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ABSTRACT

A recent paper by Kilian and Zhou (2019) mischaracterizes our 2019 paper in American

Economic Review and much of the related literature. They misstate our contribution to

the literature on identification, mischaracterize the role of prior information about supply

elasticity in our analysis, inaccurately describe the relation between structural elasticities and

the impacts of shocks, and mischaracterize the literature on supply elasticity. Our purpose

in this paper is to set the record straight.
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1 Introduction.

Kilian and Zhou (2019) (hereafter KZ) offer a critique of Baumeister and Hamilton (2019)

(hereafter BH). KZ’s critique is so inaccurate, both in broad substance and in specific details,

that we hardly recognize our paper in their description. Section 2 of this paper begins with

a summary of what BH actually did. Section 3 clarifies the differences between our approach

and that in Kilian and Murphy (2014). Section 4 reviews the many inaccuracies in KZ.

These include a mischaracterization of the relation between structural elasticities and the

impact of shocks, misrepresentation of the flexibility of our approach, mischaracterization of

the literature on measuring supply elasticity and global real economic activity, and misleading

statements about loss functions.

2 The core contribution of Baumeister and Hamilton

(2019).

We stated our main purpose in writing BH in the paper’s abstract:

Traditional approaches to structural vector autoregressions can be viewed as special

cases of Bayesian inference arising from very strong prior beliefs. These methods

can be generalized with a less restrictive formulation that incorporates uncertainty

about the identifying assumptions themselves. We use this approach to revisit the

importance of shocks to oil supply and demand.

To demonstrate the claim in the first sentence, we used two examples taken from the literature

on oil supply and demand. The first example was the model in Kilian (2009). This used a

3-variable vector autoregression based on world oil production, a measure of world economic

activity, and the real price of oil. Kilian gave this VAR a structural interpretation by using a

Cholesky identification strategy, in which the first equation was interpreted as the oil supply

curve. Though his analysis was entirely frequentist, BH showed that Kilian’s approach could

be viewed as a special case of Bayesian inference. The prior distribution associated with

this Bayesian interpretation assumes that the analyst knows with certainty before seeing the

data that supply has zero response on impact to the price, but has no useful information at

all about the response of demand to price. We showed that Kilian’s (2009) results could

be replicated exactly with a Bayesian analysis using these particular prior distributions to

represent the researcher’s beliefs before seeing the data.

The second example we used was the model in Kilian and Murphy (2012), which was based

on the same 3-variable VAR. In this case, Kilian andMurphy’s (2012) structural interpretation

came from restrictions on the signs and magnitudes of certain effects. Again although Kilian

and Murphy did not describe theirs as a Bayesian approach, BH showed that their results

2



could again be reproduced as a special case of Bayesian inference. A key component of the

prior distribution implicit in Kilian and Murphy’s analysis was that the Bayesian knows with

certainty before seeing the data that the short-run supply elasticity could not be larger than

0.0258.

BH followed these demonstrations with a section titled, “Do we really know for certain

that the oil supply elasticity is less than 0.0258?” After reviewing the literature, we concluded

that the answer is no — a more reasonable analysis would acknowledge some possibility that

this parameter could be larger than 0.0258. The next section was titled, “Do we really

know nothing about the elasticity of demand?” After reviewing the literature, we concluded

that the answer was again no — we have good reason to believe that the short-run demand

elasticity, like the short-run supply elasticity, is small. We suggested that the traditional

approach to identification — for example, assuming we know the supply elasticity perfectly but

know nothing about demand — could be replaced by a Bayesian approach in which the analyst

has weak but imperfect information about both supply and demand, with this information

represented in the form of probability distributions. If the information is very good, the prior

distribution has a small variance. Achieving identification by imposing a particular value

for the supply elasticity is a special case of Bayesian analysis as the variance of the prior

distribution goes to zero. If the information is weak, the prior distribution has a very large

variance, and posterior credibility sets will be very large, accurately conveying the researcher’s

doubts about the identifying assumptions themselves.

We illustrated how this could be done using a 4-variable VAR. Our baseline model assumed

that the analyst had weak, but far from perfect, information that both supply and demand

elasticities were likely small. We treated the prior information about these two magnitudes in

exactly the same way. For the supply elasticity, we used a Student t distribution with location

parameter 0.1, scale parameter 0.2, and 3 degrees of freedom, truncated to be positive. For

the demand elasticity, we used a Student t distribution with location parameter −0.1, scale

parameter 0.2, and 3 degrees of freedom, truncated to be negative.

KZ focus in detail on the prior distribution used by BH for the short-run supply elasticity.

KZ claim that this distribution “really amounts to imposing positive probability mass on

elasticity values larger than can be supported by extraneous evidence” (page 11) and that

BH’s conclusions result mainly from “the imposition of a highly unrealistic prior for the impact

price elasticity of oil supply” (page 19). KZ plot this truncated Student t distribution in their

Figure 2 and add annotations purporting to show the inconsistency between this distribution

and previous point estimates from the literature. We reproduce that distribution in the

dashed black curve in our Figure 1.

KZ say very little about the fact that BH also repeated the analysis with a prior for the

supply elasticity designed to tilt very strongly in favor of the upper bound of 0.0258 that was

imposed by Kilian and Murphy (2012, 2014). This prior distribution assigns 80% probability
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to the elasticity being uniform over (0, 0.0258) and 20% to the truncated Student t(0.1,0.2,3).

This distribution is plotted as the solid red curve in Figure 1. The mixture distribution has

a median at 0.0158 and assigns an 81% probability that the value is less than 0.0258. BH

reported how various details of our conclusions would be affected if we replaced the dashed

black prior distribution with the solid red. Those details are reproduced in Table 1 below.

None of our results change if we replace the Student t prior with the mixture prior.

All this was reported in BH. There we also explained the mathematics for why the results

in the two columns of Table 1 are so similar:

The Bayesian posterior distribution is a weighted average of the likelihood, with

weights given by the prior density. If the prior density has a very large variance,

the weights are approximately uniform over the range for which the likelihood has

nonnegligible mass, and the posterior is essentially the same as the likelihood, with

the prior exerting no influence on the posterior.

