achieves the highest value for the likelihood of the observed data.

4.4 A specification with correlated supply and demand shocks

We find in our dataset that the overidentifying restrictions in (22) are rejected, leading

us to conclude that, contrary to what is often assumed, there must be some correlation

between shocks to oil demand and supply. Gabaix and Koijen (2020) raised the

possible desirability of allowing the supply shock to producing region i to be correlated

with the demand shock to consuming region j if i and j represent the same region. In

14



our example that would mean allowing the U.S. supply shock uq1t to be correlated with

the U.S. demand shock uc1t and the rest-of-world supply shock uqnt to be correlated

with ucmt. We find our dataset is better described by allowing a single global factor

ft to potentially influence all the shocks. For example, a global economic downturn

could affect all producers and consumers. In addition, we allow for a second factor fqt

contributing to the supply shocks across different countries, but which is presumed

to influence demand only through its effect on price, and a third factor fct common

to all countries’ demand shocks but mattering for supply only through its effects on

price. The specification is then

uqt = hqft + γqfqt + ηqt (23)

uct = hcft + γcfct + ηct. (24)

Here γc is an (m × 1) vector summarizing how the common global demand shock

fct shows up in each individual consuming country. Note that this is a strict gen-

eralization of (12) where it was assumed that γcj = 1 for all j, meaning the global

demand shock affected each country the same way. Here we normalize the variance of

fct to be one and allow for the possibility that the global demand shock affects each

country differently. We assume that the factors ft, fqt, and fct are uncorrelated with

each other and each have unit variance. Thus, for example, a one-standard-deviation

increase in the global demand shock fct raises the consumption of country j by γcj.

We normalize these weights by imposing that the loadings on the supply or demand

factors are orthogonal to the loadings on the global factor: h′
qγq = h′

cγc = 0. The

appendix describes how we implemented this mechanically. The (n × 1) vector ηqt

represents purely idiosyncratic shocks to supply that are uncorrelated with any of

the three global factors. We assume that these are uncorrelated across countries but

allow the variances of purely idiosyncratic shocks to differ across countries. That is,

we assume E(ηqtη
′
qt) = Σq, where Σq is a diagonal (n×n) matrix whose ith diagonal

element measures the variance of purely idiosyncratic shocks to supply. Similarly

E(ηctη
′
ct) = Σc, a diagonal (m×m) matrix.
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For this model, the matrix in (20) becomes

D =

 hqh
′
q + γqγ

′
q +Σq + σ2

χIn hqh
′
c

hch
′
q hch

′
c + γcγ

′
c +Σc + σ2

ψIm

−αs′q
(
hqh

′
q + γqγ

′
q +Σq

)
+ αs′chch

′
q −αs′qhqh

′
c + αs′c (hch

′
c + γcγ

′
c +Σc)

−α
(
hqh

′
q + γqγ

′
q +Σq

)
sq + αhqh

′
csc

−αhch
′
qsq + α (hch

′
c + γcγ

′
c +Σc) sc

α2
[
s′q
(
hqh

′
q + γqγ

′
q +Σq

)
sq − 2s′chch

′
qsq + s′c (hch

′
c + γcγ

′
c +Σc) sc + σ2

v

]
 .

(25)

In the model in the previous subsection, the elasticities ϕq and ϕc were identified

from (22), which required that all linear combinations of ϵqt − ϕqεpt be uncorrelated

with all linear combinations of ϵct − ϕcεpt where ϵqt, ϵct, and εpt are the observable

errors one would make in forecasting qt, ct, and pt one month in advance. The model

here generalizes this assumption, looking for values of ϕq and ϕc for which all but

one linear combination of the implied supply and demand shocks are uncorrelated

with each other. The elasticities are also chosen to imply that off-diagonal elements

of Dqq and Dcc can be summarized by single supply and demand factors beyond the

common factor in the Dqc covariance. The values of Σq, σ
2
χ, and ϕv are then inferred

from the diagonal elements of Dqq and the covariances between ϵqt − ϕqεpt and εpt.

The latter correlation is nonzero because a shock to country i supply has an effect on

the world price based on its share sqi in global oil production. The values of Σc and

σ2
ψ (and additional information about all the other parameters) are informed by the

diagonal elements of Dcc and the covariances between ϵct − ϕcεpt and εpt.

