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Appendix A. Details of data construction.

Calculating weights for each individual. For any individual i we start with the weight wi

assigned to that individual by the BLS for the first month that a weight was reported for that

individual.38 Note this is a function of the individual and not a function of time. For the month

when a weight was first reported for that individual, we calculated the average value of wi for all

individuals who were either E,N,M, or U in that month. Call this number w̄i. Again, w̄i is a

fixed number for any given individual. To rescale this to an average value around 1 we assign the

weight ωi = wi/w̄i to individual i.

Our raw data (denoted ỹ) thus consist of weighted counts of individuals in various categories.

Let ỹ
[j]
X,t be the weighted count of the number of individuals with status X ∈ {E,N,M,U} when

they would have been interviewed in rotation j in month t before making any adjustments for the

start and end of the sample or sample redesigns and y
[j]
X,t the value after making the adjustments

below. Likewise, let ỹ
[j]
X1,X2,t

be the unadjusted weighted count of the number with status X1 in

rotation j − 1 in t− 1 and status X2 in rotation j in t and y
[j]
X1,X2,t

the adjusted estimate.

Adjusting missing observations at the start of the sample. If the sample begins in t0 = 2001:7,

we will miss individuals who would have had a history like EMMM −MMMM if their first

interview had been at t0 − 1; such an individual is tracked in the column of Table A-2 associated

with MIS in 2001:7 equal to 2, but would never appear in the data set. This will cause ỹ
[2]
M,t0

to

be lower than subsequent observations that would have complete histories on individuals like this,

such as the MIS in 2001:7 = 1 column. We calculate the average value of ỹ
[2]
M,t for the first year of

complete observations on this magnitude to form an estimate of the amount by which ỹ
[2]
M,t0

is an

underestimate of the true value:

∆
[2]
t0

= (1/12)
�t0+12
t=t0+1

ỹ
[2]
M,t − ỹ

[2]
M,t0

.

38 In data since 1998 this is the variable pwcmpwgt.
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We accordingly add ∆
[2]
t0
to the estimated count of people who transitioned from M in rotation 2

in t0 to M in rotation 3 in t0 + 1:

y
[3]
M,M,t0+1

= ỹ
[3]
M,M,t0+1

+∆
[2]
t0
. (A1)

Looking at the 2001:8 observation in the MIS in 2001:7 = 2 column of Table A-2, we should also

adjust the count of people who are imputed to have made a transition from M in rotation 3 in

t0 + 1 to M in rotation 4 in t0 + 2:

y
[4]
M,M,t0+2

= ỹ
[4]
M,M,t0+2

+∆
[2]
t0
. (A2)

Notice that since the unadjusted data ỹ satisfy the internal consistency conditions (1) and (2),

ỹ
[3]
M,t0+1

= ỹ
[3]
E,M,t0+1

+ ỹ
[3]
N,M,t0+1

+ ỹ
[3]
M,M,t0+1

+ ỹ
[3]
U,M,t0+1

= ỹ
[4]
M,E,t0+2

+ ỹ
[4]
M,N,t0+2

+ ỹ
[4]
M,M,t0+2

+ ỹ
[4]
M,U,t0+2

,

so do the adjusted data with y
[3]
M t0+1

= ỹ
[3]
M,t0+1

+∆
[2]
t0
:

y
[3]
M,t0+1

= y
[3]
E,M,t0+1

+ y
[3]
N,M,t0+1

+ y
[3]
M,M,t0+1

+ y
[3]
U,M,t0+1

= ỹ
[3]
E,M,t0+1

+ ỹ
[3]
N,M,t0+1

+ ỹ
[3]
M,M,t0+1

+∆
[2]
t0

+ ỹ
[3]
U,M,t0+1

= ỹ
[3]
M,t0+1

+∆
[2]
t0

= y
[4]
M,E,t0+2

+ y
[4]
M,N,t0+2

+ y
[4]
M,M,t0+2

+ y
[4]
M,U,t0+2

= ỹ
[4]
M,E,t0+2

+ ỹ
[4]
M,N,t0+2

+ ỹ
[4]
M,M,t0+2

+∆
[2]
t0

+ ỹ
[4]
M,U,t0+2

= ỹ
[3]
M,t0+1

+∆
[2]
t0
.

Continuing down the MIS in 2001:7 = 2 column of Table A-2, we also make adjustments to the

later transitions:

y
[6]
M,M,t0+12

= ỹ
[6]
M,M,t0+12

+∆
[2]
t0

y
[7]
M,M,t0+13

= ỹ
[7]
M,M,t0+13

+∆
[2]
t0
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y
[8]
M,M,t0+14

= ỹ
[8]
M,M,t0+14

+∆
[2]
t0
.

Consider next an individual who would have had a history like EEMM −MMMM if they

had been first interviewed in rotation 1 in t0 − 2 (column MIS in 2007:1 = 3 of Table A-2). The

analogous adjustments here are

∆
[3]
t0

= (1/12)
�t0+13
t=t0+2

ỹ
[3]
M,t − ỹ

[3]
M,t0

y
[4]
M,M,t0

= ỹ
[4]
M,M,t0

+∆
[3]
t0

y
[6]
M,M,t0+11

= ỹ
[6]
M,M,t0+11

+∆
[3]
t0

y
[7]
M,M,t0+12

= ỹ
[7]
M,M,t0+12

+∆
[3]
t0

y
[8]
M,M,t0+13

= ỹ
[8]
M,M,t0+13

+∆
[3]
t0
.

We also estimate the average number of M in rotation 5 over t0 + 15 to t0 + 26 and adjust the

appropriate cohorts as follows for j = 0, 1, ..., 9:

∆
[5,j]
t0

= (1/12)
�t0+26
t=t0+15

ỹ
[5]
M,t − ỹ

[5]
M,t0+j

y
[6]
M,M,t0+j+1

= ỹ
[6]
M,M,t0+j+1

+∆
[5,j]
t0

y
[7]
M,M,t0+j+2

= ỹ
[7]
M,M,t0+j+2

+∆
[5,j]
t0

y
[8]
M,M,t0+j+3

= ỹ
[8]
M,M,t0+j+3

+∆
[5,j]
t0

.