BH developed this point both algebraically and numerically. At no point do KZ challenge any

of this mathematical analysis. Their claim that our results come mainly from “imposition

of a prior on the impact price elasticity of global oil supply that attaches unrealistically large

probability mass to high elasticity values” (page 2) is simply false.

KZ use the word “impose” in connection with use of a prior 43 different times in their

paper. This expression is misleading and misguided. Prior information is something that is

used, not imposed. How much influence the prior information has depends primarily on the

variance of the prior. If the variance is large, the researcher is honestly saying that he or she

has essentially no confidence in the information, and using that information has essentially no

effect. It is inaccurate to describe something that has no effect on the inference as “imposing”

some prior information.

The standard deviation of the truncated Student t(0.1,0.2,3) distribution is 0.25. As

shown in detail in BH, this large variance means that the prior does not significantly distort

the information in the likelihood. There is no sense in which this distribution imposes a value

for the short-run supply elasticity that is bigger than 0.0258. Instead, what this distribution

does is allow the possibility that the value could be bigger than 0.0258. By contrast, the

U(0, 0.0258) implicit prior in Kilian and Murphy (2012) has a standard deviation of only

0.0074. The tiny variance and dogmatic upper bound causes the prior used by Kilian and

Murphy to have a huge influence on their results. We elaborate more on this point in the

next section.
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3 Differences between Baumeister and Hamilton (2019)

and Kilian and Murphy (2014).

BH used Kilian (2009) and Kilian and Murphy (2012) (hereafter KM12) to illustrate how

traditional approaches to identification can be viewed as special cases of Bayesian inference.

KZ criticize BH for using KM12 for this illustration instead of using Kilian and Murphy (2014)

(hereafter KM14). BH chose to use KM12 instead of KM14 because KM12 provides a clearer

illustration of the methodological points we wanted to make. However, it is straightforward

to address KZ’s request for more discussion of the relation between our analysis and that in

KM14. We do so now.

KM14, like KM12, imposed the condition that the supply elasticity has to be below 0.0258.

The simplest way to demonstrate the role this plays in KM14’s conclusions is to start from

exactly KM14’s specification — their model, their data, their algorithm exactly. Running the

code publicly posted at the Journal of Applied Econometrics data archive generates 5 million

draws for the vector of possible parameters.1 Their algorithm then rules out various draws

based on a long list of criteria. The end result of running the code is that only 16 of the

original 5 million draws remain at the end of the selection process. In the upper left panel

of Figure 2, we plot the histogram2 of the short-run supply elasticity implied by this set of 16

accepted draws.

In the section of BH titled, “Do we really know for sure that the oil supply elasticity is less

than 0.0258?” we noted that KM12 obtained the value of 0.0258 by dividing the increase in oil

production in countries other than Iraq and Kuwait in August of 1990 (1.17%) by the increase

in oil price in August of 1990 (45.3%); that is, 0.0258 = 1.17/45.3. We then called attention

to Caldara, Cavallo and Iacoviello’s (2019) (hereafter CCI) observation that a primary reason

that the increase outside of Iraq and Kuwait was as small as it was (1.17%) was because of the

19.5% cut from United Arab Emirates. CCI concluded from a careful analysis of statements

and newspaper articles that this cut was a response to fear of military action from Iraq if

U.A.E. had not immediately cut its production. In August 1990, the increase in production

from countries other than Iraq, Kuwait and U.A.E. was 1.95%. If we used the response

of countries other than Iraq, Kuwait, and U.A.E., instead of KM12’s use of the response of

countries other than Iraq and Kuwait, we would have arrived at an estimated short-run supply

elasticity for this episode of 1.95/45.3 = 0.043. Zhou (2020) proposes to use 0.04 as the upper

bound, and that number is now treated at various points in KZ as perfectly plausible.

The upper right panel of Figure 2 reruns the KM14 code with a single change — the upper

bound of 0.0258 is replaced by 0.043. We made no changes in their code other than this.

1The KM14 original code and our results from running it are available at
http://econweb.ucsd.edu/~jhamilton/BH4_code.zip.

2All histograms shown here are plotted as densities, that is, the area under each histogram is exactly unity.
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Now 59 of the 5 million draws get retained.

Returning to the original discussion in BH, we continued:

Caldara, Cavallo and Iacoviello further noted that August 1990 was but one of

dozens of historical episodes like this that could have been used for such calcula-

tions. Other examples include strikes by Norwegian oil workers in 1986, attacks

on Libyan oil fields in 2011, and hurricanes disrupting Mexican production in 1995

and U.S. production in 2005 and 2008.

CCI used this broad set of disruptions as instrumental variables to arrive at an estimate of the

short-run supply elasticity of 0.081. KZ adopt the odd rhetorical device of using any point

estimate as if it represents an upper bound on the possible value. But their formal claim

from a Bayesian perspective is that there is zero possibility that the elasticity could be larger

than some specified value x. Their response to any new evidence is, well, perhaps x may be a

larger value than we originally supposed. The CCI estimate of 0.081 has a standard error of

0.037. If one were constructing a true upper bound based on this evidence alone, the upper

bound would not be 0.081 but something like 0.081 + (2)(0.037) = 0.155. The lower left

panel of Figure 2 reruns the KM14 code with 0.155 as the upper bound. There are now 1175

retained draws.

Associated with each of the 16 values in the histogram in the upper left panel of Figure 2

is a parameter vector that implies a value for any other magnitude of interest. For example,

the upper left panel of Figure 3 summarizes the 16 implied values for the demand elasticity

as calculated by KM14.3

A fundamental question is how we are supposed to interpret the 16 different draws in the

upper left panels of these figures. By construction, each of these draws is perfectly consistent

with all the observed data and with all the specified restrictions. As noted by Baumeister

and Hamilton (2015, 2018), unless the researcher has some prior information in addition to

the restrictions themselves — and KM did not present their results as having relied on any

such information — then all that the researcher has any basis reporting is what is referred to

in the literature as the identified set, which is the set of all possible admissible values. The

identified set by definition is larger than the full set of 16 numbers in the upper left panel.