4.5 Maximum likelihood estimation

Up to this point we have been discussing identification in terms of valid instruments

and whether structural magnitudes could be inferred from observed correlations, fol-

lowing most of the earlier literature. However, it is well known that instrumental

variables is not the optimal way to make use of such information. As a general

estimation method, maximum likelihood uses all the identifying information in the

optimal way to produce consistent parameter estimates with the smallest asymptotic

variance. This is the method of estimation used in our paper.

For Gaussian structural shocks, the model in the previous subsection implies a

value for the log likelihood of

ℓ(θ) = −[T (n+m+1)/2] log(2π)− (T/2) log |Ω(θ)|− (T/2)trace
(
Ω(θ)−1Ω̂

)
. (26)
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Here Ω̂ is the OLS estimate T−1
∑T

t=1ϵ̂tϵ̂
′
t, ϵ̂t = yt − Π̂xt−1, and

Π̂ =
(∑T

t=1ytx
′
t−1

)(∑T
t=1xt−1x

′
t−1

)−1

.

The matrix Ω(θ) is the forecast-error variance matrix that is implied by the vector

of structural parameters,

Ω(θ) = A(θ)−1D(θ)
[
A(θ)−1

]′

A(θ)−1 =

 In 0nm ϕq

0mn Im ϕc

01n 01m 1

 ,

where D(θ) is the matrix in (25). The vector θ contains 4(m + n) + 2 unknown

structural parameters. The 4n supply parameters consist of the n supply elasticities

ϕq, the n idiosyncratic supply variances Σq, the n loadings of supply hq on the

global factor ft, the (n − 1) loadings of supply ωq on the supply factor fqt (which

imposes the normalization condition h′
qγq = 0 as described in the appendix), and the

variance σ2
χ of the error in measuring production for each country. The 4m demand

parameters consist analogously of ϕc,Σc,hc,ωc, σ
2
ψ. In addition there are the two

inventory demand parameters, which consist of the elasticity ϕv and variance of the

inventory shock σ2
v . Our proposal is to estimate θ by maximizing the log likelihood

(26) subject to the restrictions ϕqi ≥ 0 and ϕcj ≤ 0.

Another benefit of maximum likelihood estimation is that it gives an immediate

test of the overidentifying assumptions. The structural model is a restricted version of

an unconstrained VAR, which sets Ω(θ) = Ω̂ achieving a value for the log likelihood

of

ℓ(θ̂unrestricted) = −[T (n+m+ 1)/2][1 + log(2π)]− (T/2) log
∣∣∣Ω̂∣∣∣ . (27)

The unconstrained model estimates (n + m + 1)(n + m + 2)/2 parameters in the

covariance matrix Ω. For our baseline model with n = m = 4, there are 34 elements

in the structural parameter vector θ compared with 45 parameters for the reduced-

form VAR. We can test the model assumptions by comparing the value of (26) with

the value of (27).
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4.6 Impulse-response functions

We can use equations (18), (19), (23), and (24) to rewrite (17) as

ϵt = A−1ut

A−1

[(n+m+1)×(n+m+1)]
=

 In 0nm ϕq

0mn Im ϕc

01n 01m 1



ut =

 hqft + γqfqt + ηqt + uχt

hcft + γcfct + ηct + uψt

αs′c(hcft + γcfct + ηct)− αs′q(hqft + γqfqt + ηqt) + αuvt

 .

We can use these equations to calculate the impact effect of any structural shock ukt

on the (n + m + 1) × 1 vector of observed variables yt at time t using ∂ϵt/∂ukt =

A−1∂ut/∂ukt. For example, the effect of a one-percent increase in the supply from

country i alone resulting from a one-unit increase in ηqit would be

∂ϵt
∂ηqit

= A−1

 e
(n)
i

0

−αs′qe
(n)
i


where e

(n)
i is the ith column of In. Likewise, the effect of a one-percent increase in

demand from region j alone is

∂ϵt
∂ηcjt

= A−1

 0

e
(m)
j

αs′ce
(m)
j


for e

(m)
j the jth column of Im.The effect of a one-standard-deviation increase in the

global demand factor is

∂ϵt
∂fct

= A−1

 0

γc

αs′cγc

 . (28)
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The effect of a one-percent increase in inventory demand is

∂ϵt
∂uvt

= A−1

 0

0

α

 .

