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Abstract
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poral allocations of effort, and derive the mapping between these structural estimates
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to discounting parameters in a subsequent experiment with the same vaccinators. This
exercise provides a test of the specific point predictions given by structural estimates
of discounting parameters. We demonstrate that tailoring contract terms to individual
discounting moves allocation behavior significantly towards the intended objective.
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1 Introduction

Nearly every economic decision people make entails some tradeoff through time, whether it is

consumption versus savings, doing a task now or later, building human capital, or investing

in one’s career. Characterizing such choices with structural models of discounting has been

a core challenge for economists for much of the last century, with important contributions by

Samuelson (1937); Koopmans (1960); Laibson (1997) and O’Donoghue and Rabin (2001). The

preference parameters governing such models are of unique value for understanding a broad

range of behaviors, and so have received a great deal of attention in the empirical literature on

intertemporal choice.1

This paper seeks to understand whether the out-of-sample predictions given by structural

estimates of discounting are empirically valid. We conduct a field experiment on workers’

allocation of effort through time, a decision where evidence suggests that present-biased models

of decision-making may be particularly relevant.2 We first estimate the individual discounting

parameters of our workers, and then use these estimates to customize each worker’s contract

to their identified preferences with the intent of reaching a specific intertemporal pattern of

work. That is, we tailor incentives within-subject with the objective of reaching a predicted

out-of-sample target. Our core test of predictive validity compares tailored workers to a control

group which receives untailored, random contract terms.

Interestingly, very little research makes use of the predictive value gained from the articula-

tion and estimation of structural models of discounting.3 When structural estimates or related

1 Examples include Hausman (1979); Lawrance (1991); Warner and Pleeter (2001); Cagetti (2003); Laibson,
Repetto and Tobacman (2005); Mahajan and Tarozzi (2011); Fang and Wang (2015); Harrison, Lau and Williams
(2002); Andersen, Harrison, Lau and Rutstrom (2008); Andreoni and Sprenger (2012a).

2For recent experimental examples, see Kaur, Kremer and Mullainathan (2010, 2015); Augenblick, Niederle
and Sprenger (2015); Carvalho, Meier and Wang (2014) and Augenblick and Rabin (2015).

3What structural models have been used for is for comparison to market interest rates (Hausman, 1979), for
comparison across samples, time, or elicitation and estimation strategies (Coller and Williams, 1999; Frederick,
Loewenstein and O’Donoghue, 2002; Meier and Sprenger, 2015; Andersen et al., 2008), to assess differences in
patience across subpopulations (Kirby, Petry and Bickel, 1999; Tanaka, Camerer and Nguyen, 2010; Harrison
et al., 2002; Dohmen, Falk, Huffman and Sunde, 2010; Lawrance, 1991; Warner and Pleeter, 2001), to conduct
welfare analyses (Laibson, 1997), and to conduct standard counterfactual exercises without out-of-sample testing
(e.g., for how price changes should alter demand (Mahajan and Tarozzi, 2011)).
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measures are used in out-of-sample prediction exercises, the analysis has often been indirect,

linking differences in measured patience to differences in other behaviors without an articu-

lated model for the precise relationship between the two (Chabris, Laibson, Morris, Schuldt

and Taubinsky, 2008b; Meier and Sprenger, 2008, 2012, 2010; Ashraf, Karlan and Yin, 2006;

Dohmen, Falk, Huffman and Sunde, 2006; Castillo, Ferraro, Jordan and Petrie, 2011).4 Though

such correlational exercises yield valuable insights, they could potentially be made more power-

ful by directly employing the theoretical parameters in developing the out-of-sample prediction.5

Our project engages government health workers—termed Lady Health Workers (LHWs)—

associated with polio eradication efforts for the Department of Health in Lahore, Pakistan.

Polio is endemic in Pakistan. Of 350 new worldwide cases in 2014, 297 occurred in Pakistan,

constituting a ‘global public health emergency’ according to the World Health Organization.6

The disease largely affects children under five. The function of LHW vaccinators is to provide

oral polio vaccine to children during government organized vaccination drives, which usually

last two or more days and are conducted approximately every month. Vaccinators are given a

supply of oral vaccine and a neighborhood map, and are asked to travel door-to-door vaccinating

children with a suggested target for vaccinations. Prior to our project there was no technology

for monitoring vaccinators, and vaccinators self reported their achievements. As one might

imagine, vaccinators often fell short of their suggested targets, but rarely reported doing so. This

behavior is consistent with the large literature on public sector absenteeism (Banerjee and Duflo,

2006; Banerjee, Duflo and Glennerster, 2008; Chaudhury, Hammer, Kremer, Muralidharan and

Rogers, 2006; Callen, Gulzar, Hasanain and Khan, 2015).

4One exception is Mahajan and Tarozzi (2011) who use monetary measures for time inconsistency and
purchase and treatment decisions for insecticide treated bednets together to estimate the extent of present
bias and ‘sophistication’ thereof. This exercise can be thought of as articulating the relationship between the
experimental measures of time inconsistency and contract choice to deliver estimates of present bias. One point
noted by Mahajan and Tarozzi (2011) is that the experimental measures wind up having limited predictive
power for estimates of present bias that result from their structural exercise.

5Indeed, such exercises could by-and-large be conducted without appeal to structural estimation. Linking
either non-parametric measures of discounting or structural parameters thereof to other behavior yields largely
the same correlational insights if one does not articulate precisely how how the structural parameters should
predict behavior.

6Between 95 percent and 99 percent of individuals carrying polio are asymptomatic. One infection is therefore
enough to indicate a substantial degree of ambient wild polio virus.
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Since our study requires implementing performance-based incentives, it hinges fundamen-

tally on an accurate measure of productivity.7 To this end, each vaccinator in our sample

is provided a smartphone, equipped with a precise real-time reporting application developed

expressly for this project.