These 16 numbers are just random examples of some of the values that are included in the

identified set. If we ran the code again with a larger number of draws or with a different

random number seed, we would obtain a different set of retained draws.

3Astute readers may note that there are some observations in the lower left panel below −0.8, despite the
statement in KM14 on page 462 that they imposed the bound that the demand elasticity had to be above −0.8.
It turns out that this bound is not written into the code they posted on the Journal of Applied Econometrics

data archive, and we used this code verbatim (changing only the supply elasticity bound to 0.155) to generate
our Figure 3. Whether the code includes the bound is irrelevant for the upper left panel, because none of the
16 draws that pass all of KM14’s other restrictions would have implied a demand elasticity below −0.8.
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To plot impulse-response functions in their papers, KM would select one of the retained

draws as if it could represent the set of all retained draws. KM12 (page 1179) made this

choice based on the draw that implied the largest response of oil price to an oil supply shock:

For expository purposes we choose the model with the largest response of the real

price to oil supply shocks in Figure 1(b).

KM14 (page 464) based the choice on the implied elasticity of oil demand “in use”:

Solid lines indicate the impulse response estimates for the model with an impact

price elasticity of oil demand in use closest to the posterior median of that elasticity

among the admissible structural models obtained conditional on the least-squares

estimate of the reduced-form VAR model.

Zhou (2020) described yet a third way to choose a representative draw, and astonishingly

asserted that this is in fact what KM14 did:

Kilian and Murphy (2014) relied on narrative inequality restrictions for selecting

the most credible model among the set of model solutions that satisfy the sign

restrictions on the impulse responses (see also Kilian and Lee (2014)). I incor-

porate these narrative restrictions into the estimation of the model rather than

imposing them based on the visual inspection of the historical decomposition of

the admissible models as in Kilian and Murphy (2014).

KZ in footnote 1 repeat this reference to “narrative sign restrictions on the historical decompo-

sition of the real price of oil utilized by Kilian and Murphy (2014).” The expression “narrative

sign restrictions” appears nowhere in either KM14 or in Kilian and Lee (2014). That expres-

sion was first used by Antolín-Díaz and Rubio-Ramírez (2018), and nothing resembling their

method was implemented anywhere in KM14. Zhou (2020) and KZ seem to be using the

expression to refer to some unspecified procedure for selecting which one of the 16 retained

draws is regarded as representative.

We suggest that the most accurate interpretation of the procedure that KM14 used is

obtained by running the code that the authors publicly posted in the Journal of Applied

Econometrics data archive. If the authors today have some different ideas about what the

procedure is supposed to be, that has nowhere been formally explained. The publicly posted

code has a particular algorithm for selecting the curves to be plotted (namely, the procedure

described in the quote from KM14 above). The seed for the random number generator in

their posted code is 316. The red dotted lines in our Figure 4 summarize the effects of what

KM14 call a speculative demand shock on their measure of real economic activity and on the

real price of oil running this code as posted. These reproduce the graphs shown in Figure 1

of KM14.
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As discussed in detail by Baumeister and Hamilton (2020), when the publicly posted code

is rerun with a random number generator of 613 instead of 316, the result is the blue solid

lines in our Figure 4. The estimates imply completely different policy conclusions. This

exercise illustrates: (1) the problems with trying to summarize the set of retained draws with

a single “representative” point; (2) the practical difficulties with trying to base conclusions

on only a small number of retained draws; and (3) the value of bringing in formal statistical

decision theory for purposes of summarizing the posterior distribution.

The red line in the lower right panel of Figure 2 reproduces the BH mixture prior for

the supply elasticity from Figure 1. This panel also shows the posterior distribution (blue

histogram) that results from using that prior. In this case, the histogram is based on 1 million

generated draws (in contrast to the sets of 16 to 1175 points in the other three panels). And in

contrast to the other three panels, the probability distribution associated with this histogram

is a well defined object of interest, namely, it is the Bayesian posterior distribution that results

from using a clearly articulated and defended prior distribution. The distribution in the lower

right panel summarizes uncertainty about parameters after we combine uncertain identifying

assumptions with observed data. The uncertainty associated with this distribution accurately

reflects both sampling error (we have only observed a finite sample of observed data) and also

uncertainty about the identifying assumptions themselves. In this case, the researcher had a

strong prior belief that the supply elasticity was below 0.0258, but recognized some possibility

that it could be higher. Having seen the data, the researcher significantly revises upward the

possibility of a higher supply elasticity.

To summarize, KZ have the facts exactly backward. The reason that the supply elasticity

in the KM14 analysis is so low is only because they forced this answer on the data. The reason

that BH concluded that the elasticity was larger than 0.0258 was not because we forced this

answer on the data, but because we allowed this answer. Any procedure that allows the

possibility that the supply elasticity exceeds 0.0258 — whether our Bayesian approach, or, as

seen in the second and third panels of Figure 2, even the exact algorithm implemented by

KM14 — will end up concluding that it is above 0.0258.

4 The multiple inaccuracies in Kilian and Zhou (2019).

We have documented that KZ missed the main point of BH. KZ are moreover inaccurate in

their discussion of virtually every detail. Here we highlight a number of examples.

4.1 Mischaracterization of structural elasticities.

KM12 and KM14 made a conceptual error in the way they calculate elasticities, an error that

KZ curiously try to turn into a criticism of BH. Their error was in thinking that an elasticity
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can be inferred from a single column of the matrix of impacts of structural shocks. This

would be correct in a 2-variable system but in general is incorrect when there are more than

two variables. This error has been repeated by other studies that followed KM’s example,

including Ludvigson, Ma, and Ng (2017), Antolín-Díaz and Rubio-Ramírez (2018), Herrera

and Rangaraju (2020), and Zhou (2020), among others.

Baumeister and Hamilton (2020) explained the nature of this error using a 3-equation

system consisting of the log of quantity (qt), the log of income (yt), and the log of price (pt),

qt = γyt + αpt + u
s
t

yt = ξqt + ψpt + u
y
t

qt = δyt + βpt + u
d
t .

These are interpreted as the supply equation, the income equation, and the demand equation,

respectively. The meaning of the parameter β (the demand price elasticity) is the answer to

the question: if price were to increase by 1% with income held constant, by how much would

quantity demanded change?