Let Ψs denote the usual reduced-form dynamic multiplier Ψs = ∂yt+s/∂ϵ
′
t. We

can calculate structural dynamic multipliers defined as the answers to the following

question: if there is a structural shock to ukt, how does this cause us to change our

forecast of yt+s,
∂E(yt+s|yt,yt−1, ...yt−r+1)

∂ukt
= Ψs

∂ϵt
∂ukt

.

To get this, we just plug in one of the above expressions for ∂ϵt/∂ukt. For example,

∂E(yt+s|yt,yt−1, ...yt−r+1)

∂fct
= ΨsA

−1

 0

γc

αs′cγc

 . (29)

We can calculate confidence bands for these estimates as described in the appendix.

5 Empirical results

We assembled year-over-year production growth rates for the U.S., Saudi Arabia,

Russia and the rest of the world, year-over-year consumption growth rates for the

U.S., Japan, Europe, and the rest of the world, and monthly growth rates for the real

price of oil. The data are monthly with the dependent variable including observations

from t = 1975:M1 through 2020:M2 and 2022:M2 through 2023:M2.

5.1 Parameter estimates

The parameter values that maximize the likelihood (26) are reported in Table 1. We

estimate a short-run price elasticity of oil supply of 0.26 for Saudi Arabia and 0.02 to

0.04 for other countries. These are all estimated to be positive without the need to

impose sign constraints. Using equation (3), these estimates imply an overall world

oil short-run supply elasticity of

ϕq =
∑n

i=1sqiϕqi = 0.064. (30)

This is very similar to the estimates of Caldara, Cavallo and Iacoviello (2019, Table

3) of 0.05 to 0.08 and a little below the estimate in Baumeister and Hamilton (2019)
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of 0.15. Our detailed estimates also support the conclusions of previous researchers

including Pierru, Smith and Zamrik (2018), Caldara, Cavallo and Iacoviello (2019),

Alonso-Alvarez, Di Nino and Venditti (2022), and Almutairi, Pierru and Smith (2023)

that OPEC production is much more responsive to price than production in other

countries.

Our estimates of the short-run price elasticity of demand range from −0.02 for

Japan to −0.22 for Europe. Again these are all estimated to be negative without

imposing any sign constraints. From equation (4), our estimates imply a global

short-run price elasticity of demand of

ϕc =
∑m

j=1scjϕcj = −0.139. (31)

This is a little more responsive than the estimates of −0.03 to −0.08 in Cooper (2003),

Caldara, Cavallo and Iacoviello (2019, Table 3), and Pierru, Smith and Zamrik (2018)

and a little less responsive than the estimates obtained by Alonso-Alvarez, Di Nino

and Venditti (2022) (−0.28), and Baumeister and Hamilton (2019) (−0.35).

Shocks to Saudi Arabian production (whose standard deviation is σq,Saudi = 6.3)

are significantly larger than those to other producing countries and also larger than

any shocks to consumption demand. The estimated variance of the measurement

error in production data is smaller than the variance of idiosyncratic shocks to true

production for any country. We find no evidence of measurement error in consumption

data. The variance of shocks to inventory demand is comparable in magnitude to

the variances of demand shocks for individual countries, and inventory demand is

more responsive to price than is the product demand from any individual country.

The feature of the data leading to the estimate of ϕ̂v < 0 is the observation that

the correlations between supply shocks and price and between demand shocks and

price are observed to be smaller than they would be in the absence of adjustment of

inventories. We interpret these estimates as consistent with the view that inventory

investment responds to price changes in a stabilizing way. A shortfall in supply from

any producing country is partially met by selling out of inventories.

The global factor ft shows up primarily as an increase in demand from the rest

of the world and an increase in production from Saudi Arabia and the rest of the

world. One possibility is that this represents a direct response of OPEC to strong

global demand that is not mediated through price changes. We found that estimates

of a global supply factor fqt did not contribute much to the fit to the data, and
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Table 1: Maximum likelihood estimates

