Midterm Exam

DIRECTIONS: No books or notes of any kind are allowed. Answer all questions on separate paper. 150 points are possible on this exam.

1.) (75 points total) Consider the following regression model:

$$egin{aligned} \mathbf{y} &= \mathbf{X} oldsymbol{eta} + oldsymbol{arepsilon} \ oldsymbol{arepsilon} &| \mathbf{X} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_T) \ oldsymbol{b} &= (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{y} \end{aligned}$$

where \mathbf{y} and $\boldsymbol{\varepsilon}$ are each $(T \times 1)$ vectors, \mathbf{X} is a $(T \times k)$ matrix of rank $k, \boldsymbol{\beta}$ is a $(k \times 1)$ vector, and σ is a scalar. Our interest in this question is on a particular linear combination $\mathbf{c}'\boldsymbol{\beta}$ where \mathbf{c} is a known $(k \times 1)$ vector.

a.) (25 points) Calculate the distribution of $\mathbf{c'b}$ conditional on \mathbf{X} under the assumptions stated.

b.) (20 points) How would you use the results from (a) to calculate a *t*-test of the null hypothesis $\mathbf{c'\beta} = 1$? What are the degreees of freedom for this *t*-statistic? Note you only need to write down the formula for the *t*-statistic, and do not need to derive its distribution.

c.) (15 points) Suppose now instead that $\boldsymbol{\varepsilon} | \mathbf{X} \sim N(\mathbf{0}, \sigma^2 \mathbf{V})$ for \mathbf{V} a known $(T \times T)$ matrix. Calculate the distribution of $\mathbf{c'b}$ conditional on \mathbf{X} under this alternative assumption.

d.) (15 points) Can you suggest an unbiased estimate of $\mathbf{c}'\boldsymbol{\beta}$ which under the assumptions in part (c) would have a smaller variance than $\mathbf{c}'\mathbf{b}$? Note that you only need to write down the formula for this estimator, and do not need to prove that it has a smaller variance.

2.) (75 points total) Suppose that for \mathbf{x}_t a $(k \times 1)$ vector of explanatory variables, $y_t = \mathbf{x}'_t \boldsymbol{\beta} + \varepsilon_t$ $(y_t, \mathbf{x}'_t)'$ is stationary and ergodic

 $E(\mathbf{x}_t \mathbf{x}'_t) = \mathbf{Q}$ for \mathbf{Q} a nonsingular $(k \times k)$ matrix

 $\varepsilon_t \mathbf{x}_t$ is a martingale difference sequence with $E(\varepsilon_t^2 \mathbf{x}_t \mathbf{x}_t') = \mathbf{S}$.

a.) (40 points) Calculate the OLS estimator of β and derive its asymptotic distribution.

b.) (20 points) Suggest a test that you could use under the above assumptions to test the null hypothesis $\mathbf{R}\boldsymbol{\beta} = \mathbf{r}$ for \mathbf{R} a known $(m \times k)$ matrix and \mathbf{r} a known $(m \times 1)$ vector. Note that you do not need to derive its asymptotic distribution, just describe how you would do the test.

c.) (15 points) An alert student observes that the null hypothesis $\mathbf{R}\boldsymbol{\beta} = \mathbf{r}$ could equivalently be written as $\mathbf{HR}\boldsymbol{\beta} = \mathbf{Hr}$ where \mathbf{H} could be any nonsingular $(m \times m)$ matrix. Demonstrate to the student that the test statistic you proposed in part (b) would produce the numerically identical answer for any nonsingular \mathbf{H} .