Our tool for both measuring intertemporal preferences and tailoring intertemporal incentives

is a special bonus contract. In this contract, vaccinators set daily work targets, and, conditional

on reaching these targets, receive a sizable bonus. In particular, vaccinators set daily targets

of v1 and v2 vaccination attempts on day 1 and day 2 of the drive, respectively. Vaccinators

face an interest rate, R, such that a single vaccination that is allocated to day 2 reduces by R

the number of vaccinations required on day 1. That is, v1 and v2 satisfy the constraint

v1 +R · v2 = V,

where V = 300. The bonus contract offers a fixed bonus of 1000 rupees (around $10) for

meeting both of their v1 and v2 vaccination target attempts over a two-day drive.8 If either

daily target, v1 or v2, is not met, the bonus is not received.

Chosen allocations, (v1, v2), can be used to structurally estimate discounting parameters for

vaccinators. Experimental variation permits identification of an important behavioral aspect of

intertemporal choice: the existence of present-biased preferences (Laibson, 1997; O’Donoghue

and Rabin, 1999). Vaccinators are randomly assigned to make their allocation decision either

in advance of the first day of the drive or immediately on day 1 itself. Additionally, vaccinators

are randomly assigned an interest rate, R. Under specific structural assumptions, the experi-

7This links our work to a substantial body of recent research in development economics examining the
role of incentives and monitoring in improving public sector performance (Bertrand, Burgess, Chawla and Xu,
2016; Basinga, Gertler, Binagwaho, Soucat, Sturdy and Vermeesch, 2011; Miller, Luo, Zhang, Sylvia, Shi, Foo,
Zhao, Martorell, Medina and Rozelle, 2012; Olken, Onishi and Wong, 2014; Khan, Khwaja and Olken, 2015;
Muralidharan and Sundararaman, 2011).

8Our bonus program paid vaccinators for attempted rather than successful vaccinations to avoid concerns
that vaccinators, motivated by the incentives, would coerce individuals to receive vaccination. Details on the
incentive program are provided in Section 2.2. Slightly more than half of vaccination attempts are successful,
with slightly less than half of vaccination attempts reporting no child present. Appendix Figure A.6 reports
vaccination behavior for each half-hour of the study, demonstrating limited variation in the proportion of
successful and failed vaccination attempts throughout the work day.
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ment identifies a set of aggregate discounting parameters (for similar estimation strategies see

Andreoni and Sprenger, 2012a; Augenblick et al., 2015). And, under additional assumptions,

each vaccinator’s allocation identifies her individual discount factor.

We use the individual discounting parameters from an initial drive to tailor incentive con-

tracts in a follow-up drive. The tailoring policy we adopt is one which uses the interest rate,

R, to induce smooth provision of vaccinations through time, v1 = v2, for every vaccinator.

The optimal choice of interest rate is simple: to ensure smooth provision of service, the policy

must give each vaccinator an interest rate equal to their (appropriately defined) discount factor.

The policy objective we adopt is admittedly arbitrary. As the importance of the exercise is

specifically in choosing a target and measuring predictive success relative to it, many policy

objectives could provide a reasonable test.9 Hence, we view our exercise as a proof of concept

for the potential of such tailored contracting.10

In a sample of 337 vaccinators, we document three principal findings. First, on aggregate,

a present bias exists in vaccination behavior. Vaccinators allocating in advance of day 1 of

the drive allocate significantly fewer vaccinations to v1 than those allocating on the morning

the drive actually commences. Corresponding estimates of present bias accord with those of

prior laboratory exercises. Second, substantial heterogeneity in discounting is observed. This

heterogeneity is important as it points to possible gains from individually-tailored contracts.

Third, tailored contracts work. Relative to random contracts, vaccinators with tailored con-

tracts provide significantly smoother service.

This paper makes three contributions. First, our exercise uses field behavior about effort

9However, there may be specific reason to be interested in smooth provision induced via tailoring of interest
rates. First, there are likely many settings where smooth provision is desirable if, for example, work deteriorates
if done all at once or planning of other tasks and work flow is facilitated by smooth provision. Second, giving
the workers a choice from the menu of options induced by the tailored interest rate retains flexibility on the
part of the worker, which may be desirable if workers are likely to renege from precise prescriptions on work at
every point in time, or there is uncertainty in either the environment or the preference measurement technology.
Third, given our interest in present-biased preferences, one may think that a person choosing in the moment
may generate less smooth intertemporal allocations, delaying costly work, relative to this same person choosing
in advance. Hence, a policy objective of smooth provision may effectively ‘de-bias’ the worker’s choices, making
their allocations look more like their advance choices even if these choices are taken immediately.

10Our experiment also allows us to explore the viability of alternative policy preferences and tailored contracts
such as a policy maker who wishes to maximize the total number of vaccinations. See section 4.2.5 for detail.
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to examine non-standard time preferences, joining a growing literature which identifies present

bias from non-monetary choices in field settings (Read and van Leeuwen, 1998; Sadoff, Samek

and Sprenger, 2015; Read, Loewenstein and Kalyanaraman, 1999; Sayman and Onculer, 2009;

Kaur et al., 2010, 2015; Carvalho et al., 2014).11 Most closely related is the work of Kaur et al.

(2010) and Kaur et al. (2015), who investigate the decisions of Indian data entry workers, also

finding evidence of dynamic inconsistency and self-control problems at work.12

Second, we find that the predictions given by structural preference estimates are, to a large

degree, accurate. While a substantial literature provides evidence that preference measures

correlate with economic behavior, this investigation is the first, to our knowledge, to test

whether the specific point predictions for behavior given by an experimental preference measure

are accurate. Further, we find evidence in Section 4.2.4 that the predictions given by our

structural model may offer advantages beyond atheoretic prediction models optimized using

machine learning techniques.