Parameter MLE Std err

ϕq,US 0.019 (0.017)
ϕq,Saudi 0.259 (0.056)
ϕq,Russia 0.029 (0.011)
ϕq,ROW 0.043 (0.029)
ϕc,US -0.094 (0.031)
ϕc,Japan -0.018 (0.037)
ϕc,Europe -0.225 (0.045)
ϕc,ROW -0.161 (0.045)
σq,US 2.335 (0.178)
σq,Saudi 6.348 (0.260)
σq,Russia 1.224 (0.308)
σq,ROW 0.825 (0.786)
σc,US 1.937 (0.106)
σc,Japan 3.065 (0.120)
σc,Europe 3.490 (0.152)
σc,ROW 2.472 (0.183)
σχ 0.915 (0.404)
σψ 0 —
hq,US -0.036 (0.139)
hq,Saudi 2.236 (0.493)
hq,Russia 0.103 (0.084)
hq,ROW 1.661 (0.297)
hc,US -0.126 (0.119)
hc,Japan -0.313 (0.151)
hc,Europe -0.190 (0.141)
hc,ROW 1.075 (0.265)
ϕv -0.314 (0.060)
σv 2.555 (0.337)

γc,US 1.415 (0.444)
γc,Japan 1.548 (0.525)
γc,Europe 2.044 (0.564)
γc,ROW 0.967 (0.364)
α 1.932 (0.138)
ϕq 0.064 (0.021)
ϕc -0.139 (0.037)

Notes to Table 1. The four elements of γc were not estimated directly but were
calculated from the three elements of ωc (not reported in the table) along with the
four elements of hc reported in the table using equations (A3) and (A2). Standard
errors for γc were calculated by simulating draws from the asymptotic distribution
of θ̂ as a byproduct of the algorithm used to calculate confidence bands for impulse-
response functions. The values of α, ϕq and ϕc were not estimated directly but were

inferred from θ̂ using equations (15), (30), and (31) with standard errors for α̂, ϕ̂q,

and ϕ̂c obtained by simulation. 21



the estimates reported in Table 1 impose γq = 0.2 The coefficients γc on the global

demand factor are quite similar across countries. A one-standard-deviation increase in

fct leads to a 1-2% increase in oil demand everywhere in the world. These parameter

estimates are consistent with the simpler specification of the role of global demand

factors in equation (12).

5.2 Standard errors and hypothesis tests

The estimates reported in Table 1 do not satisfy the regularity conditions that are used

to derive the usual asymptotic results for maximum likelihood estimation because the

MLE of σ2
ψ is at the boundary zero of the allowable parameter space. We can deal with

this issue by treating this parameter as fixed rather than estimated and calculating

the matrix of second derivatives of (26) with respect to the 30 free parameters. The

resulting standard errors are reported in Table 1. The estimated Saudi and Russian

supply elasticities are statistically significantly different from zero, but we could not

reject the hypothesis that the U.S. or rest-of-world supply elasticity is zero. All

demand elasticities other than Japan are statistically significantly different from zero,

as is the inventory demand elasticity ϕv. We fail to reject the null hypothesis that the

aggregate factor ft has no effect apart from that on uq,Saudi, uq,ROW , and uc,ROW .

Two times the difference between the log likelihood achieved by the unrestricted

reduced-form model (27) and the constrained structural model (26) is 23.39. The

unconstrained model has 45− 30 = 15 additional parameters, which yields a p-value

of 0.076 using an asymptotic χ2(15) approximation to the likelihood ratio test. We

therefore would not reject the null hypothesis that the overidentifying restrictions are

all valid.3 In addition to the 45 parameters used to fit the variance matrix Ω, there

are another k = 1 + r(n +m + 1) = 109 parameters estimated for each row of Π in

the unconstrained VAR. Adjusting to correct for small-sample bias4 would result in

a test statistic of

2(T − k)

T

{
ℓ(θ̂unrestricted)− ℓ(θ̂MLE)

}
= 18.80

for which the χ2(15) p-value is 0.22. We conclude that the overidentifying assumptions

2Maximum likelihood estimates when γq is unconstrained are reported in Table A.1 in the ap-
pendix, and are very similar to the estimates in Table 1.

3If we were to count σ̂2
ψ = 0 as another estimated parameter it would bring the degrees of

freedom to 14. Using a χ2(14) approximation to the distribution of the likelihood ratio test can not
be justified by the formal asymptotic theory, but gives a tighter distribution for evaluating statistical
significance. Using critical values from a χ2(14) distribution results in a p-value of 0.054, which just
fails to reject.