The final adjustments are

∆
[6]
t0

= (1/12)
�t0+27
t=t0+16

ỹ
[6]
M,t − ỹ

[6]
M,t0

y
[7]
M,M,t0+1

= ỹ
[7]
M,M,t0+1

+∆
[6]
t0

y
[8]
M,M,t0+2

= ỹ
[8]
M,M,t0+2

+∆
[6]
t0

∆
[7]
t0

= (1/12)
�t0+28
t=t0+17

ỹ
[7]
M,t − ỹ

[7]
M,t0

y
[8]
M,M,t0+1

= ỹ
[8]
M,M,t0+1

+∆
[7]
t0
.
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On the last equation, note that ỹ
[8]
M,M,t0+1

= 0 by construction.

Adjusting missing observations at the end of the sample. Table A-3 tracks cohorts in terms of

their status at the end of the sample. The example in Table A-3 uses T = 2020:2, which was the

end of the original sample used, though a later version of the paper performed exactly the same

calculations using instead T = 2020:12. At the end of the sample (date T ), undercounted M arise

from individuals who would have later had a status like E if interviewed for the full 8 rotations

after the sample end. Here the adjustments are

∆
[1,j]
T = (1/12)

�T−26
t=T−15 ỹ

[1]
M,t − ỹ

[1]
M,T−j for j = 0, 1, ..., 14

y
[1]
M,T = ỹ

[1]
M,T +∆

[1,0]
T

y
[2]
M,M,T−j = ỹ

[2]
M,M,T−j +∆

[1,j+1]
T for j = 0, 1, ..., 13

y
[3]
M,M,T−j = ỹ

[3]
M,M,T−j +∆

[1,j+2]
T for j = 0, 1, ..., 12

y
[4]
M,M,T−j = ỹ

[4]
M,M,T−j +∆

[1,j+3]
T for j = 0, 1, ..., 11

y
[5]
M,T = ỹ

[5]
M,T +∆

[1,12]
T

y
[6]
M,M,T−j = ỹ

[6]
M,M,T−j +∆

[1,j+13]
T for j = 0, 1

y
[7]
M,M,T = ỹ

[7]
M,M,T +∆

[1,14]
T .

Adjusting missing observations from the sample redesign of CPS in 2004 and 2014. At date t2 =

2004:8 the BLS dropped some households who otherwise would have been included in rotation 5

and added some new households in order to better represent the U.S. population, and did the same

thing to the rotation 5 individuals for each of the following 11 months. Individuals added into

rotation 5 create a bulge in histories like MMMM − EEEE for people who would have been in

rotation 1 over t2−12 through t2−1 (see Table A-4). We adjust for this by comparing the number

of M in rotation 1 during this period with the average value over the 12 months beginning with t2:

∆
[1,j]
t2

= ỹ
[1]
M,t2−j

− (1/12)
�t2+11
t=t2

ỹ
[1]
M,t for j = 1, ..., 12.
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We then reduce the estimates of MM transitions for j = 1 to 12 accordingly:

y
[2]
M,M,t2−j+1

= ỹ
[2]
M,M,t2−j+1

−∆
[1,j]
t2

y
[3]
M,M,t2−j+2

= ỹ
[3]
M,M,t2−j+2

−∆
[1,j]
t2

y
[4]
M,M,t2−j+3

= ỹ
[4]
M,M,t2−j+3

−∆
[1,j]
t2

.

Individuals dropped from rotation 5 at t2, t2+1, ...., t2+11 create artificial histories like EEEE−

MMMM. We adjust for these as follows for j = 0, 1, ..., 11:

∆
[5,j]
t2

= ỹ
[5]
M,t2+j

− (1/12)
�t2−13
t=t2−2

ỹ
[5]
M,t

y
[6]
M,M,t2+j+1

= ỹ
[6]
M,M,t2+j+1

−∆
[5,j]
t2

y
[7]
M,M,t2+j+2

= ỹ
[7]
M,M,t2+j+2

−∆
[5,j]
t2

y
[8]
M,M,t2+j+3

= ỹ
[8]
M,M,t2+j+3

−∆
[5,j]
t2

.

There was a similar change in population controls at date t3 = 2014:8, dealt with using the

identical adjustments replacing t2 with t3.

Effects of adjustments. Figure A-1 shows the effects of these adjustments. The red dashed lines

plot transitions ỹ
[j]
M,M,t before adjustments, exhibiting bulges prior to the 2004 and 2014 sample

redesign and dips at the start and end of the sample. The solid blue lines plot y
[j]
M,M,t which are

the series used in our analysis.

Appendix B. Modeling number preference.

Even number bias. For durations of 8 weeks or fewer, people are more likely to report an even

number than an odd number. One way to represent this is to suppose that people whose true or

perceived duration is 1, 3, 5, or 7 weeks have a probability (1 − θA,1) of reporting their duration

correctly and a probability θA,1 of instead reporting 2, 4, 6, or 8 weeks. If this was the only source
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of reporting error, the matrix A would take the following form:39

A1
(99×99)

=






Λ1 08,91

091,8 I91






Λ1
(8×8)

=






Θ1 02,2 02,2 02,2

02,2 Θ1 02,2 02,2

02,2 02,2 Θ1 02,2

02,2 02,2 02,2 Θ1






Θ1
(2×2)

=






1− θA,1 0

θA,1 1




 .

For example, if the true duration τ = 3 (third column of A1) there would be a probability 1− θA,1

of reporting τ = 3 represented by the (3,3) element of A1 and a probability θA,1 of reporting τ = 4.