The third contribution of our paper is to show that preference measures can be used by

principals to improve agents’ incentives.13 Much of the contract theory literature points to the

central role of preferences in determining the optimal design of incentives.14 The unobservabil-

ity of preferences poses a key obstacle to testing the optimality of implemented contracts.15

11These studies include examination of present bias or dynamic inconsistency for food choices (Read and van
Leeuwen, 1998; Sadoff et al., 2015); for highbrow and lowbrow movie choices (Read et al., 1999); for cafe reward
choices (Sayman and Onculer, 2009); for completing survey items (Carvalho et al., 2014); and for fertilizer
purchase decisions (Duflo, Kremer and Robinson, 2011). For discussion of this literature, see Sprenger (2015).

12 Documenting dynamic inconsistency outside of the laboratory and outside of the standard experimental
domain of time dated monetary payments is particularly valuable given recent discussions on the elicitation
of present-biased preferences using potentially fungible monetary payments (Cubitt and Read, 2007; Chabris,
Laibson and Schuldt, 2008a; Andreoni and Sprenger, 2012a; Augenblick et al., 2015; Carvalho et al., 2014). As
in prior research, our results show that when investigating non-monetary choices, dynamic inconsistency may
well have empirical support (see, e.g., Augenblick et al., 2015; Carvalho et al., 2014; Augenblick and Rabin,
2015).

13A classic literature in personnel economics documents the potential benefits of implementing piece rates
relative to lump sum payments (Lazear, 2000; Paarsch and Shearer, 1999; Shearer, 2004) and the elasticity of
effort with respect to the piece rate (Paarsch and Shearer, 2009). Our focus is not on the incentive effects of
piece rates, but rather the benefits of using preference estimates to customize incentives.

14The relevant empirical literature points to a role for risk preference in contractual settings (Jensen and
Murphy, 1990; Haubrich, 1994; Ackerberg and Botticini, 2002; Dubois, 2002; Bellemare and Shearer, 2013)
Chiappori and Salanié (2003) provide a review of empirical tests of predictions from contract theory about the
design of incentives.

15 In a review of the literature, Prendergast (1999) summarizes this point: “While the conclusions taken from
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We measure a normally unobservable preference parameter and then use such measures in

subsequent contract design. Rather than examining whether existing contracts are optimal,

we derive the optimal compensation scheme given a policy instrument (the interest rate), a

policy objective (smooth provision of service), and the measures of preferences, and then ex-

perimentally test whether the optimized scheme improves performance. Our tailored contracts

demonstrate that structural preference estimates based on experimental procedures can assist

the design of incentives.

The paper proceeds as follows: Section 2 presents our experimental design and corresponding

theoretical considerations for structurally estimating time preferences and tailoring contracts,

Section 3 present results, Section 4 provides robustness tests, and Section 5 concludes.

2 Experimental Design and Structural Estimation

Our experiment has three components: eliciting the time preferences of vaccinators; identify-

ing individual discounting parameters, and, after assigning individually tailored contracts to

workers, testing whether these tailored contracts deliver on their specific objective.

In the first subsection below, we describe the smart-phone monitoring application we devel-

oped to track the productivity of our workers. We then describe how we identify discounting

parameters, and how we use these to design our tailored contracts. A fourth subsection provides

details of our experimental design.

2.1 Vaccinations and Smartphone Monitoring

The Department of Health in Lahore, Pakistan, employs Lady Health Worker vaccinators

throughout the city to conduct polio vaccination drives. Every month there is a vaccination

drive that is at least two days long. Vaccinators are organized into teams of one senior worker

this literature could be correct, this seems a poor method of testing agency theory...because many of the factors
relevant for choosing the level of compensation are unobserved; the optimal piece rate depends on risk aversion
and the returns to effort, both of which are unknown to the econometrician...it is a little like claiming that
prices are too high without knowing costs.” (p. 19)
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and one junior assistant. These teams work together throughout the drive. Our experiment

focuses on the incentives of the senior vaccinator.

Prior to our study, the standard protocol for vaccination drives was to provide each vaccina-

tor a fixed target for total vaccinations over the drive and a map of potential households (called

a “micro-plan”). No explicit incentives for completing vaccinations were provided and vacci-

nators received a fixed daily wage of 100 rupees (around $1). Vaccinators were asked to walk

their map, knocking on each compound door, and vaccinating each child for whom parental

permission was granted.16 At the end of each day, vaccinators in each neighborhood convened

with their supervisor and self-reported their vaccination activity for the day.17 In principle, a

monitor could verify the claims.18 In practice, however, there was virtually no monitoring, and

strong reasons to suspect over-reporting.19

In collaboration with the Department of Health, we designed a smartphone-based monitor-

ing system. Each vaccinator in our study was given a smartphone equipped with a vaccination

monitoring application. The vaccinator was asked to record information related to each vac-

cination. Then, she was asked to take a picture of the home visited and her current vial of

vaccine. An image of the main page of the application is provided as Figure 1, Panel A. Data

from the smartphone system were aggregated in real-time on a dashboard available to senior

16Vaccinating a child consists of administering a few drops of oral vaccine. As there is no medical risk of
over-vaccination, vaccinators are encouraged to vaccinate every child for whom permission is granted. For
each attempted vaccination, vaccinators were asked to mark information related to the attempt (number of
children vaccinated, whether or not all children were available for vaccination, etc.) in chalk on the compound
wall. Appendix Figure A.1 provides an example of neighborhood micro-plan, Appendix Figure A.2 provides
an example of a vaccination attempt, and Appendix Figure A.3 provides a picture of a chalk marking on a
compound wall.

17Appendix Figure A.4 provides a picture of the form capturing the self-reports. The second column records
the number of vaccinations for the day. The seventh column reports the number of vials of vaccine used in the
process.

18This could potentially be done by walking the micro-plan and examining the chalk markings on each
compound wall.