4See Sims (1980, p. 17) and Hamilton (1994, p. 297).
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Table 2: Impact effects of a global demand shock

with estimated ϕv with ϕv = 0
as % of country % of world as % of country % of world

Variable direct response net net direct response net net
effect to price effect effect effect to price effect effect
(1) (2) (3) (4) (5) (6) (7) (8)

p 2.330 5.935
qUS 0 0.043 0.043 0.005 0 0.110 0.110 0.013
qSaudi 0 0.604 0.604 0.072 0 1.538 1.538 0.185
qRussia 0 0.068 0.068 0.010 0 0.173 0.173 0.026
qROW 0 0.101 0.101 0.061 0 0.256 0.256 0.156
q 0.149 0.380
cUS 1.415 -0.218 1.197 0.299 1.415 -0.555 0.860 0.215
cJapan 1.548 -0.043 1.505 0.105 1.548 -0.108 1.440 0.101
cEurope 2.044 -0.524 1.520 0.122 2.044 -1.334 0.710 0.057
cROW 0.967 -0.375 0.592 0.355 0.967 -0.954 0.013 0.008
c 0.882 0.380
v 0.733 0.000

Notes to Table 2. Impact effects of a one-standard-deviation increase in the global
demand factor fct both given the historical average response of inventories (columns
1-4) and under the counterfactual of no adjustment of inventories (columns 5-8).

appear to be consistent with the correlations that are observed in these data.

6 Applications

Now we use our model to analyze the effects of certain structural shocks.

6.1 Example 1: The effects of a global demand shock

We first examine the effects of a one-standard-deviation shock to the global demand

factor fct. This raises demand for country j by γcj, which is around 1-2% for every

country. From the last row of equation (28), this leads to an immediate increase

in the price of oil of αs′cγc, which equals 2.3%. These immediate impact effects are

summarized in column 1 of Table 2.

The change in price in turn induces responses of quantities produced and con-

sumed. Column 2 of Table 2 calculates the size of these responses by multiplying

the price change 2.330 by the respective elasticities ϕqi or ϕcj. Saudi oil production

increases by about 0.6% in response to the higher world demand. The price increase

also substantially reduces the effect of the demand increase on realized consumption.

The net effect (column 3) is the sum of columns 1 and 2.
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Figure 2 plots the dynamic effects of the shock calculated using expression (29).

Production of oil from Saudi Arabia and the rest of the world continue to climb in

the first few months following the shock. These estimates support the conclusion

of Almutairi, Pierru and Smith (2023) that Saudi Arabia and OPEC play a major

role in stabilizing the world oil market. The effects of the shock on consumption of

individual countries dies off relatively quickly.

Figure 2: Dynamic effects of a global demand shock
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Notes to Figure 2. Dynamic effects of a one-standard-deviation increase in the global

demand factor fct assuming the historical average response of inventories. First panel plots

the cumulative effect on 100 times the log of the real price of oil. Other panels plot year-

over-year changes of quantities as a percent of that country’s production or consumption.

Shaded regions indicate 68% confidence intervals.

Column 4 of Table 2 restates the magnitudes as a percent of the world total by

multiplying the entries in column 3 by sqi or scj. The total initial gains in production

(the sum of the first four rows of column 4) only amount to a 0.15% increase in

global production, compared with a 0.88% increase in consumption. Thus sales out

of inventory play a major role in meeting the temporarily strong demand. Columns
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5-8 of Table 2 report what the response to the demand shock would be if there were

no changes in inventories, which can be calculated by setting ϕv = 0. The immediate

impact on price in that scenario would be α̃s′cγc where α̃ = 1/(ϕ′
qsq − ϕ′

csc) = 4.92.

In this counterfactual, the demand increase would lead to a 5.9% increase in prices,

almost three times as large as in column 1. If there is no inventory response, the

increase in production (0.38% of world supply in column 8 of Table 2) would of

necessity exactly equal the increase in world consumption. Comparing column 8 with

column 4, most of the balancing in this case comes on the demand side, with the

effect of price increases undoing much of the original stimulus to demand.

6.2 Example 2: The effects of a 50% decrease in Russian production

As a second example we examine the consequences if exogenous political events were

to lead to a 50% decline in uq,Russia. This would represent a loss of over 5 million

barrels per day. For this example, we use production and consumption shares as of

the end of our sample (February 2023).5 Table 3 summarizes the effect on impact.