Reporting as nearest month. After the 1994 redesign, respondents were given the option of

reporting unemployment duration in months or years rather than weeks (“flexible reporting pe-

riodicity”), although they are explicitly asked for duration in weeks if they report four or fewer

months of unemployment. Even if someone has been unemployed for fewer than four months during

the reference week, the person is likely to report their duration in integer months rather than the

actual number of weeks. This shows up in an unusual concentration of reported durations at 4

weeks, 8-9 weeks, 12-13 weeks, and 16-17 weeks. We represent this by allowing that a fraction

θA,2 of those who are truly unemployed for 5 weeks report the duration as 4, and the same fraction

θA,2 of those who are unemployed for 7, 11, or 15 weeks report their durations as 8, 12, or 16. We

suppose that of those whose true duration is 6, 10, or 14, a fraction θA,3/2 round the month down

(to 4, 8, or 12) and another θA,3/2 round up (to 8, 12, or 16). We don’t find evidence in the

data that durations 9, 13, or 17 get particularly rounded down. We capture these tendencies in a

39Here 0n,m denotes an (n×m) matrix of zeros and In the (n× n) identity matrix.
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(99× 99) matrix A2 whose rows 4-12 and columns 4-11 are given by

Λ2
(9×8)

=

4

5

6

7

8

9

10

11

12






1 θA,2 θA,3/2 0 0 0 0 0

0 1− θA,2 0 0 0 0 0 0

0 0 1− θA,3 0 0 0 0 0

0 0 0 1− θA,2 0 0 0 0

0 0 θA,3/2 θA,2 1 0 θA,3/2 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1− θA,3 0

0 0 0 0 0 0 0 1− θA,2

0 0 0 0 0 0 θA,3/2 θA,2






.

Rows 12-17 and columns 12-17 of A2 are

Λ3
(6×6)

=

12

13

14

15

16

17






1 0 θA,3/2 0 0 0

0 1 0 0 0 0

0 0 1− θA,3 0 0 0

0 0 0 1− θA,2 0 0

0 0 θA,3/2 θA,2 1 0

0 0 0 0 0 1






.

For unemployment spells longer than 4 months the rounding becomes even more pronounced,

as the CPS allows respondents to report an interval in months and years. Census Bureau multiply

a conversion factor of 4.33 to the reported duration in months and 52 to that in years, which then

gets recorded as τ ∈ Ω = {16, 22, 26, 30, 35, 39, 43, 48, 52, 56, 61, 65, 69, 74, 78, 82, 87, 91, 95} weeks.

We represent the increased propensity to round as durations get longer by replacing θA,2 and θA,3,

which governed the probabilities that a duration got rounded one week or two weeks to the nearest

month, with analogous (but larger) probabilities θA,4 and θA,5 for durations between 18 and 32

weeks, even larger probabilities θA,6 and θA,7 for durations between 33 and 52 weeks, and θA,8 and

θA,9 for durations 53 weeks and longer. Specifically, if someone is unemployed between 18 and 32

weeks and is exactly 1 week away from an element of Ω, there is a probability θA,4 that the duration
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gets reported as the nearest month. That is, for durations between 18 and 32 weeks, rows τ − 3

through τ +3 of column τ of A2 are given by Λ4 for τ ∈ Ω, Λ5 for durations one week less than an

element of Ω (namely τ ∈ {21, 25, 29}), and Λ6 for durations one week more than an element of Ω

(namely τ ∈ {23, 27, 31}), where

Λ4 =

τ − 3

τ − 2

τ − 1

τ

τ + 1

τ + 2

τ + 3






0

0

0

1

0

0

0






Λ5 =






0

0

0

1− θA,4

θA,4

0

0






Λ6 =






0

0

θA,4

1− θA,4

0

0

0






.

If the person is exactly two weeks or exactly three weeks away from two different elements of Ω,

with probability θA,5/2 it gets rounded up and probability θA,5/2 it gets rounded down. If the

person is two weeks away from only a single element of Ω, we assume that it gets rounded to the

nearest month with probability (θA,4 + θA,5)/2. Thus for durations between 18 and 32 weeks and

exactly two weeks away from two elements of Ω (namely τ ∈ {24, 28}), rows τ − 3 through τ + 3

of column τ of A2 are given by Λ7 below. The vector Λ8 is used for durations two weeks below

a single element of Ω (τ = 20), Λ9 for elements two weeks above a single element of Ω (namely

τ = 18), and Λ10 for durations three weeks away from two elements of Ω (τ = 19):

Λ7 =

τ − 3

τ − 2

τ − 1

τ

τ + 1

τ + 2

τ + 3






0

θA,5/2

0

1− θA,5

0

θA,5/2

0






Λ8 =






0

0

0

1− θA,4+θA,5
2

0

θA,4+θA,5
2

0






Λ9 =






0

θA,4+θA,5
2

0

1− θA,4+θA,5
2

0

0

0






Λ10 =






θA,5/2

0

0

1− θA,5

0

0

θA,5/2






.
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For τ = 32 we use Λ13 below with θA,7 replaced by θA,5.

For durations between 33 weeks and 52 weeks, we use analogous matrices with θA,4 replaced

by θA,6 and θA,5 replaced by θA,7. Specifically, for observations exactly one week below or one

week above an element of Ω we use Λ5 or Λ6 with θA,4 replaced by θA,6. For observations exactly

two weeks from two different elements of Ω (namely τ ∈ {37, 41, 50}) we use Λ11, for observations

exactly two weeks below a single element of Ω (namely τ = 46) we use Λ12, and for observations

exactly two weeks above a single element of Ω (namely τ = 45) we use Λ13:

Λ11 =

τ − 3

τ − 2

τ − 1

τ

τ + 1

τ + 2

τ + 3






0

θA,7/2

0

1− θA,7

0

θA,7/2

0






Λ12 =






0

0

0

1− θA,7

0

θA,7

0






Λ13 =






0

θA,7

0

1− θA,7

0

0

0






.

For durations between 53 and 99 weeks we replace θA,6 and θA,7 by θA,8 and θA,9, respectively. We

set the upper-left block of A2 to I3 and all other elements to 0. The model of measurement error

so far is then summarized by the product A2A1.

6-month interval reporting. Finally there is a tendency to report longer durations as either

6 months (26 weeks), 12 months (52 weeks), 18 months (78 weeks), or longer than 99 weeks (top

code). To capture this, we adapt the heaping model of Torelli and Trivellato (1993). We assume

that individuals may begin to report their duration as the closest multiple of 6 months after 3

months of unemployment. Define a (99 × 99) matrix A3 whose upper-left block is given by I13.

For every individual who from the preceding specifications would have reported an unemployment

spell between 14 and 38 weeks (or between 3 and 7 months), there is a probability θA,10 that they

don’t report τ but instead report 6 months. In other words, for τ ∈ {14, 15, ..., 25, 27, 28, ..., 38}

the row τ, column τ element of A3 is given by 1− θA,10 and the row 26, column τ element is θA,10.