19We attempted to independently audit vaccinators by following the trail of chalk markings, but our enumer-
ators found the process too difficult to produce a reliable audit of houses visited. We do, however, know the
targets associated with each micro-plan prior to our monitoring intervention and that vaccinators almost never
reported failing to meet a target. Even with a bonus incentive and smartphone monitoring in place, we find
that vaccinators on average achieve only 62 percent (s.d. = 58 percent) of the target given by their micro-plans.
There is reason to expect that vaccinators would achieve a smaller share of their target with no incentive.
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Panel A: Splash Page Panel B: Slider Bar

Figure 1: Vaccination Monitoring Smartphone App
Notes: The picture is of two screenshots from the smartphone app used by vaccinators. Panel A is depicted after partially scrolling
down. The top bar in Panel A (white letters) translates to “polio survey.” The next panel down (blue letters) translates to
“Dashboard” (literally transliterated). The black letters under the top button translate to “new activity”, the letters under the
second button translate to “send activity” and the letters under the lowest button translate to “set target”. The blue letters in
panel B translate to “set target”. The next line translates to “First day: 133; Second day: 133”. The text next to the box translates
to “finalize target” and the black letters on the bar translate to “set target.”

health administrators.20

The smartphone system allows us to register vaccination attempts and provides a basis for

creating intertemporal bonus contracts designed to elicit vaccinator time preferences. We next

provide an outline of the bonus contracts.

2.2 Intertemporal Bonus Contracts

We worked with the Department of Health to implement intertemporal bonus contracts in

two-day drives in September, November and December of 2014.

The intertemporal bonus contracts required workers to complete a present value total of

V = 300 vaccination attempts in exchange for a fixed bonus of 1000 rupees. Vaccinators

20This dashboard system is based on the technology described in Callen et al. (2015) and is depicted in
Appendix Figure A.5.
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set daily targets, v1 and v2, corresponding to vaccinations on day 1 and day 2 of the drive,

respectively. If either of the vaccination targets, v1 or v2, were not met, the 1000 rupees would

not be received, and the vaccinator would receive only her standard wage.

Each vaccinator was randomly assigned an interest rate translating vaccinations on day 1

to vaccinations on day 2. For each vaccination allocated to day 2, the number of vaccinations

allocated to day 1 would be reduced by R. Hence, the targets v1 and v2 satisfy the intertemporal

budget constraint

v1 +R · v2 = V.

This intertemporal bonus contract is identical to an experimental device termed a Convex

Time Budget used to investigate time preferences (Andreoni and Sprenger, 2012a,b).21 The

intertemporal allocation (v1, v2) potentially carries information on the time preferences of each

vaccinator. We next describe the relevant experimental variation and structural assumptions

that permit us to identify discounting parameters at the aggregate and individual level.

2.2.1 Experimental Variation and Structural Identification

Our design generates two sources of experimental variation. First, each vaccinator is randomly

assigned an interest rate, R, from the set R ∈ {0.9, 1, 1.1, 1.25}. These values were chosen

following Augenblick et al. (2015). Operationally, experimental variation in R was implemented

by providing each vaccinator with a slider bar on the introduction screen of the smartphone

application. Figure 1, Panel B depicts the slider bar with an assigned interest rate, R, equal

to 1.25. The vaccinator was asked to pull the slider bar to their desired allocation (v1, v2) and

then submit. The allocation was required to be submitted before commencing vaccination.

Second, each vaccinator was randomly assigned to either submit their allocation in advance

21For applications to field studies and effort allocations, see Augenblick et al. (2015); Carvalho et al. (2014);
Gine, Goldberg, Silverman and Yang (2010). We also borrow an additional design element from such studies—
minimum allocation requirements—from such studies. In order to avoid vaccinators allocating all their vac-
cinations to a single day of the drive, we placed minimum work requirements of v1 ≥ 12 and v2 ≥ 12. The
objective of minimum allocation requirements is to avoid confounds related to fixed costs. That is, by requiring
vaccinators to work on both days of the drive, we avoid confounding extreme patience or extreme impatience
with vaccinators simply not wishing to come to work on one of the two days.
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of day 1 of the drive or on the morning of day 1. We refer to the first of these as ‘Advance’

decisions and the second as ‘Immediate’ decisions. The assignment to either the Advance or

Immediate group was independent of the interest rate assignment. Section 2.4 describes the

efforts taken to make everything else besides allocation timing equal between these conditions.

Random assignment to Advance or Immediate choice and random assignment of R are

both critical design elements for identifying the discounting parameters of interest. We assume

that individuals minimize the discounted costs of effort subject to the intertemporal budget

constraint provided by their bonus contract. We make two further structural assumptions.

First, we assume a stationary, power cost of effort function c(v) = vγ, where v represents

vaccinations performed on a given day and γ > 1 captures the convex costs of effort. Second, we

assume that individuals discount the future quasi-hyperbolically (Laibson, 1997; O’Donoghue

and Rabin, 1999). Hence, the worker’s disutility of effort can be written as

vγ1 + β1d=1δ · vγ2 .

The indicator 1d=1 captures whether the decision is made in advance or immediately on day

1. The parameters β and δ summarize individual discounting with β capturing the degree of

present bias, active for vaccinators who make Immediate decisions, that is, 1d=1 = 1. If β = 1,

the model nests exponential discounting with discount factor δ, while if β < 1 the decisionmaker

exhibits a present bias, being less patient in Immediate relative to Advance decisions.