This is an example of a structural model of the form Ayt = ut. The impacts of the

structural shocks on the observed variables are given by

H =
∂yt
∂u′t

= A−1 (1)

= |A|−1





−β − δψ αδ − βγ α+ γψ

−ψ − βξ α− β ψ + αξ

δξ − 1 δ − γ 1− γξ




 .

The error made by KM12 and the papers that followed them is to think that an object like

the demand elasticity β can be inferred from the ratio of the change in qt to the change in pt

in response to a shock to supply ust :

h11
h31

=
−β − δψ

δξ − 1
. (2)

As Baumeister and Hamilton (2020) discussed in detail, in general expression (2) is not the

demand elasticity β, but instead represents a combination of the response of oil demand to

price (β) and income (δ).

When KM14 calculated the demand elasticity in their 4-variable model, they used an

incorrect expression like (2). Interestingly, to calculate the supply elasticity they used two

different expressions, both of which are incorrect. They treated h12/h32 and h13/h33 as though

either could be regarded as the supply elasticity, even though the two numbers differ from
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each other and neither corresponds to the true value α.4

KZ add more confusion to this issue by suggesting that the existence of inventories adds

further complications to estimating elasticities that are not taken into account by BH. They

claim for example on page 5: “BH use an incorrect definition of the oil demand elasticity that

ignores the storability of crude oil.” One question they seem to be raising here is whether or

not we want to include the response of inventory demand to a change in price. KM14 prefer

to use a measure that excludes this response, which they call the elasticity of demand in use.

They define this concept on page 478:

A more appropriate definition of the price elasticity of oil demand for policy ques-

tions is the elasticity in use. The latter demand elasticity is based on the change

in the use of oil, defined as the sum of the change in oil production and of the

depletion of oil inventories.

Let Qt denote the level of oil production in month t and I∗t the true level of inventories.

KM14 would then define the level of oil consumed as Ut = Qt −∆I
∗

t . Consider equation (29)

in BH:

qt = βqyyt + βqppt +∆i
∗

t + b
′

3xt−1 + u
∗

3t. (3)

Using the BH definitions qt = log(Qt)− log(Qt−1) and ∆i
∗

t = ∆I
∗

t /Qt−1, this equation can be

rewritten

logQt − logQt−1 = βqyyt + βqppt +∆I
∗

t /Qt−1 + b
′

3xt−1 + u
∗

3t.

Given the small size of monthly production changes, the left-hand side is very well approxi-

mated by (Qt −Qt−1)/Qt−1. Rearranging gives

Ut/Qt−1 −Qt−1/Qt−1 = βqyyt + βqppt + b
′

3xt−1 + u
∗

3t.

Since the monthly change in inventories ∆I∗t is on average a small fraction of total monthly

production, the left-hand side of this equation is in turn well approximated by

Ut/Qt−1 −Qt−1/Qt−1 ≃ (Ut − Ut−1)/Ut−1 ≃ ut

for ut = log(Ut)− log(Ut−1) the growth rate of oil in use as defined by KM14. Thus the BH

equation (3) is an excellent approximation to

ut = βqyyt + βqppt + b
′

3xt−1 + u
∗

3t.

The parameter βqp, for which our approach provides the optimal inference, is thus the mag-

nitude in which KM14 claimed we should be interested, namely, the price elasticity of oil

4Their code rejects a draw if either of the two ratios is bigger than 0.0258. For more discussion see
Baumeister and Hamilton (2020).
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demand in use.

By contrast, KM14 calculated their estimate of this magnitude for month t as

ηUset = h−131
h11Qt−1 − h41

Qt−1 −∆I
.

where (h11, h21, h31, h41)
′ is the first column of A−1 (that is, the effect on impact of a shock to

oil supply on production, economic activity, price, and inventories). They then averaged ηUset

over all months t. This estimate is subject to the problems we noted above with claiming to

infer a structural parameter from a single column ofA−1, along with many other shortcomings.

How could anyone claim that this is a better measure than the one we used? KZ nevertheless

summarize this issue with their usual colorful language on page 6: “The only reason for BH

to insist on using the wrong definition of the oil demand elasticity is that their econometric

method ... cannot be applied to oil market models subject to restrictions on the correctly

defined elasticity.” Had we for some reason wanted to incorporate prior information about

certain ratios of elements of A−1, we would have done so using exactly the method that we

detailed on pages 1894-1895.

Even more odd is KZ’s insistence that one cannot talk about demand elasticity at all in a

model that does not explicitly include inventories. They claim on page 6 that “the coefficients

in the 3-variable models of Kilian (2009) and Kilian and Murphy (2012) are complicated

transformations of the structural coefficients in the 4-variable Kilian andMurphy (2014) model,

from which the oil demand elasticity value cannot be extracted.” Consider the inventory

demand equation (30) in BH:

∆i∗t = ψ
∗

1qt + ψ
∗

2yt + ψ
∗

3pt + b
∗′

4 xt−1 + u
∗

4t. (4)

Substituting equation (4) into equation (3) results in

qt = βqyyt + βqppt + ψ
∗

1qt + ψ
∗

2yt + ψ
∗

3pt + b
∗′

4 xt−1 + u
∗

4t + b
′

3xt−1 + u
∗

3t.

Rearranging,

qt = β̃qyyt + β̃qppt + b̃
′

4xt−1 + ũ3t.

where β̃qp = (βqp + ψ
∗

3)/(1 − ψ
∗

1). This is exactly the form of the demand equation in a 3-

variable system that excludes inventories. The meaning of the elasticity β̃qp in this equation

is

β̃qp = (1− ψ
∗

1)
−1

�
∂(qt −∆i

∗

t )

∂pt
+
∂∆i∗t
∂pt

�
.

Thus β̃qp is the price elasticity of the total demand for oil (consumption plus inventories).