Likewise, if someone has been unemployed for 39 to 51 weeks, the person may report 12 months

with probability θA,11 (row τ, column τ of A2 is 1 − θA,11 and row 52, column τ is θA,9). If
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someone has been unemployed 12-15 months, we assume that the person would report 12 months

with probability θA,11 or possibly instead report the top-code duration (longer than 99 weeks) with

probability θA,13. That is, for τ ∈ {53, 54, ..., 72}, column τ of A3 has 1− θA,11 − θA,13 in the τth

row, θA,11 in row 52, and θA,13 in the last row.

For intervals longer than 15 months, there is a probability θA,12 of reporting the top code, so

that for τ ∈ {73, 74, 75, 76, 77, 79, 80, 81, ..., 98} we set the τth row of column τ of A3 to 1− θA,12,

the 99th row to θA,12 and all other elements to zero. The reason we leave a 78-week reporting

interval out of this set is that we observe a modest spike in reporting intervals of 78 weeks (18

months), and so take the 78th column of A3 to be the 78th column of I99. The last column of A3

is of course the last column of I99.

Our model of measurement error is thus

A
(99×99)

= A3
(99×99)

A2
(99×99)

A1
(99×99)

.

The value of A is a function of θA = (θA,1, θA,2, ..., θA,13)
′ and we estimate the elements of θA

by quasi maximum likelihood. Note that perfect reporting is allowed as a special case of this

framework when θA = 0.

Appendix C. Quasi-maximum likelihood estimation.

Here we describe how we calculated standard errors. Let nt denote the number of individuals

sampled in month t (including those categorized asM in month t) and let n =
�T
t=1 nt be the total

number of observations. For q some chosen Newey-West bandwidth (our empirical estimates use

q = 96) define

ht(λX) = yE,t
∂ lnπE
∂λX

+ yN,t
∂ lnπN
∂λX

+ yM,t
∂ lnπM
∂λX

+
�99
τ=1 yU,t(τ)

∂ ln π̇U (τ)

∂λX

D̂ = −n−1�T
t=1

∂ht(λX)

∂λ′X

����
λX=λ̂X

Γ̂v = n−1
�T
t=v+1 ht(λ̂X)ht−v(λ̂X)

′

Ŝ = Γ̂0 +
�q
v=1

	
1− v

q + 1



(Γ̂v + Γ̂′v)
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V̂ = (D̂Ŝ−1D̂)−1. (A3)

The square root of the (i, i) element of n−1V̂ was used to calculate a standard error for the ith

element of λ̂X .

Note that it’s not strictly necessary to calculate n, since it cancels out in calculation of

n−1(D̂Ŝ−1D̂)−1. We write expressions in this form because D̂, Ŝ and V̂ as written are consistent

estimates of nondegenerate population analogues, and matrix inversions may be better behaved

numerically when the expressions are calculated as written.

One can see why this works with a simple illustrative example. Let yit = 1 if person i is

employed in month t and 0 otherwise. Suppose that the probability that an individual is employed

in month t is given by λt, so that conditional on λt, the mean and variance of yit are E(yit|λt) = λt

and E[(yit−λt)
2|λt] = λt(1−λt). Suppose that λt is distributed across months from some process

whose mean is λ and whose vth autocovariance is γv (E(λt) = λ and E(λt − λ)(λt−v − λ) = γv

for v = 0, 1, 2, ...). Then yt =
�nt
i=1 yit has conditional mean E(yt|λt) = ntλt, unconditional mean

E(yt) = ntλ, and unconditional variance E(yt−ntλ)
2. To evaluate the last magnitude we first take

expectations conditional on λt,

E[(yt − ntλ)
2|λt] = E[(yt − ntλt + ntλt − ntλ)

2|λt]

= E[(yt − ntλt)
2|λt] +E[(ntλt − ntλ)

2|λt]

= ntλt(1− λt) + n2t (λt − λ)2,

and then take expectations of this with respect to the unconditional distribution of λt:

E(yt − ntλ)
2 = nt[E(λt)−E(λ2t )] + n2tE(λt − λ)2

= nt(λ− γ0 − λ2) + n2tγ0.
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The unconditional covariance of yt with yt−v is likewise found from

E[(yt − ntλ)(yt−v − nt−vλ)|λt, λt−v]

= E[(yt − ntλt + ntλt − ntλ)(yt−v − nt−vλt−v + nt−vλt−v − nt−vλ|λt, λt−v]

= E[(yt − ntλt)(yt−v − nt−vλt−v)|λt, λt−v] +E[(ntλt − ntλ)(nt−vλt−v − nt−vλ)|λt, λt−v]

= 0 + ntnt−v(λt − λ)(λt−v − λ)

with unconditional expectation

E(yt − ntλ)(yt−v − nt−vλ) = ntnt−vγv.

The proposal is to estimate the unconditional probability of employment λ by maximizing the

quasi likelihood ℓ(λ) =
�T
t=1 ℓt(λ) for ℓt(λ) = yt logλ+(nt− yt) log(1−λ), from which the QMLE

is calculated to be

λ̂ = n−1
�T
t=1 yt. (A4)

We see immediately that E(λ̂) = n−1
�T
t=1 ntλ = λ, so the QMLE is an unbiased estimate of λ.

Notice also

λ̂− λ = n−1
�T
t=1(yt − ntλ)

so the variance of λ̂ is

E(λ̂− λ)2 = n−2
��T

t=1E(yt − ntλ)
2 + 2

�T
t=2E(yt − ntλ)(yt−1 − nt−1λ)+

2
�T
t=3E(yt − ntλ)(yt−2 − nt−2λ) + · · ·+ 2E(yT − nTλ)(y1 − n1λ)

�

where we saw above that

E(yt − ntλ)(yt−v − nt−vλ) =






nt(λ− λ2 − γ0) + n2tγ0 for v = 0

ntnt−vγv for v = 1, 2, ...
.

We require that the number of individuals sampled each month nt does not vary too much across

months. For example, suppose that n−1
�T
t=1 nt → 1 and that for fixed v, n−1

�T
t=v+1 ntnt−v →
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ηv.
40 If the autocovariances of λt are absolutely summable (

�∞
v=0 |γj| <∞), then

nE(λ̂− λ)2 → V = γ̃0 + 2
�∞
v=1 γ̃v

for

γ̃0 = (λ− λ2 − γ0) + η0γ0

γ̃v = ηvγv for v = 1, 2, ...