Minimizing discounted costs subject to the intertemporal budget constraint of the experi-

ment yields intertemporal Euler equation

(
v1

v2

)γ−1
1

β1d=1δ
=

1

R
. (1)

Taking logs and rearranging yields

log

(
v1

v2

)
=

logδ

γ − 1
+
logβ

γ − 1
1d=1 −

1

γ − 1
logR.
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If we assume that allocations satisfy the above equation subject to an additive error term, ε,

we arrive at the linear regression equation

log

(
v1

v2

)
=

logδ

γ − 1
+
logβ

γ − 1
1d=1 −

1

γ − 1
logR + ε, (2)

which can be estimated with standard techniques. This formulation provides intuition for the

identification of structural parameters from vaccinator allocations, and make clear the purpose

of our experimental variation in R and 1d=1. Variation in the interest rate, R, identifies the

shape of the cost function, γ, while variation in 1d=1 identifies β. Note that δ is identified from

the average level of v1 relative to v2 when decisions are made in advance (i.e., identified from

the constant). An identical strategy for structurally estimating time preferences was introduced

in controlled experiments by Andreoni and Sprenger (2012a), and has precedents in a body of

macroeconomic research identifying aggregate preferences from consumption data.22

The above development delivers aggregate estimates of discounting parameters with each

vaccinator’s allocation contributing a single observation to the aggregate. Exercises exploring

heterogeneity in time preferences document substantial differences across people, even from

relatively homogeneous populations (see e.g., Harrison et al., 2002; Ashraf et al., 2006; Meier and

Sprenger, 2015). Given only a single observation per vaccinator, estimation of all parameters at

the individual level is infeasible. However, we can calculate each vaccinator’s discount factor,

which is either δi for those who make Advance decisions or (βδ)i for those who make Immediate

decisions. To make such a calculation, two further structural assumptions are required. First,

we assume every vaccinator shares a common cost function, γ = 2, corresponding to quadratic

cost. Second, we assume the intertemporal Euler equation (1) is satisfied with equality. Let Ri

be the value of R assigned to individual i, let 1d=1,i be their assignment to Advance or Immediate

choice, and let (v1,i, v2,i) be their allocation of vaccinations. Under the above assumptions, this

equation holds:

Ri · v1,i

v2,i

= (β1d=1,iδ)i. (3)

22See, for example, Shapiro (1984); Zeldes (1989); Lawrance (1991).
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The interest rate-adjusted ratio of allocated vaccinations identifies a discount factor for each

individual, i.

The structural assumptions required for identification of aggregate and individual discount

factors are potentially quite restrictive. Our research design, which involves tailoring contracts

to individual discount factors, requires an ex-ante commitment to the specific functional forms

of equations (1) and (3). Hence, for the purposes of estimation and tailoring, we analyze only

these previously determined functional forms. In sub-section 4.1.2, we assess the validity of a

set of required assumptions and present exploratory analysis related to alternative functional

forms.

2.3 Tailored Contracts

Under the set of structural assumptions above, each vaccinator’s allocation in an intertemporal

bonus contract identifies her discount factor for vaccinations, either δi for those who make

Advance decisions or (βδ)i for those who make Immediate decisions. We consider a policymaker

who knows such preferences and wishes to achieve a specific policy objective. The policymaker

has only one policy lever: manipulation of the interest rate, Ri, at the individual level. We

formalize the problem as maximizing policy preferences, P (v1,i(Ri), v2,i(Ri)), subject to the

vaccinator’s offer curve. The problem is stated as

maxR,i P (v∗1,i(Ri), v
∗
2,i(Ri)),

where (v∗1,i(Ri), v
∗
2,i(Ri)) are defined as the solution to the vaccinator’s minimization problem,

minv1,i,v2,i (v1,i)
γ + (β1d=1,iδ)i · (v2,i)

γ s.t.

v1,i +Ri · v2,i = V.

The solution maps the policy preferences into an interest rate for each vaccinator. One can

consider many potential forms of policy preference, with policymakers desiring a variety of
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intertemporal patterns of effort. As proof-of-concept, we consider first a policy maker with

one extreme form of preference, P (v1,i(Ri), v2,i(Ri)) = min[v1,i(Ri), v2,i(Ri)].
23 Such Leontief

preferences correspond to a policymaker who desires perfectly smooth provision of service. This

problem has an intuitive solution. The worker’s intertemporal Euler equation (3) yields smooth

provision, v1,i = v2,i, when Ri = (β1d=1,iδ)i. Hence, the tailored contracts give each vaccinator

a value of R equal to their (appropriately defined) discount factor. Note that the structural

discounting parameters are critical in this development. With information on discount factors,

contracts can be tailored for each worker to achieve specific policy objectives.

In a second two-day drive, we investigate the promise of tailored contracts. All vaccinators

from the first drive were invited to participate in a second intertemporal bonus contract. Vac-

cinators were unaware that their previously measured behavior would be used to potentially

inform their subsequent contracts. This sidesteps an important possibility that vaccinators

might alter their first drive behavior in order to receive a more desirable interest rate in the

second drive.

Half of vaccinators were given an individually tailored intertemporal bonus contract,

v1,i +R∗i · v2,i = V,

where R∗i = (β1d=1,iδ)i, either (βδ)i or δi depending on whether they made Immediate or

Advance decisions.24 Some vaccinators’ allocation behavior in the first drive implied extreme

discount factors and hence extreme values of R∗i . Our tailoring exercise focused only on a

Tailoring Sample of vaccinators with discount factors between 0.75 and 1.5.25 Vaccinators

outside of these bounds were given either the upper or lower bound accordingly.

23The ability of our data to speak to alternative policy preferences is discussed in section 4.2.5. Leontief
preferences in this environment are extreme, but there is general interest in understanding mechanisms to drive
smooth behavior, particularly for saving and for avoiding procrastination.

24Note that this tailoring exercise requires that vaccinators remain in either the Immediate or Advance
assignment across drives.

25Of our sample of 338 vaccinators, 57 exhibit discount factors outside of this range. The Tailoring Sample
consists of the remaining 281 vaccinators.
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The other half of vaccinators were given a random intertemporal bonus contract,

v1,i + R̃i · v2,i = V,

where R̃i was drawn from a random uniform distribution U [0.75, 1.5]. The bounds on the

distribution of R̃i were determined to match the bounds on R∗i , while the choice of a random

uniform control—rather than a single value of R̃i or some alternative distribution—was chosen

to provide flexible scope for constructing a range of comparison groups for tailored interest rates

by drawing subsets of vaccinators assigned to the R̃i condition (see section 4.2.3 for details).

We find our results are robust to a range of comparison groups.

