Econ 220B, Winter 2009 James Hamilton

Midterm Exam

DIRECTIONS: No books or notes of any kind are allowed. Answer all questions on separate paper. 150 points are possible on this exam.

1.) (50 points) Consider the following regression model:

$$\mathbf{y} = \mathbf{X} \boldsymbol{eta} + oldsymbol{arepsilon}$$
 $oldsymbol{arepsilon} |\mathbf{X} \sim N(\mathbf{0}, \sigma^2 \mathbf{V}(\mathbf{X})).$

Here \mathbf{y} is a $(T \times 1)$ vector of observations on the dependent variable, \mathbf{X} is a $(T \times k)$ matrix of observations on the explanatory variables with rank k, β is an unknown $(k \times 1)$ vector of parameters that must be estimated from the data, σ^2 is an unknown scalar that must be estimated from the data, and $\mathbf{V}(\mathbf{X})$ is a known nonsingular $(T \times T)$ matrix. The regression includes a constant term, so that each element of the first column of \mathbf{X} is equal to unity.

- a.) Give the formula for the OLS estimate of β , denoted $\hat{\beta}_{OLS}$.
- b.) Give the formula for the GLS estimate of β , denoted $\hat{\beta}_{GLS}$.
- c.) Consider the centered R^2 defined as

$$R^{2} = 1 - \frac{\sum_{t=1}^{T} (y_{t} - \mathbf{x}_{t}' \hat{\boldsymbol{\beta}})^{2}}{\sum_{t=1}^{T} (y_{t} - \overline{y})^{2}}$$

where y_t denotes the *t*th element of the original vector **y** defined above and \mathbf{x}'_t denotes the *t*th row of the matrix **X**. Which estimate, $\hat{\boldsymbol{\beta}}_{OLS}$ or $\hat{\boldsymbol{\beta}}_{GLS}$, would produce the larger value for R^2 when plugged into the above formula? Why?

d.) Suggest a statistic you could use to test the null hypothesis $\mathbf{R}\boldsymbol{\beta} = \mathbf{r}$ for \mathbf{R} a known $(m \times k)$ matrix and \mathbf{r} a known $(m \times 1)$ vector. What distribution would you compare this statistic with to test the null hypothesis? Is this distribution an exact small-sample result or only an asymptotic approximation?

Econ 220B, Winter 2009 James Hamilton

2. (100 points) Consider the following regression model:

$$y_t = \mathbf{x}_t' \boldsymbol{\beta} + \varepsilon_t$$
$$T^{-1} \sum_{t=1}^T \mathbf{x}_t \mathbf{x}_t' \xrightarrow{p} \mathbf{Q}$$
$$E(\varepsilon_t^2) = \sigma^2$$
$$E(\varepsilon_t^2 \mathbf{x}_t \mathbf{x}_t') = \mathbf{S}.$$

Here \mathbf{x}_t is a $(k \times 1)$ vector of explanatory variables for the *t*th observation, \mathbf{Q} has rank k, $\{y_t, \mathbf{x}_t\}$ are stationary and ergodic, and $\varepsilon_t \mathbf{x}_t$ is a stationary and ergodic martingale difference sequence.

- a.) Prove that the OLS estimate $\mathbf{b}_T = \left(\sum_{t=1}^T \mathbf{x}_t \mathbf{x}'_t\right)^{-1} \left(\sum_{t=1}^T \mathbf{x}_t y_t\right)$ is consistent.
- b.) Derive the limiting distribution of $\sqrt{T}(\mathbf{b}_T \boldsymbol{\beta})$.
- c.) Suggest estimates that you might use for **Q** and **S**.

d.) Assuming that the estimates you proposed in part (c) are consistent, suggest a statistic that you could use to test the null hypothesis that the first element of β is zero (H_0 : $\beta_1 = 0$).

e.) Derive the asymptotic distribution of the statistic you proposed in part (d).

f.) Suggest a statistic that would have an approximate $\chi^2(m)$ distribution that you could use to test the hypothesis $(H_0: \mathbf{g}(\boldsymbol{\beta}) = \mathbf{0})$ for $\mathbf{g}: \mathbb{R}^k \to \mathbb{R}^m$ a function whose derivative is continuous.