Thus the variance of λ̂ goes to zero as n→∞, confirming that λ̂ is a consistent estimate of λ with

√
n(λ̂− λ)

d→ N(0, V ).

We can also confirm that (A3) gives a consistent estimate of V. Here

ht(λ) =
yt
λ
− nt − yt

(1− λ)
=

yt − ntλ

λ(1− λ)

∂ht(λ)

∂λ
= − yt

λ2
− (nt − yt)

(1− λ)2

D̂ = n−1

��T
t=1 yt

λ2
+

�T
t=1(nt − yt)

(1− λ)2

�
p→ λ

λ2
+

(1− λ)

(1− λ)2
=

1

λ(1− λ)

Γ̂v = n−1
�T
t=1

	
yt − ntλ

λ(1− λ)


 	
yt−v − nt−vλ

λ(1− λ)



p→ γ̃v

λ2(1− λ)2

Ŝ
p→ γ̃0 + 2

�∞
v=1 γ̃v

λ2(1− λ)2

V̂ = (D̂Ŝ−1D̂)−1
p→ γ̃0 + 2

�∞
v=1 γ̃v = V

as desired.

Appendix D. Weibull distribution.

Replacing mixture of exponentials (17)-(18) with a Weibull distribution. Suppose that a fraction

of the population ω is newly unemployed each week with each person characterized by the same

Weibull(α, λ) hazard rate of exiting unemployment. In steady state the fraction of the population

40 If nt = n̄ for all t, these conditions are trivially satisfied with n−1
�T

t=1 nt = (Tn̄)−1
�T

t=1 n̄ = 1 and

n−1
�T

t=v+1 ntnt−v = (Tn̄)
−1�T

t=v+1 n̄
2 = n̄(T − v)/T.
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unemployed for exactly τ weeks would then be given by41

π†U (τ) = ω exp(−λτα). (A5)

We accordingly maximized expression (20) with respect to θA, πE , πN , πM , ω, α, λ. This produced

estimates α̂ = 0.404 and λ̂ = 0.861, with other parameters similar to those for the baseline case

in the first column of Table 1. The low value for α implies that unemployment-exit probabilities

drop off significantly as the duration of unemployment τ increases. The Weibull captures the same

basic features of the data as our baseline model. Nevertheless, the mixture of exponentials has a

much better fit to the data, achieving a value for (20) that is substantially higher than that for the

Weibull specification.42

Characterizing inconsistency between reported unemployment durations and observed hazards

using the Weibull distribution. If we replace the unemployment-continuation probabilities predicted

from the mixture of exponentials (17)-(18) by those predicted by the Weibull representation (A5) of

the cross-section of unemployment durations, we would expect an average monthly unemployment-

continuation probability of �∞
0 exp[−λ(τ + 4.33)α]dτ
�∞
0 exp[−λτα]dτ = 0.67. (A6)

This is far larger than the observed average monthly continuation probability across all unemployed

of

T−1
�T
t=1




�
j∈J y

[j]
UU,t

�
j∈J

�
y
[j]
UE,t + y

[j]
UN,t + y

[j]
UU,t

�



 = 0.55. (A7)

Alternatively, our characterization of the cross-section implies an average monthly continuation

probability across all individuals of w1p
4.33
1 + w2p

4.33
2 = 0.70. Whether one uses our parametric

model, the Weibull, or any other, any model of the cross-section is calculating a parametric estimate

of the magnitude �99
τ=5 y

[j]
U,t(τ)

�99
τ=1 y

[j]
U,t−1(τ)

41The exponential distribution is a special case with α = 1, exp(−λ) = p and ω = w(1− p).
42One might be tempted to think of twice this number (2,164) as a likelihood ratio statistic for testing whether

the one extra parameter used by the mixture of exponentials is helpful. This number does not in fact have a χ2(1)
interpretation due to the strong serial correlation of ℓt(λX) and because the models are non-nested. Nevertheless,
the huge magnitude of the difference in the quasi log likelihoods suggests that the baseline model is to be preferred.
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which as we noted in Panel A of Figure 1 averages 0.72 over the sample. Any model that accu-

rately describes the cross-section of durations— and ours does so quite well— is going to predict an

unemployment-continuation probability similar to the stock-based measure plotted as the solid line

in Panel A of Figure 1.

Appendix E. Details of modeling rotation bias.

For an individual who reported status X[j] in rotation j in month t, consider the counterfactual

answer that individual would have given if interviewed using the interview technology that was

used for rotation 1:

r
[j]

X[j],X [1],t
= Prob(would have answered X [1] using technology 1 given answered X [j] using technology j).

Collect these counterfactual probabilities in a matrix

R
[j]
t =






r
[j]
EE,t r

[j]
NE,t r

[j]
ME,t r

[j]
UE,t

r
[j]
EN,t r

[j]
NN,t r

[j]
MN,t r

[j]
UN,t

r
[j]
EM,t r

[j]
NM,t r

[j]
MM,t r

[j]
UM,t

r
[j]
EU,t r

[j]
NU,t r

[j]
MU,t r

[j]
UU,t






j ∈ J.

Notice that each column of R
[j]
t sums to unity. For example, for the first column, given that an

individual reported status E when interviewed in rotation j, that person would have to have given

one of the answers E,N,M,U if interviewed using the technology of rotation 1. We can construct

a matrix R
[j]
t that exactly satisfies the condition (6). For example, the first row states

r
[j]
EE,tπ

[j]
E,t + r

[j]
NE,tπ

[j]
N,t + r

[j]
ME,tπ

[j]
M,t + r

[j]
UE,tπ

[j]
U,t = π

[1]
E,t.

This equation states that the fraction who reported E in rotation 1 can be viewed as the fraction

who reported X[j] in rotation j times the probability someone reporting X [j] would have reported

E using technology 1, added across the four possible X[j]. From the analysis in Section 3.1, for

j > 1 we expect r
[j]
NU,t > 0; some of the individuals who report labor status N in rotation j would

have reported status U if they had been interviewed for the first time. We also expect r
[j]
EM,t > 0

and r
[j]
NM,t > 0; some of the individuals who were reported as status E or N in rotation j would
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have been missing using the interview technology of rotation 1.