Random assignment to tailoring in Drive 2 is stratified on the measure of absolute distance

to equal provision |v1
v2
−1|, based on allocations from Drive 1.26 This measure of distance to equal

provision also serves as our eventual measure of distance from equal provision when analyzing

the effect of assignment to tailoring in Drive 2. Stratifying assignment on key outcomes of

interest is standard practice in the field experimental literature (Bruhn and McKenzie, 2009),

as it generally increases precision in estimating treatment effects.

2.4 Design Details

Our experiment is divided into two drives. The first drive took place November 10-11, 2014

with training on November 7. The second drive took place December 8-9, 2014 with training

on December 5.

2.4.1 Training and Allocation Decisions

On November 7, all vaccinators participating in the November 10-11 drive received two hours

of training at one of three locations in central Lahore on using the monitoring features of

the smartphone application. Both Advance and Immediate vaccinators were given identical

26Specifically, subjects are divided into terciles by this measure, with a roughly even number in each bin being
assigned to the tailoring and to the control condition.
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training on the intertemporal bonus contracts and the process by which allocations were made

and submitted.

At the end of the training, vaccinators assigned to Advance decision were asked to select

their allocations by using the page on their smartphone application. Assistance was available

from training staff for those who required it. Vaccinators assigned to Immediate decision were

told they would select their allocations using their smartphone application on Monday morning

before beginning work. A hotline number was provided if assistance was required for those in

the Immediate condition.

The training activities on December 5, for the December 8-9 drive were identical. However,

because vaccinators had previously been trained on the smartphone application, this portion

of the training was conducted as a refresher.

2.4.2 Experimental Timeline

Figure 2 summarizes our experimental timeline and the sample for each vaccination drive of

our study.

Drive 0, Failed Drive, September 26-30, 2014: We had hoped to begin our study on Friday,

September 26th, 2014 with a training session. 336 vaccinators had been recruited, were

randomized into treatments, and trained. Advance allocation decisions were collected from

half of the subjects on Friday, September 26th. On Monday, September 29th, when we

attempted to collect immediate allocation decisions, there was apparently a disruption in the

mobile network that prevented 82 of 168 Immediate decision vaccinators from submitting their

allocations. This caused us to abandon this drive for the purposes of measuring preferences

for subsequent tailoring of contracts. The drive, however, was completed and intertemporal

bonuses were paid. For the 82 individuals who did not make their allocations, we contacted

them, allowed them to continue working, and paid bonuses for all. Figure 2 provides sample

details. For completeness, we present data from Drive 0 in Appendix Table A.3, but do not
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use Drive 0 for the purposes of tailoring contracts.27

Drive 1, November 7-11, 2014: Of the original 336 vaccinators in our failed drive, 57 did not

participate in the next drive organized for November 7 - 11. We recruited replacements with

the help of the Department of Health, identifying a total of 349 vaccinators to participate in

the intertemporal bonus program. The entire sample was re-randomized into interest rate and

allocation timing conditions. Training was conducted on November 7, and Advance allocation

decisions were collected. The drive began on November 10, and Immediate allocation decisions

were collected. 174 vaccinators were assigned to the Advance Choice condition and 175 were

assigned to the Immediate Choice condition. While all 174 vaccinators in the Advance Choice

condition provided an allocation decision, only 164 of 175 in the Immediate Choice condition

provided an allocation. Because 11 vaccinators attrited from the Immediate Choice condition,

we also provide bounds on the estimated effect of decision timing using the method of Lee

(2009). In addition, for 232 vaccinators, we have allocation decisions in both the failed drive,

Drive 0, and Drive 1, forming a potentially valuable panel of response. Figure 2 provides

sample details.

Drive 2, December 5-9, 2014: Of the 338 vaccinators who participated in Drive 1 and provided

an allocation, 337 again participated in Drive 2. These vaccinators were randomly assigned to

be tailored or untailored in their Drive 2 bonus contracts. Importantly, vaccinators retained

their Advance or Immediate assignment, such that Drive 2 delivers a 2x2 design for tailoring

and allocation timing. This allows us not only to investigate the effect of tailoring, but also

whether the effect of tailoring depends on whether present bias is active.

27Appendix Table A.1 checks for balance by failure of the smartphone application in Drive 0. Only one of
the eight comparison of means hypothesis tests reject equality at the 10 percent level.
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Failed Drive 0:
September 26 - 30, 2014

Drive 1:
November 7 - 11, 2014

Drive 2:
December 5 - 9, 2014

Objectives: 1. Measure preferences 
                    2. Test for dynamic inconsistency 

Sample:  336 

Notes:  82 vaccinators of the 336 could not 
 select task allocations because of a 
 problem with the app. 

Sample Allocation:

R=0.9 R=1 R=1.1 R=1.25

Advance 
Choice 43 46 40 45

Immediate 
Choice 41 46 38 39

R=0.9 R=1 R=1.1 R=1.25

Advance 
Choice 42 42 42 42

Immediate 
Choice 42 42 42 42

Objectives: 1. Measure preferences 
                    2. Test for dynamic inconsistency 

Sample:   349 

Notes: Preferences are estimated for 338 of the 
349 vaccinators recruited. A panel for Drive 0 and 
Drive 1 is available for 232 vaccinators. 

Sample Allocation:

Tailored Untailored

Advance Choice 85 88

Immediate Choice 84 80

Objectives: 1. Test tailored contracts 
      2. Test tailoring by decision timing 

Sample:  Tailored (169), Untailored (168) 

Notes:   337 of the 338 vaccinators participating 
in Drive 1 also participated in Drive 2 and were 
assigned to either Tailored or Untailored.  