We first highlight the calculations in columns 5-8 which assume that none of the

shock is offset by use of inventory drawdowns. The model estimates imply that the

price of oil would increase by about a third.6 For convenience we summarize effects

on production and consumption in column 8 in units of million barrels per day. This

was calculated by multiplying the number reported in column 7 by sqiTQT or scjTQT

where QT = 82.3 mb/d is total world oil production in February 2023. Increased

production from Saudi Arabia and the rest of the world makes up about 1.5 mb/d

of the 5.25 mb/d shortfall. A much bigger part of the adjustment comes from the

demand side, with a 500,000 b/d drop in U.S. consumption and a 3 mb/d drop in

rest-of-world oil consumption.

Columns 1-4 of Table 3 report the impact response if instead inventories responded

to this shock the same way they did to typical historical shocks. This would require

drawing down inventories by 3.2 mb/d, or nearly a hundred million barrels in the

first month, which clearly is not sustainable.7 For this reason we emphasize the

analysis that assumes that 100% of the shortfall must be met through a combination

of decreased consumption and increased production from other countries.

We plot the predicted dynamic effects under the assumption of no inventory

5These were sqT = (0.15,0.12,0.13,0.60)′ and scT = (0.20,0.04,0.05,0.71)′.
6This was calculated as −0.5sq,Russia,T /(s

′
qTϕq − s′cTϕc).

7In January 2022, the U.S. had 415 million barrels of crude oil in commercial inventories and an
additional 589 million barrels in the Strategic Petroleum Reserve. Over the course of the next year,
225 million barrels were released from the SPR.

25



Table 3: Impact effects of a shock to Russia supply

with estimated ϕv with ϕv = 0
as % of country in mb/d as % of country in mb/d

Variable direct response net net direct response net net
effect to price effect effect effect to price effect effect
(1) (2) (3) (4) (5) (6) (7) (8)

p 12.430 31.185
qUS 0 0.231 0.231 0.029 0 0.580 0.580 0.072
qSaudi 0 3.222 3.222 0.318 0 8.084 8.084 0.798
qRussia -50 0.362 -49.638 -5.311 -50 0.909 -49.091 -5.252
qROW 0 0.536 0.536 0.265 0 1.345 1.345 0.664
q -4.699 -3.718
cUS 0.000 -1.163 -1.163 -0.191 0.000 -2.919 -2.919 -0.480
cJapan 0.000 -0.227 -0.227 -0.007 0.000 -0.569 -0.569 -0.019
cEurope 0.000 -2.795 -2.795 -0.115 0.000 -7.011 -7.011 -0.289
cROW 0.000 -1.999 -1.999 -1.168 0.000 -5.015 -5.015 -2.930
c -1.482 -3.718
v 3.217 0.000

Notes to Table 3. Impact effects of a 50% cut in Russian oil production both given the
historical average response of inventories (columns 1-4) and under the counterfactual
of no adjustment of inventories (columns 5-8).

changes on impact in Figure 3. Saudi oil production continues to climb for many

months following the shock, and is again likely to play a key role in the ability of the

world to adapt to a shock like this.

7 Conclusion

The key assumption behind our approach is that correlations between country-specific

supply and demand shocks can be summarized with a low-order factor structure. We

showed that this assumption allows us to jointly estimate supply and demand elas-

ticities for individual producers and consumers using maximum likelihood estimation

of a structural vector autoregression, generalizing the method of granular instrumen-

tal variables developed by Gabaix and Koijen (2020). Our method could be applied

in any context in which different units interact to determine a market equilibrium.

We used this approach to analyze the world oil market. Our estimates of aggregate

elasticities are similar to those obtained by earlier researchers who have used a vari-

ety of methods very different from ours. Our approach provides for the first time a

characterization of heterogeneity in those elasticities across countries using a unified

statistical model of the world oil market. Our estimates imply that variation in Saudi
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Figure 3: Dynamic effects of a Russian supply shock
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Notes to Figure 3. Dynamic effects of a 50% decrease in Russian oil prodution assuming no

adjustment of inventories. First panel plots the cumulative effect on 100 times the log of the

real price of oil. Other panels plot year-over-year changes of quantities as a percent of that

country’s production or consumption. Shaded regions indicate 68% confidence intervals.