One can parameterize a matrix R
[j]
t that exactly satisfies (6) in many ways. To construct

monthly estimates adjusted for rotation bias we take the view that rotation bias evolves slowly

over time, leading us to replace R
[j]
t with an estimate R̄

[j]
t where R̄

[j]
t does not differ too much from

R̄
[j]
t−1. In this case, while (6) will always hold by construction when using R

[j]
t , if we instead use

R̄
[j]
t , then R̄

[j]
t π

[j]
t will be close to but not exactly equal to π

[1]
t . In anticipation of this objective, we

parameterized the matrix R
[j]
t in a way that focuses on what we believe to be the most important

features of rotation bias. In Figure 2 we saw that the decline in U across rotations is balanced by

a corresponding increase across rotations in N and that increases in M in rotations 1 and 5 match

drops in E and N. We therefore propose to summarize the interview technology for rotation j in

month t using three parameters θ
[j]
t = (θ

[j]
EM,t, θ

[j]
NM,t, θ

[j]
NU )

′:43

R
[j]
t =






1− θ
[j]
EM,t 0 0 0

0 1− θ
[j]
NM,t − θ

[j]
NU,t 0 0

θ
[j]
EM,t θ

[j]
NM,t 1 0

0 θ
[j]
NU,t 0 1






. (A8)

The value of θ
[j]
t that causes (6) to hold exactly for every j is given by44

1− θ
[j]
EM,t = π

[1]
E,t/π

[j]
E,t (A9)

θ
[j]
NU,t = (π

[1]
U,t − π

[j]
U,t)/π

[j]
N,t (A10)

43We take the (3,3) and (4,4) elements of R
[j]
t to be unity because a higher fraction of the population is M or

U in rotation 1 than in other rotations. For example, the third equation in (6) states that the fraction missing in

rotation 1 is the fraction missing in rotation j plus some portions θ
[j]
EM,t and θ

[j]
NM,t of the fractions that are E and

N in rotation j: π
[1]
M,t = π

[j]
M,t + θ

[j]
EM,tπ

[j]
E,t + θ

[j]
NM,tπ

[j]
N,t. Note that the normalization of the third and fourth columns

of R
[j]
t still allows equation (6) to fit exactly the observed values of every element of π

[j]
t for every j and t.

44These equations come from solving rows 1 ,2 and 4 of (6), One can show that equations (A9)-(A11) imply that
row 3 of (6) also holds. Add rows 1, 2, and 4 of (6) together to deduce

π
[j]
E,t + π

[j]
U,t + π

[j]
N,t − θ

[j]
EM,tπ

[j]
E,t − θ

[j]
NM,tπ

[j]
N,t = π

[1]
E,t + π

[1]
U,t + π

[1]
N,t.

Subtracting both sides from 1 gives

π
[j]
M,t + θ

[j]
EM,tπ

[j]
E,t + θ

[j]
NM,tπ

[j]
N,t = π

[1]
M,t

as required by the third row of (6). In general, since each column of R
[j]
t sums to unity, if elements of π

[j]
t sum to

unity, then the elements of R
[j]
t π

[j]
t also sum to unity: 1′R

[j]
t πt = 1

′πt = 1 for 1 a vector of four ones.
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1− θ
[j]
NM,t − θ

[j]
NU,t = π

[1]
N,t/π

[j]
N,t. (A11)

Let Π[j] be the observed full-sample average transition probabilities into rotation j and R̄[j] be

the value obtained by plugging the parameter values in Table 2 into expression (A8). We then

chose values for the (n× n) matrix Π∗ by minimizing the sum of squared elements of

Π[j] − (R̄[j])−1Π∗R̄[j−1] for j ∈ J (A12)

π[1] − π∗ (A13)

π[5] − (R̄[5])−1π∗ (A14)

subject to the constraints that all elements of Π∗ lie between 0 and 1, each column of Π∗ sums to

1, and that π∗ is the vector of ergodic probabilities implied by Π∗.45

This framework predicts that the fraction of individuals reporting status E,N,M, or U when

interviewed using technology j would be given by

π̂[j] = (R̄[j])−1π∗. (A15)

These predicted values π̂[j] were compared with the actual values π[j] in Figure 3. Our approach

also implies a predicted value for the observed fraction of individuals with measured transitions

from X[j−1] to X[j]:

Π̂[j] = (R̄[j])−1Π∗R̄[j−1]. (A16)

The predicted Π̂[j] are compared with the observed Π[j] in Figure 4.

To construct month-by-month estimates, our first step is to construct weighted moving averages

of the counts of individuals in each labor-force status in each rotation as in (9). We then calculated

45That is, we minimized the sum of squares of the 96 = 16× 6 elements in (A12) plus the sum of squares of the 8
elements in (A13) and (A14). The vector π∗ is also a function of Π∗ using expression [22.2.26] in Hamilton (1994):

B =

�
I4 −Π

∗

1′

�

π∗ = (B′B)−1B′e5

where 1′ denotes a (1× 4) vector of ones and e5 denotes column 5 of I5.
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the corresponding smoothed fractions as

π
[j]
X,t = y

[j]
X,t/

�
y
[j]
E,t + y

[j]
N,t + y

[j]
M,t + y

[j]
U,t

�
.

From these we calculated time-varying rotation-bias parameters as

θ
[j]
EM,t = max

�
1−

�
π
[1]
E,t/π

[j]
E,t

�
, 0
�

θ
[j]
NU,t = max

��
π
[1]
U,t − π

[j]
U,t

�
/π

[j]
N,t, 0

�

θ
[j]
NM,t = max

�
1− θ

[j]
NU,t −

�
π
[1]
N,t/π

[j]
N,t

�
, 0
�
,

Plugging the values for θ
[j]
EM,t, θ

[j]
NU,t, and θ

[j]
NM,t into (A8) gives a value of R̄

[j]
t for each j and t.