Sample Allocation:

Figure 2: Experiment Overview

Notes: This figure provides an overview of the timing and sample breakdown of the experiment. Assignment to the advance choice
and immediate choice condition in Drive 2 is inherited from vaccination Drive 1. Note that: (i) 57 vaccinators participated only in
Failed Drive 0; (ii) 6 vaccinators participated in Drive 1 only; (iii) 1 vaccinator participated in Failed Drive 0 and Drive 1, but not
in Drive 2 (iii) 67 vaccinators participated in drives 2 and 3 only; (iv) 271 vaccinators participated in all three rounds.
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2.4.3 Sample Details

Table 1 summarizes our sample of vaccinators from Drive 1 and provides tests of experimental

balance on observables. Column (1) presents the mean and standard deviation for each variable;

columns (2) to (9) present the mean and standard error for each of our eight treatment arms,

and column 10 presents a p-value corresponding to joint tests of equality. Our sample is almost

exclusively female, more than 90 percent Punjabi in all treatment arms, and broadly without

access to formal savings accounts. Vaccinators are generally highly experienced with an average

of 10.5 years of health work experience and 10.4 years of polio work experience. Consistent

with randomization, of the 8 tests performed, only the test performed on an indicator variable

equal to one for Punjabi subjects suggests baseline imbalance.

3 Results

We first report results related to the elicitation of intertemporal preference parameters, then

evaluate the possibility of tailoring incentives based on individual preferences.28

3.1 Elicitation of Time Preferences

3.1.1 Aggregate Behavior

Figure 3 presents median behavior in the elicitation phase of our experiment, graphing the

allocation to the sooner work date, v1, for each interest rate.29 Separate series are provided for

Advance and Immediate choice. In Panel A we provide data for our Full Sample of 338 vacci-

28In addition, to test just the effect of providing the $10 bonus, we randomly assigned 85 vaccinators in Drive
0 to carry a phone but not receive an incentive. 73 of these vaccinators also participated in Drive 1, retaining
the same ‘phone only’ treatment status. In Drive 1, vaccinators in the ‘phone only’ group attempted 169.472
vaccinations (s.e. = 15.98) and vaccinators in the phone plus incentives group attempted 201.32 vaccinations
(se = 7.73) yielding an estimated increase of 31.85 attempts (s.e. = 18.49, p = .09). 49.3% of vaccination
attempts were successful for the ‘phone only’ group while 49.1% of vaccinations were successful for the ‘phone
plus incentives’ group. The difference in success rates between the two groups is small (0.2 percentage points)
and statistically insignificant (p=0.69). We discuss data on task completion in detail in Section 4.1.2 below.

29We opt to provide medians as the average data are influenced by several extreme outliers in allocation
behavior. Qualitatively similar patterns are, however, observed.
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Table 1: Summary Statistics and Covariates Balance

Full Advance Decision Immediate Decision p-value
Sample R=0.9 R=1 R=1.1 R=1.25 R=0.9 R=1 R=1.1 R=1.25

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Demographics
Gender (Female = 1) 0.985 1.000 1.000 1.000 0.978 0.975 0.978 0.947 1.000 0.284

[0.121] (0.000) (0.000) (0.000) (0.022) (0.025) (0.022) (0.037) (0.000)

Years of Education 10.415 10.767 10.652 10.650 10.279 9.850 10.565 10.184 10.282 0.500
[2.291] (0.416) (0.273) (0.462) (0.330) (0.298) (0.368) (0.238) (0.395)

Number of Children 3.424 3.419 3.422 3.538 3.286 3.605 3.391 3.421 3.333 0.997
[1.826] (0.279) (0.301) (0.309) (0.296) (0.286) (0.274) (0.243) (0.294)

Punjabi (=1) 0.952 0.930 0.932 1.000 0.955 0.950 0.978 0.917 0.947 0.022
[0.215] (0.039) (0.038) (0.000) (0.032) (0.035) (0.022) (0.047) (0.037)

Financial Background
Has a Savings Account (=1) 0.269 0.310 0.250 0.275 0.302 0.350 0.283 0.189 0.179 0.630

[0.444] (0.072) (0.066) (0.071) (0.071) (0.076) (0.067) (0.065) (0.062)

Participated in a ROSCA (=1) 0.389 0.349 0.378 0.425 0.350 0.500 0.289 0.351 0.487 0.482
[0.488] (0.074) (0.073) (0.079) (0.076) (0.080) (0.068) (0.079) (0.081)

Health Work Experience
Years in Health Department 10.520 10.605 10.578 10.211 11.549 9.050 10.678 10.395 11.026 0.456

[4.961] (0.777) (0.695) (0.685) (0.792) (0.695) (0.846) (0.867) (0.808)

Years as Polio Vaccinator 10.428 10.209 10.728 11.050 11.143 9.238 9.935 10.447 10.692 0.581
[4.727] (0.758) (0.689) (0.668) (0.743) (0.689) (0.713) (0.858) (0.751)

# Vaccinators 338 43 46 40 45 41 46 38 39

Notes: This table checks balance across the eight treatment groups. Column 1 presents the mean for each variable based on our sample
of 338 vaccinators. These 338 vaccinators comprise the estimation sample in Table 2, which reports tests of dynamic inconsistency.
Standard deviations are in brackets. Columns 2 to 9 report the mean level of each variable, with standard errors in parentheses, for
each treatment cell. For each variable, Column 10 reports the p-value of a joint test that the mean levels are the same for all treatment
cells (Columns 2–9). The last row presents the number of observations in each treatment condition. A ROSCA is an informal Rotating
Savings and Credit Association. Some calculations used a smaller sample size due to missing information. The proportion of subjects
with missing information for each variable is never greater than 3.5 percent (8 vaccinators did not report whether they had participated
in a ROSCA).

nators who provided allocations in Drive 1. In Panel B we focus only on our Tailoring Sample

of 281 vaccinators, trimming 57 vaccinators with extreme allocation behavior that would imply

individual discount factors from equation (3) outside of the range of [0.75, 1.5]. Two features

of Figure 3 are notable. First, subjects appear to respond to the between-subject variation in

interest rate. As the value R increases, vaccinations allocated to v1 count relatively less to-

wards reaching the two-day target of V = 300. Vaccinators respond to this changing incentive

by reducing their allocation of v1. Second, there is a tendency of present bias. Vaccinators

appear to allocate fewer vaccinations to v1 when making Immediate choice.
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Table 2 presents corresponding median regression analysis for aggregate behavior in Drive