It represents a combined response of “demand in use” (Qt −∆I
∗

t ), inventory demand (∆I∗t ),

and any potential multiplier effect coming from a response ψ∗1 of inventory demand to total
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oil consumption. BH noted that a Bayesian interpretation of KM12’s analysis would imply

a 60% probability that β̃qp is less than −2, i.e., that a 10% increase in price results in a 20%

drop in total demand for oil within the month. A Bayesian interpretation of Kilian’s (2009)

analysis implies a nonneglible posterior probability that a 10% increase in price results in a

50% increase in the total demand for oil within the month. Our conclusion from this exercise

was that we should relax the strong restrictions about supply that were used by Kilian (2009)

and KM12 to achieve identification, but supplement this weaker information with additional

weak information about other aspects of the model.

Nothing in KZ undermines that conclusion in the slightest.

4.2 Mischaracterizations about the flexibility of BH.

KZ claim on page 5:

applying the BHmethodology to state-of-the-art oil market models ... is impossible

because imposing priors on the price elasticity of oil demand requires simultaneous

restrictions on multiple elements of B−10 [A−1 in the notation of BH]. This violates

the default assumption of prior independence across the elements of B0 in BH’s

analysis.

In point of fact, prior independence across the elements of A is not a default assumption and

is in no way required by our analysis. Quoting from Baumeister and Hamilton (2018, page

48), “the resulting prior p(A) is no longer independent across the individual elements of A,

but includes some joint information about their interaction.” Simultaneous restrictions on

multiple elements of A−1 feature prominently in the baseline analysis of both BH (equations

(41) and (42)) and Baumeister and Hamilton (2018, equations (27)-(30)).

KZ further claim on page 3:

Bayesian priors used in estimating sign-identified models ... may be inadvertently

informative about B−10 .... BH’s response to this concern is to recommend that

researchers instead impose explicit priors for the elements of B0 with the diagonal

elements normalized to one.

No. Our response to this concern is to recommend that researchers use information about

both A and A−1 to inform a fully specified structural model, as we did in both BH and

Baumeister and Hamilton (2018).

4.3 Mischaracterizations about the motivations of BH.

A commonly repeated tactic of KZ is to make up an alleged motive or hidden agenda behind

some detail in BH and then try to impugn our analysis on the basis of this invented motivation.

For example, they write on page 11:
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their results are not driven by the use of an informative prior ... but by shifting

this prior in the direction of unrealistically large supply elasticity values. Why

would BH do that? Hamilton for many years has been advocating the position

that oil supply shocks have been the main driver of oil price fluctuations.... Thus, it

stands to reason that BH understood the importance of increasing the value of this

elasticity in their effort to undermine existing evidence that oil demand shocks are

the main driver of oil price fluctuations. They accomplished this objective mainly

by imposing prior information on the distribution of the prior probability mass

that reflects their personal beliefs rather than extraneous information.

Well, for starters, whether we use the prior distribution that is plotted as the dashed black

line in Figure 1 or the prior distribution that is plotted as the solid red line has zero effect on

the portion of price movements accounted for by supply shocks, as seen in rows 6-9 of Table 1.

Whatever our reason for proposing the dashed black line in Figure 1 as a reasonable prior, it

can not be because we wanted to “undermine existing evidence that oil demand shocks are the

main driver of oil price fluctuations.” We are moreover unaware of any monotonic mapping,

such as the one implied by this quote from KZ, between specified elements of the prior and

various objects of potential interest to researchers in complicated models like this.

Another example of this unfortunate debate tactic appears on page 2: “their choice of

econometric method ... is designed to inflate the effects of oil supply shocks and to reduce

the effect of oil demand shocks.” KZ are quite mistaken in the objective they attribute to

us in writing the paper. Our primary purpose in writing the paper was to discuss structural

interpretation of VARs with incomplete identification. We used oil supply and demand as a

way to illustrate this theme, not as the primary reason for writing the paper. That is why we

chose the title for BH that we did, why we wrote the abstract to BH that we did, and why we

chose the title for the current paper that we did. BH was primarily about structural inference

with incomplete identification. The initial response of the editor was that the paper had

too much methodology, and we should highlight more the differences between our empirical

results and some other results in the literature. In response to this request, we added and

emphasized empirical results more in the version that was ultimately published. Much of

what KZ suggest was our “real reason” for writing the paper did not even appear in the first

draft!

4.4 Mischaracterizations of the literature on the supply elasticity.

Our understanding of the results of several papers on supply elasticity differs from that in KZ.

They offer on page 15 the following interpretation of the conclusions of Bjørnland, Nordvik

and Rohrer (2019): “It should be noted that in the May 2019 version of the Bjørnland et

al. study the corresponding supply elasticity for conventional oil is only 0.03 (and again not

13



statistically significant), while the supply elasticity for shale oil is -0.12 (which actually is the

wrong sign).” These words from KZ are intended to summarize the results from the following

regression (standard errors in parentheses):

∆qit = −0.36
(0.005)

∆qi,t−1 + 0.03
(0.01)

∆qi,t−1si + 0.03
(0.05)

∆pt − 0.15
(0.05)

∆ptsi

+ 0.07
(0.20)

(∆pt −∆ft,t+3) + 0.76
(0.27)

(∆pt −∆ft,t+3)si +Xt + λy + µi + ρi,t + eit.

Here qit is the log of production from well i in month t, pt is the log of the price of crude

oil in month t, si = 1 if well i is in the shale region and 0 otherwise, ∆ft,t+3 = log(Ft,t+3) −

log(Ft−1,t+2) is the percent change in the price of a 3-month-ahead futures contract in month

t, Xt captures effects of a set of macroeconomic control variables, λy captures year fixed

effects, µi captures well fixed effects, and ρi,t captures fixed effects based on the age of well

i in month t. When KZ say that this regression implies a supply elasticity of 0.03 they are

looking only at the coefficient on ∆pt. This corresponds to the answer to the question, how

much does production of a conventional well change in response to an increase in the current

price that is exactly matched by an increase in the futures price (in other words, assuming

that ∆pt −∆ft,t+3 = 0)? But the striking feature of this regression, and indeed the focus of

Bjørnland et al.’s paper, is the large coefficient on ∆pt − ∆ft,t+3. This large and dramatic

response to a temporary change in price, especially for shale wells, is a direct challenge to the

conclusion of Anderson, Kellogg, and Salant (2018). Here is how Bjørnland and coauthors

summarized their findings in the abstract to their paper: “While output from conventional

wells appear non-responsive to price fluctuations in the short-term, we find supply elasticity

to be positive and in the range of 0.3-0.9 for shale oil wells, depending on wells and firms

characteristics.”