Arabian production and the endogenous adjustment of inventories have historically

played a key role in stabilizing the world price of oil.
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A Appendix

A.1 Demonstration that condition (22) alone allows estimation of at

most n+m− 1 parameters

Here we explore in more detail the information about elements of the [(n +m) × 1]

vector (ϕ′
q,ϕ

′
c)

′ that is contained in the elements of the (n×m) matrix

g(ϕq,ϕc) = E(ϵqt − ϕqεpt)(ϵct − ϕcεpt)
′ = Ωqc − ϕqΩpc −Ωqpϕ

′
c + ϕqΩppϕ

′
c (A1)

where for example Ωqc = E(ϵqtϵ
′
ct). Ignoring for the moment the final cross-product

term in (A1), consider the terms in (A1) that depend linearly on (ϕ′
q,ϕ

′
c)

′, namely

−ϕqΩpc − Ωqpϕ
′
c. Observe that if we were to change the value of ϕq from ϕ0

q to

ϕ0
q − λΩqp and change ϕc from ϕ0

c to ϕ0
c + λΩcp, the change in the linear term would

be λΩqpΩpc − λΩqpΩpc = 0nm for any scalar λ. This means for example that if we

were to search within a neighborhood around ϕ0
q = 0 and ϕ0

c = 0, for λ small there

are at most n + m − 1 search directions that could be locally useful to try to get

elements of the (n×m) matrix in (A1) closer to zero.

More generally, consider searching within a neighborhood of any arbitrary starting

values ϕ0
q and ϕ0

c . If we were to change ϕq to ϕ0
q − λΩqp + λϕ0

qΩpp and change ϕc to

ϕ0
c + λΩcp − λϕ0

cΩpp, the change in (A1) would be

g(ϕ0
q − λΩqp + λϕ0

qΩpp,ϕ
0
c + λΩcp − λϕ0

cΩpp)− g(ϕ0
q,ϕ

0
c)

= −(−λΩqp + λϕ0
qΩpp)Ωpc −Ωqp(λΩcp − λϕ0

cΩpp)
′

+ (−λΩqp + λϕ0
qΩpp)Ωppϕ

0′
c + ϕ0

qΩpp(λΩcp − λϕ0
cΩpp)

′

+ (−λΩqp + λϕ0
qΩpp)Ωpp(λΩcp − λϕ0

cΩpp)
′

= λ2(−Ωqp + ϕ0
qΩpp)Ωpp(Ωcp − ϕ0

cΩpp)
′.

For λ small this again is arbitrarily close to zero. Thus from any point (ϕ0′
q ,ϕ

0′
c )

′

there are at most (n+m− 1) local search directions that could be used to try to get

elements of (A1) closer to zero.

A.2 Imposing orthogonality of factor loadings

Typical applications of a factor structure such as principal component analysis use

a normalization in which the factor loadings are orthogonal to each other. Here we

describe how to implement the conditions h′
qγq = h′

cγq = 0 in our algorithm for

maximum likelihood estimation.
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Let Gq⊥ denote the matrix consisting of the first n−1 columns of (h′
qhq)In−hqh

′
q:

Gq⊥
n×(n−1)

=
[
(h′

qhq)In − hqh
′
q

] [ In−1

01,n−1

]
.

Note that Gq⊥ is constructed such that each column is orthogonal to hq:

h′
qGq⊥ = (h′

qhq)(h
′
q − h′

q)

[
In−1

01,n−1

]
= 01,n−1.

We can then parameterize γq = Gq⊥ωq where ωq is an (n−1)×1 vector of parameters

to be estimated. Similarly, we define

Gc⊥
m×(m−1)

=
[
(h′

chc)Im − hch
′
c

] [ Im−1

01,m−1

]
(A2)

and parameterize

γc = Gc⊥ωc. (A3)

Thus the specification becomes[
Kqq Kqc

Kcq Kcc

]
=

[
hqh

′
q +Gq⊥ωqω

′
qG

′
q⊥ +Σq hqh

′
c

hch
′
q hch

′
c +Gc⊥ωcω

′
cG

′
c⊥ +Σc

]
.

The likelihood function is then maximized with respect to the n elements of hq, the

(n − 1) elements of ωq, the n diagonal elements of the diagonal matrix Σq, the m

elements of hc, the (m − 1) elements of ωc, and the m diagonal elements of the

diagonal matrix Σc.

