Midterm Exam

DIRECTIONS: No books or notes of any kind are allowed. Answer all questions on separate paper. 150 points are possible on this exam.

1.) (75 points total) Consider the following regression model:

$$egin{aligned} \mathbf{y} &= \mathbf{X} oldsymbol{eta} + oldsymbol{arepsilon} \ E(oldsymbol{arepsilon} | \mathbf{X}) &= \mathbf{0} \ E(oldsymbol{arepsilon} oldsymbol{arepsilon}' | \mathbf{X}) &= \lambda^2 \mathbf{X} \mathbf{X}' + \sigma^2 \mathbf{I}_T \end{aligned}$$

where **y** and $\boldsymbol{\varepsilon}$ are each $(T \times 1)$ vectors, **X** is a $(T \times k)$ matrix of rank $k, \boldsymbol{\beta}$ is a $(k \times 1)$ vector, and λ and σ are scalars.

a.) (10 points) What name do we use to describe the above set of assumptions under the special case when $\lambda = 0$?

b.) (25 points) Calculate $E(\mathbf{b})$ for $\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ the OLS coefficient vector. Describe in words the meaning of this result.

c.) (20 points) Calculate $E[(\mathbf{b} - \boldsymbol{\beta})(\mathbf{b} - \boldsymbol{\beta})'|\mathbf{X}]$ being sure to simplify if possible. By what name is the (1,1) element of this matrix more commonly known? Hint: check your work by making sure that your formula is correct for the special case when $\lambda = 0$.

d.) (20 points) Calculate $E(s^2)$ for $s^2 = \mathbf{e'e}/(T-k)$ and $\mathbf{e} = (\mathbf{y} - \mathbf{Xb})$. Hint: recall that $\mathbf{e} = \mathbf{M}\boldsymbol{\varepsilon}$ for $\mathbf{M} = \mathbf{I}_T - \mathbf{X}(\mathbf{X'X})^{-1}\mathbf{X'}$.

2.) (75 points total) The following question leads you in steps to find the asymptotic distribution of the OLS estimate s^2 . Hint: if you are unable to complete any step, just take the result from that step as given and go on to the next part.

a.) (10 points) Suppose that ε_t is an i.i.d. sequence with $E(\varepsilon_t) = 0$, $E(\varepsilon_t^2) = \sigma^2$ and $E(\varepsilon_t^4) = 3\sigma^4$. Find the asymptotic distribution of $\sqrt{T} \left(T^{-1} \sum_{t=1}^T (\varepsilon_t^2 - \sigma^2)\right)$ and state the theorem you used to obtain this.

b.) (10 points) Suppose that \mathbf{x}_t is stationary and ergodic with finite fourth moments. Show that $T^{-1} \sum_{t=1}^{T} \mathbf{x}_t \mathbf{x}'_t \xrightarrow{p} \mathbf{Q}$. State the theorem you used to obtain this and give a description of the matrix \mathbf{Q} that does not involve the concept of a probability limit.

c.) (10 points) Consider the regression $y_t = \mathbf{x}'_t \boldsymbol{\beta} + \varepsilon_t$ where \mathbf{x}'_t is a $(1 \times k)$ vector. Show that if \mathbf{Q} is full rank and ε_t is independent of \mathbf{x}_s for all t and s, then $\sqrt{T}(\mathbf{b}-\boldsymbol{\beta}) \xrightarrow{L} N(\mathbf{0},\sigma^2 \mathbf{Q}^{-1})$ for $\mathbf{b} = \left(\sum_{t=1}^T \mathbf{x}_t \mathbf{x}'_t\right)^{-1} \left(\sum_{t=1}^T \mathbf{x}_t y'_t\right)$.

d.) (10 points) Show that results (b) and (c) imply that

$$T^{-1/2} \sum_{t=1}^{T} [\mathbf{x}'_t (\boldsymbol{\beta} - \mathbf{b})]^2 \xrightarrow{p} 0.$$

e.) (10 points) Show that

$$\sum_{t=1}^{T} \varepsilon_t^2 = \sum_{t=1}^{T} (y_t - \mathbf{x}_t' \boldsymbol{\beta})^2 = \sum_{t=1}^{T} e_t^2 + \sum_{t=1}^{T} [\mathbf{x}_t' (\boldsymbol{\beta} - \mathbf{b})]^2$$

f.) (15 points) Use results (a),(d) and (e) to find the asymptotic distribution of $\sqrt{T}(s^2 - \sigma^2)$ for $s^2 = (T-k)^{-1} \sum_{t=1}^{T} e_t^2$.

g.) (10 points) Explain how you could use the result in (f) to test the null hypothesis that $\sigma^2 = 2$.