KZ dismiss Bjørnland et al.’s findings on the grounds that they only refer to North Dakota,

and likewise dismiss the observation of BH that production of Saudi Arabia has exhibited

huge, rapid adjustments to changing demand conditions on the grounds that this refers only

to Saudi Arabia. KZ instead highlight the findings of Anderson, Kellogg and Salant (2018),

even though this study used only wells in Texas. In the regression reported in the online

appendix to Anderson et al., the coefficient relating the change in the log of production of

Texas well i in month t to the month t change in the log of the front-month futures price is

0.083 with a standard error of 0.036. Thus if KZ had reported the results of Anderson et al.

following the same principle they used to summarize the Bjørnland et al. findings, they would

have said that the Anderson et al. estimate of the elasticity is 0.083, not zero. It is only when

Anderson et al. added together the coefficient on the current month’s price change with the

coefficient on the previous month’s price change that they arrived at a coefficient near zero

(namely 0.0009 with a standard error of 0.034).

In our view, the best estimate of the global within-month supply elasticity is the Caldara,
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Cavallo, and Iacoviello (2019) instrumental-variables estimate of 0.081 with a standard error

of 0.037 that we described in Section 3. Their proposal was that exogenous shifts in supply of

countries other than Saudi Arabia — for example, hurricanes in the Gulf of Mexico or a strike

by Norwegian oil workers — could be used as an instrument for how Saudi Arabia responds

to changes in price. Aggregating across countries, they looked at the combined response of

all countries not directly involved in the shock to the price change associated with the shock.

KZ dismiss their evidence on page 14 with the assertion that “we need an exogenous shift in

the oil demand curve to identify the oil supply elasticity, not an exogenous shift in oil supply.”

This makes no sense. From the perspective of an individual producer, the incentives are the

same whether the price has increased because of higher demand or because of reduced supply

somewhere else. Indeed, the CCI approach is just a generalization and extension of the

method by which KM12 obtained their estimate of 0.0258 based on the response of countries

other than Iraq and Kuwait to the oil price increase in August 1990 when Iraq invaded Kuwait.

The main difference is that CCI want to perform this IV regression with a sample size of 29

observations while KM12 do the regression with a sample size of one.

Note moreover that CCI found that most of this supply response in these episodes comes

from OPEC, and especially Saudi Arabia. CCI’s estimates are in fact perfectly consistent

with the conclusion of Anderson et al. (2019) that the short-run response of U.S. supply to

the current price may be more modest.

Even more fundamentally, KZ’s entire discussion of the literature on the supply elasticity

avoids addressing the core question. The question is not, “what is the best estimate of the

short-run supply elasticity?” Rather, the question they need to answer in order to defend

a prior of the form used by KM12 and KM14 is, “what is the value of x such that we are

100% certain the short-run elasticity could be no larger than x?” They do not emerge from

their discussion of the literature with a proposed value for x to replace KM’s insistence that

x = 0.0258. The reason is that the literature is not amenable to summarizing in terms of

any particular value for x. KZ mention standard errors of a particular study only when the

standard error suggests the value could be zero, without noting that the same logic implies

the elasticity could also be larger than x. Perhaps the best they could defend is the position

on page 18 that we should use a “prior distribution for the supply elasticity that reaches its

maximum at zero.” Note that this is exactly what the solid red curve in Figure 1 does.

4.5 Mischaracterizations of the literature on measuring global eco-

nomic activity.

KZ claim on page 7 “BH substitute an arguably inferior measure of global real activity for

the standard measure based on Kilian (2009).” Hamilton (forthcoming) outlined a number of

reasons why the Kilian measure should not be used. KZ respond only to one of these in their
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footnote 3, where they note that Kilian (2019) has now corrected the mathematical error that

was discovered by Hamilton (forthcoming) in the index that was used by Kilian and Zhou

(2018). Nowhere do KZ address the many other concerns raised by Hamilton (forthcoming).

(1) Both the original index used by Kilian and Zhou (2018) and the corrected index proposed

by Kilian (2019) imply that the cyclical component of world real economic activity reached a

lower point in 2016 than during the financial crisis or for that matter any historical recession.

(2) The cyclical component of BH’s measure of global economic activity has a correlation with

annual real GDP growth of 0.88, whereas the measures used by Kilian and Zhou (2018) and

Kilian (2019) have a correlation of 0.10, not statistically significantly different from zero. (3)

The Kilian and Zhou (2018) measure does not make a statistically significant contribution to

forecasting the price of any commodity. The Kilian (2019) measure does only slightly better.

By contrast, the BH measure is significantly helpful for forecasting almost every commodity.5

(4) The Kilian and Zhou (2018) and Kilian (2019) measures assume that there is a linear time

trend in their respective measures of real shipping costs. This assumption is inconsistent with

the observed data based on the tests reported in Hamilton (forthcoming).

On page 8, KZ criticize BH for addressing measurement error in inventories but not in

world economic activity with their usual tactic: “The apparent reason that BH choose to

focus on measurement error in oil inventories exclusively is that they seek to lower the role for

storage demand shocks and increase the role of oil supply shocks in their model.” We note

that KM14 have a section titled “How Accurate Are the Oil Inventory Data?” but no section

titled “How Accurate Is the Proxy for Real Economic Activity?”. For our part, BH explained

on page 1888 why we focused on the quality of the inventory proxy:

(i) there are no data on OECD crude oil inventories, and so the series is extrap-

olated from OECD petroleum product inventories; (ii) there are no data even for

OECD product inventories before 1988, requiring numbers for this earlier period

to be further extrapolated from the growth rate of U.S. petroleum product inven-

tories; (iii) OECD petroleum product consumption only accounts for 60% of world

petroleum product consumption on average over 1992-2015, so even if we had an

accurate measure of OECD crude inventories, it likely represents little more than

half of the world total.

