Practice Midterm Exam Questions

DIRECTIONS: No books, notes, or calculators of any kind are allowed.

1.) Suppose that x_t follows an MA(1) process

$$x_{t} = \mu + \varepsilon_{t} + \theta \varepsilon_{t-1}, \quad 0 < \theta < 1$$

$$E(\varepsilon_{t}) = 0$$

$$E(\varepsilon_{t}^{2}) = \sigma^{2}$$

$$E(\varepsilon_{t}\varepsilon_{t-j}) = 0 \quad \text{for } j \neq 0,$$

and we then calculate a new series $y_t = (1 - \rho L)x_t$ for L the lag operator and ρ some real number.

- a.) Calculate the population linear projection of y_t on $(1, \varepsilon_{t-1}, \varepsilon_{t-2})'$.
- b.) For what values of ρ is y_t covariance stationary? Calculate the mean and population spectrum of y_t when those objects exist.
- c.) Let $\overline{y} = T^{-1} \sum_{t=1}^{T} y_t$ denote the sample mean from a sample of size T and consider the variance of the sample mean $E[\overline{y} E(y_t)]^2$ provided $E(y_t)$ exists. Calculate

$$\lim_{T \to \infty, \rho \to 1} TE[\overline{y} - E(y_t)]^2$$

d.) Suppose that $\rho = 2$. Can you find a moving-average representation for the process for y_t of the form

$$y_t = c + v_t + \psi_1 v_{t-1} + \psi_2 v_{t-2} + \cdots$$

where v_t are the fundamental innovations for y_t , that is,

$$v_t = y_t - \hat{E}(y_t|y_{t-1}, y_{t-2}, ...)$$
?

If so, find the values for ψ_j and for $E(v_t^2)$.

2.) Suppose an $(n \times 1)$ vector \mathbf{y}_t can be characterized by

$$\mathbf{y}_t = \mathbf{c} + \mathbf{\Phi}_1 \mathbf{y}_{t-1} + \mathbf{\Phi}_2 \mathbf{y}_{t-2} + \boldsymbol{\varepsilon}_t$$

where ε_t is i.i.d. $N(\mathbf{0}, \mathbf{\Omega})$.

a.) What additional assumptions (if any) would you need to make in order to conclude that \mathbf{y}_t is covariance stationary?

- b.) Give the formulas for the maximum likelihood estimates of $\mathbf{c}, \mathbf{\Phi}_1, \mathbf{\Phi}_2, \mathbf{\Omega}$. Note: you do not need to derive these, just state the formulas for the estimates (or accurately describing them in words is also ok).
- c.) What additional assumptions (if any) would you need in order to be able to interpret the usual OLS t or F tests using the standard t and F tables?
- d.) Calculate the value of the nonorthogonalized impulse-response function for horizon s=2:

$$rac{\partial \mathbf{y}_{t+2}}{\partial oldsymbol{arepsilon}_t'}$$

e.) A researcher estimates a just-identified structural VAR of the form

$$\mathbf{B}_0\mathbf{y}_t = \boldsymbol{\lambda} + \mathbf{B}_1\mathbf{y}_{t-1} + \mathbf{u}_t$$

$$\mathbf{u}_t = \mathbf{\Lambda} \mathbf{u}_{t-1} + \mathbf{v}_t$$

for $\mathbf{v}_t \sim \text{i.i.d. } N(\mathbf{0}, \mathbf{I}_n)$. What is the relationship between the maximum likelihood estimates $\{\hat{\boldsymbol{\lambda}}, \hat{\mathbf{B}}_0, \hat{\mathbf{B}}_1, \hat{\boldsymbol{\Lambda}}\}$ and the values $\{\hat{\mathbf{c}}, \hat{\boldsymbol{\Phi}}_1, \hat{\boldsymbol{\Phi}}_2, \hat{\boldsymbol{\Omega}}\}$ that you specified above?

f.) Give an expression for an estimate of the effect of a structural disturbance \mathbf{v}_t on the value of \mathbf{y}_{t+s} .