Our procedure was to proceed iteratively through the data, choosing Π∗t for each t to minimize the

errors in the following equations:

Π
[j]
t − (R̄

[j]
t )−1Π∗t R̄

[j−1]
t−1 for j ∈ J = {2, 3, 4} ∪ {6, 7, 8} (A17)

π
[1]
t −Π∗tπ

∗
t−1 (A18)

π
[5]
t − (R̄

[5]
t )−1Π∗tπ

∗
t−1. (A19)

We set the initial value of π∗t for observation t = 1 as π∗1 = (π
[1]
1 + π

[5]
1 )/2. For each t = 2, 3, ... we

choose the 16 elements of Π∗t so as to minimize the sum of squares of the 104 terms in (A17)-(A19)

subject to the constraints that each element of Π∗t is between 0 and 1 and each column of Π
∗
t sums

to 1. Given Π∗t we then calculated

π∗t = Π∗tπ
∗
t−1

and proceeded to the next observation t+ 1.
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Table A-1. Summary of notation

π
[j]
X = fraction of working-age population reporting status X ∈ {E,N,M,U}

in rotation j ∈ {1, ..., 8}
π
[j]
X1,X2

= fraction of population reporting X1 in rotation j − 1 and X2 in

rotation j ∈ {2, ..., 8}
y
[j]
X,t = weighted number of people reporting status X ∈ {E,N,M,U} in

rotation j in month t

J = the set consisting of rotations {2, 3, 4} ∪ {6, 7, 8}
y
[j]
X1,X2,t

= weighted number reporting X1 in rotation j − 1 in month t − 1
and X2 in rotation j ∈ J in month t

y
[j]
U,t(τ) = weighted number in rotation j in month t reporting U with dura-

tion τ

y
[j]
X,U,t(τ) = weighted number reporting X ∈ {E,N,M} in rotation j − 1 in

month t− 1 and U with duration τ in month t for j ∈ J

y
[j]
U,X,t(τ) = weighted number reporting U with duration τ in rotation j − 1

in month t− 1 and reporting X ∈ {E,N,M,U} in month t for j ∈ {2, ..., 8}
pi =weekly unemployment-continuation probability consistent with reported

unemployment duration for type i ∈ {1, 2}
wi = fraction of unemployed who are type i ∈ {1, 2}
π̇U(τ) = predicted fraction of unemployed who report duration τ

θA = vector of parameters characterizing matrix A of rounding errors in

reporting durations

π†U(τ) = imputed fraction of unemployed with perceived duration τ in ab-

sence of rounding errors

π̇X,U(τ) = of the people who report status X ∈ {E,N,M} in t − 1 and U

in t, the predicted fraction who report duration τ

qi,XU = of the people who report status X ∈ {E,N,M,U} in t−1 and U in

t, the fraction who report duration i for i ∈ {1, ..., 4} or report duration greater

than 4 weeks with perceived type 1 or type 2 duration for i ∈ {5, 6}
ηi(τ) = probability an individual is type i ∈ {1, 2} given they report duration

τ ∈ {1, ..., 99}
γi,UX = probability an individual of type i who is unemployed in month

t− 1 will report status X ∈ {E,N,M,U} in month t

θ
[j]
EM , θ

[j]
NU , θ

[j]
NM = parameters characterizing rotation bias for rotation j ∈

{2, ..., 8}
π∗X = fraction of population with reported status X ∈ {E,N,M,U} after

correcting for rotation bias

π∗ = (4× 1) vector containing (π∗E , π
∗
N , π

∗
M , π

∗
U)
′

π∗X1,X2
= probability of reporting status X2 in month t conditional on re-

porting X1 in month t− 1 after correcting for rotation bias

Π∗ = (4× 4) matrix collecting the values of π∗X1,X2

π̃X = fraction of population inferred to have true status X ∈ {E,N,U} after
correcting for rotation bias, nonrandom missing observations, and misclassified

N
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Table A-2. Cohorts affected by start of sample in July 2001. 

MIS in 

2001:7 7 6 5 x x x x x x x x 4 4 3 2 1 

Apr-00                 
May-00 E1                
Jun-00 E2 E1               
Jul-00 E3 E2 E1              

Aug-00 E4 E3 E2 E1             
Sep-00 x E4 E3 E2 E1            
Oct-00 x x E4 E3 E2 E1           
Nov-00 x x x E4 E3 E2 E1          
Dec-00 x x x x E4 E3 E2 E1         
Jan-01 x x x x x E4 E3 E2 E1        
Feb-01 x x x x x x E4 E3 E2 E1       
Mar-01 x x x x x x x E4 E3 E2 E1      
Apr-01 x x x x x x x x E4 E3 E2 E1 E1    

May-01 E5 x x x x x x x x E4 E3 E2 E2 E1   
Jun-01 E6 E5 x x x x x x x x E4 E3 E3 E2 E1  
Jul-01 M7 M6 M5 x x x x x x x x E4 M4 M3 M2 E1 

Aug-01 M8 M7 M6 M5 x x x x x x x x x M4 M3 M2 

Sep-01  M8 M7 M6 M5 x x x x x x x x x M4 M3 

Oct-01   M8 M7 M6 M5 x x x x x x x x x M4 

Nov-01    M8 M7 M6 M5 x x x x x x x x x 

Dec-01     M8 M7 M6 M5 x x x x x x x x 

Jan-02      M8 M7 M6 M5 x x x x x x x 

Feb-02       M8 M7 M6 M5 x x x x x x 

Mar-02        M8 M7 M6 M5 x x x x x 

Apr-02         M8 M7 M6 M5 M5 x x x 

May-02          M8 M7 M6 M6 M5 x x 

Jun-02           M8 M7 M7 M6 M5 x 

Jul-02            M8 M8 M7 M6 M5 

Aug-02              M8 M7 M6 

Sep-02               M8 M7 

Oct-02                M8 

Nov-02                 
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Table A-3. Cohorts affected by end of sample (using April 2018 to illustrate sample end). 