KZ further criticize the absence of serial correlation in our representation of measurement

error, stating on page 8, “BH take the view that any arbitrary measurement error specification

is better than none. It is not clear what the basis of that view is.” The basis for this view is

5Baumeister, Korobilis and Lee (2020) found that the apparent usefulness of the Kilian index for purposes
of forecasting the refiner acquisition cost of crude oil over 1992-2010 does not hold up over later data or for
alternative measures of crude oil prices such as Brent. They found that the world industrial production index
used by Baumeister and Hamilton (2019) does far better.
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that the absence of measurement error is a special case of the model we estimate, the special

case being when the variance of the measurement error is zero.

4.6 Mischaracterizations about the loss function.

KZ write on pages 4 and 5 that the Bayesian inference in BH is “optimal only conditional

on their particular choice of the loss function.... If we do not accept that loss function, the

median response functions reported by BH are economically and statistically meaningless.”

The loss function we use is quite standard. But the logical jump from “not optimal” to

“meaningless” leaps over quite a chasm. For example, with a loss function based on minimizing

the absolute value of deviations (the one we favor and that in fact is conventionally employed),

the optimal estimate is the posterior median. On the other hand, if the loss function is based

on minimizing a quadratic function defined jointly over the full vector of impulse responses,

the optimal estimate is the pointwise posterior mean (see Baumeister and Hamilton, 2018,

Section 2.1). But even if one preferred the latter loss function, one would never say that the

posterior median is “meaningless.” Indeed, in practice the two estimators, the median and

the mean, are typically quite close to each other.

KZ pick up this theme again on page 9: “The Kilian and Murphy model is evaluated using

the econometric methodology of Inoue and Kilian (2013).” Inoue and Kilian never wrote down

an explicit loss function that would motivate their procedure. The implicit loss function that

would motivate their approach assumes zero loss if one gets every detail of the model exactly

right and unit loss otherwise, regardless of how close or far from the truth the estimate is.

Baumeister and Hamilton (2018) discussed why we prefer our approach to that in Inoue and

Kilian. These issues aside, note that Inoue and Kilian wrote on page 11, “Our approach in

this paper is explicitly Bayesian in nature.” To calculate a Bayesian posterior distribution

you need to start with a Bayesian prior distribution. But a Bayesian prior distribution over

the structural parameters is nowhere even mentioned, let alone defended, in either KM14 or

Zhou (2020). As we noted in Section 3, in the absence of such a prior distribution, there is

no meaning to the probability distributions represented by the histograms in the first three

panels of Figure 2, and no justification for applying the Inoue-Kilian procedure, or any other

loss function, to these histograms as if they represented a Bayesian posterior distribution.

Moreover, it is immediately clear from Figure 4 that there exists no loss function whatever

according to which the code posted by KM14 could be claimed to have produced an optimal

inference. If the red line in Figure 4 is “optimal,” the blue line clearly can not be.

4.7 Other mischaracterizations of BH.

There are many other inaccuracies in KZ. We mention a few of these now.
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KZ describe our approach on page 1 as “standard Bayesian estimation methods for struc-

tural VAR models (see Sims and Zha 1998).” Sims and Zha were proposing a method for

models that are completely identified. By contrast, our proposal is to use Bayesian priors in

place of conventional identifying assumptions. Such a suggestion is nowhere to be found in

Sims and Zha.

Also on page 1 KZ claim “They argue that this approach nests existing Bayesian methods

for structural VAR analysis as a special case.” No. What we claimed (and demonstrated)

was that our approach nests existing frequentist approaches to identification as special cases.

That is why the two examples we chose to illustrate this point, namely Kilian (2009) and

KM12, were frequentist, not Bayesian analyses.

Next on page 1 KZ write, “BH are also incorrect in asserting that earlier studies did not

impose all relevant identifying information.” Nowhere in BH will one find us suggesting re-

searchers should have imposed more identifying information. That is the exact opposite of

our message. Instead, our message was that identifying assumptions can be relaxed and

represented as imperfect identifying information, and that once one does so, there are bene-

fits to incorporating imperfect identifying information from a variety of sources to assist the

inference.

On page 9 KZ write, “they ignore the existence of a well-documented structural break in

these data in late 1973.” Quite the opposite: BH devoted four full pages to this question.

See pages 1896-1898 and 1906.

5 Conclusion.

Kilian and Zhou (2019) misunderstood the main contribution of Baumeister and Hamilton

(2019), which was to develop a flexible empirical framework that nests frequentist identification

strategies as a special case and that lends itself to applications in many contexts besides the

oil market. They try hard to argue that Baumeister and Hamilton (2019) did not offer a valid

or useful approach to analyzing the global oil market. Every one of their criticisms of BH is

without merit.

18



References

Anderson, Soren T., Ryan Kellogg, and Stephen W. Salant (2018). “Hotelling Under

Pressure,” Journal of Political Economy 126: 984-1026.

Antolín-Díaz, Juan, and Juan F. Rubio-Ramírez (2018). “Narrative Sign Restrictions for

SVARs," American Economic Review 108: 2802-2829.

Baumeister, Christiane, and James D. Hamilton (2015). “Sign Restrictions, Structural

Vector Autoregressions, and Useful Prior Information,” Econometrica 83: 1963-1999.

Baumeister, Christiane, and James D. Hamilton (2018). “Inference in Structural Vector

Autoregressions when the Identifying Assumptions Are Not Fully Believed: Re-evaluating the

Role of Monetary Policy in Economic Fluctuations,” Journal of Monetary Economics 100:

48-65.

Baumeister, Christiane, and James D. Hamilton (2019). “Structural Interpretation of

Vector Autoregressions with Incomplete Information: Revisiting the Role of Oil Supply and

Demand Shocks,” American Economic Review 109: 1873-1910.

Baumeister, Christiane, and James D. Hamilton (2020). “Advances in Structural Vector

Autoregressions with Imperfect Identifying Information,” working paper, UCSD.

Baumeister, Christiane, Dimitris Korobilis, and Thomas K. Lee (2020). “Energy Markets

and Global Economic Conditions,” working paper, University of Notre Dame.