A.3 Confidence bands for impulse-response functions

Let the [(n+m+1)×k] matrix Π̂ be the OLS estimate of the reduced-form coefficient

matrices and Ω̂ the OLS estimate of the reduced-form residual variance matrix. We

know that the distribution of Π̂ is approximately given by

vec(Π̂′) ∼ N

(
vec(Π′), (Ω⊗

(∑T
t=1xt−1x

′
t−1

)−1
)

(A4)

and that this distribution is asymptotically independent of that of Ω̂. Since the

estimates of the structural parameters θ are a function solely of Ω̂ we can calcu-

late confidence bands as follows. We draw a value for θ(d) from the distribution
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θ ∼ N(θ̂MLE, V̂) where θ̂MLE is the maximum likelihood estimate and V̂ is its

estimated variance-covariance matrix calculated from second derivatives of the log

likelihood function. With this draw for θ(d) we calculate the implied value for Ω(d):

Ω(d) = [A(θ(d))]−1
[
D(θ(d)

]
[A(θ(d))−1]′

D(θ(d))

=

 hqh
′
q + γqγ

′
q +Σq +Σχ hqh

′
c

hch
′
q hch

′
c + γcγ

′
c +Σc +Σψ

−αs′q(hqh
′
q + γqγ

′
q +Σq) + αs′chch

′
q −αs′qhqh

′
c + αs′c(hch

′
c + γcγ

′
c +Σc)

−α
(
hqh

′
q + γqγ

′
q +Σq

)
sq + αhqh

′
csc

−αhch
′
qsq + α(hch

′
c + γcγ

′
c +Σc)sc

α2
{
s′q
(
hqh

′
q + γqγ

′
q +Σq

)
sq − 2s′qhqh

′
csc + s′c (hch

′
c + γcγ

′
c +Σc) sc + σ2

v

}


where for example we have simplified notation by writing h
(d)
q as hq. We use this value

for Ω(d) to generate a draw for Π(d) from

vec(Π(d)′) ∼ N

(
vec(Π̂′), (Ω(d) ⊗

(∑T
t=1xt−1x

′
t−1

)−1
)
.

With this pair of θ(d) and Ω(d) we calculate the value of some structural magnitude

of interest such as ∂E(yt+s|yt,yt−1, ...yt−r+1)/∂ukt. We repeat this for draws d =

1, ..., D, and calculate the 68% bands for each object of interest.

A.4 Results for 3-factor model

Table A.1 reports maximum likelihood estimates when 3 factors (an overall global

factor, a global supply factor, and a global demand factor) are used. The global

supply factor is dominated by U.S. production. When this factor is included, there

is no role for a separate idiosyncratic U.S. supply shock. All elasticity estimates and

impulse-response functions are similar to those for the 2-factor model reported in

Table 1.
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Table A.1: Maximum likelihood estimates for 3-factor model

Parameter MLE Std err

ϕq,US 0.028 (0.018)
ϕq,Saudi 0.261 (0.051)
ϕq,Russia 0.030 (0.011)
ϕq,ROW 0.048 (0.028)
ϕc,US -0.104 (0.031)
ϕc,Japan -0.023 (0.036)
ϕc,Europe -0.236 (0.046)
ϕc,ROW -0.181 (0.048)
σq,US 0 —
σq,Saudi 6.362 (0.251)
σq,Russia 1.244 (0.289)
σq,ROW 0.838 (0.740)
σc,US 1.925 (0.108)
σc,Japan 3.082 (0.118)
σc,Europe 3.493 (0.150)
σc,ROW 2.508 (0.173)
σχ 0.888 (0.395)
σψ 0 —
hq,US -0.468 (0.325)
hq,Saudi 2.164 (0.500)
hq,Russia 0.101 (0.083)
hq,ROW 1.640 (0.274)
hc,US -0.203 (0.125)
hc,Japan -0.273 (0.154)
hc,Europe -0.208 (0.141)
hc,ROW 1.029 (0.239)
ϕv -0.294 (0.053)
σv 2.462 (0.295)

γq,US 2.234 (1.555)
γq,Saudi 0.227 (0.175)
γq,Russia 0.014 (0.026)
γq,ROW 0.314 (0.288)
γc,US 1.460 (0.455)
γc,Japan 1.567 (0.495)
γc,Europe 2.090 (0.548)
γc,ROW 1.113 (0.388)
α 1.930 (0.122)
ϕq 0.069 (0.020)
ϕc -0.155 (0.039)
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