MIS in 18:4  7 6 5 x x x x x x x x 4 3 2 1 

Jan-17 M1                
Feb-17 M2 M1               
Mar-17 M3 M2 M1              
Apr-17 M4 M3 M2 M1             

May-17 x M4 M3 M2 M1            
Jun-17 x x M4 M3 M2 M1           
Jul-17 x x x M4 M3 M2 M1          

Aug-17 x x x x M4 M3 M2 M1         
Sep-17 x x x x x M4 M3 M2 M1        
Oct-17 x x x x x x M4 M3 M2 M1       
Nov-17 x x x x x x x M4 M3 M2 M1      
Dec-17 x x x x x x x x M4 M3 M2 M1     
Jan-18 M5 x x x x x x x x M4 M3 M2 M1    
Feb-18 M6 M5 x x x x x x x x M4 M3 M2 M1   
Mar-18 M7 M6 M5 x x x x x x x x M4 M3 M2 M1  
Apr-18 E8 M7 M6 M5 x x x x x x x x M4 M3 M2 M1 

May-18  E8 M7 M6 M5 x x x x x x x x M4 M3 M2 

Jun-18   E8 M7 M6 M5 x x x x x x x x M4 M3 

Jul-18    E8 M7 M6 M5 x x x x x x x x M4 

Aug-18     E8 M7 M6 M5 x x x x x x x x 

Sep-18      E8 M7 M6 M5 x x x x x x x 

Oct-18       E8 M7 M6 M5 x x x x x x 

Nov-18        E8 M7 M6 M5 x x x x x 

Dec-18         E8 M7 M6 M5 x x x x 

Jan-19          E8 M7 M6 M5 x x x 

Feb-19           E8 M7 M6 M5 x x 

Mar-19            E8 M7 M6 M5 x 

Apr-19             E8 M7 M6 M5 

May-19              E8 M7 M6 

Jun-19               E8 M7 

Jul-19                E8 

Aug-19                 
 

  



A-22 

 

Table A-4. Cohorts affected by sample redesign in August 2004. 

May-03              
Jun-03              
Jul-03              

Aug-03 M1             
Sep-03 M2 M1            
Oct-03 M3 M2 M1           
Nov-03 M4 M3 M2 M1          
Dec-03 x M4 M3 M2 M1         
Jan-04 x x M4 M3 M2 M1        
Feb-04 x x x M4 M3 M2 M1       
Mar-04 x x x x M4 M3 M2 M1      
Apr-04 x x x x x M4 M3 M2 M1     

May-04 x x x x x x M4 M3 M2 M1    
Jun-04 x x x x x x x M4 M3 M2 M1   
Jul-04 x x x x x x x x M4 M3 M2 M1  

Aug-04 E5 x x x x x x x x M4 M3 M2 E1 

Sep-04 E6 E5 x x x x x x x x M4 M3 E2 

Oct-04 E7 E6 E5 x x x x x x x x M4 E3 

Nov-04 E8 E7 E6 E5 x x x x x x x x E4 

Dec-04  E8 E7 E6 E5 x x x x x x x x 

Jan-05   E8 E7 E6 E5 x x x x x x x 

Feb-05    E8 E7 E6 E5 x x x x x x 

Mar-05     E8 E7 E6 E5 x x x x x 

Apr-05      E8 E7 E6 E5 x x x x 

May-05       E8 E7 E6 E5 x x x 

Jun-05        E8 E7 E6 E5 x x 

Jul-05         E8 E7 E6 E5 x 

Aug-05          E8 E7 E6 E5 

Sep-05           E8 E7 E6 

Oct-05            E8 E7 

Nov-05             E8 
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Table A-4 (continued). 

May-03 E1               
Jun-03 E2 E1              
Jul-03 E3 E2 E1             

Aug-03 E4 E3 E2 E1            
Sep-03 x E4 E3 E2 E1           
Oct-03 x x E4 E3 E2 E1          
Nov-03 x x x E4 E3 E2 E1         
Dec-03 x x x x E4 E3 E2 E1        
Jan-04 x x x x x E4 E3 E2 E1       
Feb-04 x x x x x x E4 E3 E2 E1      
Mar-04 x x x x x x x E4 E3 E2 E1     
Apr-04 x x x x x x x x E4 E3 E2 E1    
May-04 E5 x x x x x x x x E4 E3 E2 E1   
Jun-04 E6 E5 x x x x x x x x E4 E3 E2 E1  

Jul-04 E7 E6 E5 x x x x x x x x E4 E3 E2 E1 

Aug-04 E8 E7 E6 M5 x x x x x x x x E4 E3 E2 

Sep-04  E8 E7 M6 M5 x x x x x x x x E4 E3 

Oct-04   E8 M7 M6 M5 x x x x x x x x E4 

Nov-04    M8 M7 M6 M5 x x x x x x x x 

Dec-04     M8 M7 M6 M5 x x x x x x x 

Jan-05      M8 M7 M6 M5 x x x x x x 

Feb-05       M8 M7 M6 M5 x x x x x 

Mar-05        M8 M7 M6 M5 x x x x 

Apr-05         M8 M7 M6 M5 x x x 

May-05          M8 M7 M6 M5 x x 

Jun-05           M8 M7 M6 M5 x 

Jul-05            M8 M7 M6 M5 

Aug-05             M8 M7 M6 

Sep-05              M8 M7 

Oct-05               M8 

Nov-05                
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Table A-5. Estimated average fractions of individuals ��∗∗ who would have reported labor status E, N, M, 

or U and transition probabilities ���,��∗∗  if all individuals were being interviewed using the average 

interview technology. 

�		

��∗∗��∗∗�∗∗��∗∗���

� = �0.42570.24990.29660.0278�               �		

���∗∗ ���∗∗ ��∗∗ ���∗∗���∗∗ ���∗∗ ��∗∗ ���∗∗��∗∗ ��∗∗ �∗∗ ��∗∗���∗∗ ���∗∗ ��∗∗ ���∗∗ ���

� = �0.8967 0.0407 0.0945 0.20720.0274 0.8705 0.0501 0.20960.0634 0.0647 0.8470 0.07910.0124 0.0241 0.0084 0.5040� 
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Figure A-1. Probability of MM transitions before and after adjustments (July 2001 to February 2020) 
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Figure A-2.  Alternative measures of number of long-term unemployed as a percent of the civilian 

noninstitutional population. 

 

Notes to Figure A-2.  Long-term unemployed as percent of the civilian noninstitutional population, Aug 

2004 to April 2018.  Solid black: BLS estimate of number of unemployed with durations 27 weeks and 

over; Dashed red: number of individuals collecting Emergency Unemployment Compensation 2008; 

dotted blue: adjusted estimate based on equation (34). 

 