Bjørnland, Hilde C., Frode Martin Nordvik, and Maximilian Rohrer (2019). “Supply

Flexibility in the Shale Patch: Evidence from North Dakota,” working paper, Norwegian

Business School.

Caldara, Dario, Michele Cavallo, and Matteo Iacoviello (2019). “Oil Price Elasticities and

Oil Price Fluctuations,” Journal of Monetary Economics 103: 1-20.4

Hamilton, James D. (forthcoming). “Measuring Global Economic Activity,” Journal of

Applied Econometrics.

Herrera, Ana Maria, and Sandeep Rangaraju (2020). “The Effect of Oil Supply Shocks

on US Economic Activity: What Have We Learned?” Journal of Applied Econometrics 35:

141-159.

Inoue, Atsushi, and Lutz Kilian (2013). “Inference on Impulse Response Functions in

Structural VAR Models,” Journal of Econometrics 177: 1-13.

Kilian, Lutz (2009). “Not All Oil Price Shocks Are Alike: Disentangling Demand and

Supply Shocks in the Crude Oil Market,” American Economic Review 99: 1053-1069.

Kilian, Lutz (2019). “Measuring Global Real Economic Activity: Do Recent Critiques

Hold Up to Scrutiny?,” Economics Letters 178: 106-110.

Kilian, Lutz, and Thomas K. Lee (2014). “Quantifying the Speculative Component in the

Real Price of Oil: The Role of Global Oil Inventories,” Journal of International Money and

Finance 42: 71-87.

19



Kilian, Lutz, and Daniel P. Murphy (2012). “Why Agnostic Sign Restrictions Are Not

Enough: Understanding the Dynamics of Oil Market VAR Models,” Journal of the European

Economic Association 10(5): 1166-1188.

Kilian, Lutz, and Daniel P. Murphy (2014). “The Role of Inventories and Speculative

Trading in the Global Market for Crude Oil,” Journal of Applied Econometrics 29: 454-478.

Kilian, Lutz, and Xiaoqing Zhou (2018). “Modeling Fluctuations in the Global Demand

for Commodities,” Journal of International Money and Finance 88: 54-78.

Kilian, Lutz, and Xiaoqing Zhou (2019). “Oil Supply Shock Redux?” Working paper.

Ludvigson, Sydney C., Sai Ma, and Serena Ng (2017). “Shock Restricted Structural Vector-

Autoregressions,” NBER Working Paper 23225.

Zhou, Xiaoqing (2020). “Refining the Workhorse Oil Market Model,” Journal of Applied

Econometrics 35: 130-140.

20



21 

 

Table 1. Comparison of results obtained using truncated Student t(0.1,0.2,3) prior with those using the 

mixture prior. 

Parameter of interest Student t Mixture 

(1) Posterior median of short-run supply elasticity 0.15 0.15 

(2) Posterior median of short-run demand elasticity -0.35 -0.35 

(3) Effect of oil supply shock that raises real oil price by 10% 

     on economic activity 12 months later 

-0.50 -0.50 

(4) Effect of oil consumption demand shock that raises real oil price by 10% 

     on economic activity 12 months later 

0.13 0.13 

(5) Effect of oil inventory demand shock that raises real price of oil by 10% 

     on economic activity 12 months later 

-0.36 -0.35 

(6) Percent of observed oil price increase during June 1990 -Oct 1990 

     attributed to oil supply shocks 

46.1% 46.4% 

(7) Percent of observed oil price increase during Jan 2007- June 2008 

     attributed to oil supply shocks 

47.1% 47.5% 

(8) Percent of observed oil price decrease during June 2014-Jan 2016 

     attributed to oil supply shocks 

38.1% 38.5% 

(9) Percent of observed oil price increase during Feb 2016-Dec 2016 

     attributed to oil supply shocks 

30.7% 31.1% 

 

Source: All numbers taken from Tables 3 and 4 in Baumeister and Hamilton (2019). 
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Figure 1. Two of the priors for short-run supply elasticity used in BH. 

 
Notes to Figure 1. Dashed black: truncated Student t(0.1,0.2,3); solid red: mixture that puts weight 80% 

on U(0,0.0258) and 20% on the truncated Student t.  

 

 

Figure 2. Distribution of short-run supply elasticity implied by the Kilian and Murphy (2014) procedure 

under three different upper bounds, and prior and posterior distribution implied by the Baumeister and 

Hamilton (2019) procedure when the mixture prior is used. 

 
Notes to Figure 2.  Upper left: distribution of draws in original Kilian and Murphy (2014) code.  Upper 

right: distribution when upper bound of 0.0258 is replaced by 0.043.  Lower left: distribution when 

upper bound of 0.0258 is replaced by 0.155.  Lower right, prior (red) and posterior (blue) for Baumeister 

and Hamilton’s (2019) analysis using the mixture prior. 
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Figure 3. Distribution of short-run demand elasticity implied by the Kilian and Murphy (2014) procedure 

under three different upper bounds on the supply elasticity, and prior and posterior distribution for 

demand elasticity implied by the Baumeister and Hamilton (2019) procedure when the mixture prior for 

supply elasticity is used. 

 
Notes to Figure 3.  Upper left: distribution of draws of demand elasticity in original Kilian and Murphy 

(2014) code.  Upper right: distribution when upper bound of 0.0258 on supply elasticity is replaced by 

0.043.  Lower left: distribution when upper bound of 0.0258 is replaced by 0.155.  Lower right, prior 

(red) and posterior (blue) for demand elasticity in Baumeister and Hamilton’s (2019) analysis using the 

mixture prior for supply elasticity. 

 

 

Figure 4.  Effects of “speculative oil demand shock” for the Kilian and Murphy (2014) specification and 

data set using two different seeds for the random number generator. 

 
Notes to Figure 4. Left panel: effect on real activity.  Right panel: effect on real price of oil.  Red dotted 

lines: seed = 316, which was the original seed used by Kilian and Murphy (2014) and which reproduces 

panels (3,2) and (3,3) In Kilian and Murphy’s Figure 1.  Blue solid lines: seed = 613.  Source: Baumeister 

and Hamilton (2020). 