1.30 We regress v1 on R and whether the allocation decision is immediate. Column (1) echoes

the findings from Figure 3, Panel A: in our Full Sample, vaccinators assigned to Immediate

choice allocate a median of 2.00 (s.e. = 1.13) fewer vaccinations to v1 than those assigned to

Advance choice. Similar patterns are observed in column (2), focusing only on our Tailoring

Sample. Vaccinators in the Tailoring Sample allocate a median of 3 fewer vaccinations to v1

when making immediate choice. As discussed in Section 2.4.2 above, 11 vaccinators attrited

from the sample in the immediate choice condition in Drive 1. Bounding the effect of being

assigned to the immediate choice condition on v1 allocations using the method of Lee (2009)

provides a lower bound of −3.78 tasks (s.e. = 2.06) and an upper bound of 0.205 (2.06) tasks.

Table 2: Aggregate Drive 1 Behavior

Dependent variable: Tasks Allocated to the First Day of the Drive (v1)

Full Sample Tailoring Sample

(1) (2)
Median Median

Immediate Decision (=1) -2.00* -3.00***
(1.13) (0.91)

Interest Rate (R) -54.29*** -66.67***
(4.38) (3.66)

Constant 201.86*** 216.33***
(4.72) (3.93)

Median Advance Choice 146.5 148
# Observations 338 281

Notes: This table reports on the effects of decision timing and interest rate variation on
vaccinations allocated to the first day of the drive during Drive 1. Median regression coefficients
with standard errors are reported in parentheses. Immediate Decision is an indicator equal to
one for vaccinators selecting their allocations on the morning of the vaccination drive. The
interest rate R takes the values R ∈ {0.9, 1, 1.1, 1.25}. Table 3 provides corresponding between-
subject structural preference parameter estimates of β, δ, and γ. Levels of Significance: *p <
0.1, **p < 0.05, ***p < 0.01.

30Appendix Table A.3 presents identical analysis incorporating data from failed Drive 0, and identifies qual-
itatively similar effects.
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Figure 3: Aggregate Experimental Response

Notes: This figure examines whether tasks assigned to the sooner work date respond to the experimental variation in the interest
rate R and in decision timing. Points in the plots are medians for each of the eight treatment groups respectively. Panel A depicts
the Full Sample and Panel B depicts the tailoring sample (vaccinators with R∗ < 0.75 or R∗ > 1.5). Circles are advance choice
groups and diamonds are immediate choice groups.
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3.1.2 Aggregate Preference Parameters

The raw data of Figure 3 and analysis of Table 2 indicate responsiveness of vaccinators to our

experimental parameters, R and whether allocations are Immediate or Advance. Equation (2)

links allocation behavior to these experimental parameters via a structural model of choice. In

Table 3 we present parameter estimates from maximum likelihood estimations of equation (2)

with ε ∼ N(0, σ2) under a set of structural assumptions and sample restrictions.

In columns (1) and (3) of Table 3, we present estimates restricting γ = 2 (quadratic costs)

for the Full Sample and the Tailoring Sample. These estimates serve as an aggregate benchmark

for our individual analysis which calculates individual discount factors under the assumption

of quadratic costs. In column (1), we estimate a daily δ of 1.013 (0.018), β of 0.955 (0.037).

Though we find an aggregate present bias parameter less than one, echoing the raw results, our

estimate of β cannot be statistically distinguished from 1, χ2(1) = 1.50, (p = 0.22). A similar

finding is obtained when focusing only on the Tailoring Sample in column (3).

In columns (2) and (4) of Table 3, we relax our restriction of quadratic costs and attempt to

estimate the shape of the cost function. In these estimates we restrict γ ∈ [1, 4] by estimating

the parameter of a box constraint, a, such that γ = 1 + 3 · 1
1+exp(a)

. This restriction ensures

allocations are indeed minima (i.e., γ > 1) and allows costs to be substantially convex (i.e.,

up to quartic). Relaxing our restriction on γ alters somewhat the conclusions with respect to

discounting. In particular, β and δ are both estimated to be further from 1 in columns (2) and

(4) relative to columns (1) and (3). In column (2), we estimate an aggregate β of 0.878 (0.094),

close to the estimates from controlled laboratory choices over effort (Augenblick et al., 2015;

Augenblick and Rabin, 2015). Once again, however, our estimate of β cannot be statistically

differentiated from 1, χ2(1) = 1.69, (p = 0.19).

It is important to note that in both columns (2) and (4) the cost parameter a is estimated

to be in excess of -15, implying γ extremely close to 4. Estimating close to the edge of the

box constraint may suggest some mis-specification in functional form or constraint choice. In

section 4.1.2, we attempt to evaluate the appropriateness of our functional form assumptions
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Table 3: Aggregate Parameter Estimates, Drive 1

Full Sample Tailoring Sample

(1) (2) (3) (4)

β 0.955 0.878 0.977 0.957
(0.037) (0.094) (0.019) (0.041)

δ 1.013 0.934 1.029 0.983
(0.018) (0.040) (0.013) (0.027)

a - -16.423 - -33.452
- (0.493) - (1.917)

γ = 1 + 3 · 1
1+exp(a)

2 4 2 4

ln(σ) -1.049 -1.141 -1.838 -2.141
(0.150) (0.183) (0.032) (0.044)

# Observations 338 338 281 281
Log-Likelihood -125.092 -94.034 117.861 202.774

Notes: This reports structural estimates of β, δ, and γ obtained using
Maximum Likelihood Estimation based on Equation (2). Standard er-
rors are reported in parentheses. Estimates in columns (1) and (3) are
obtained imposing the restriction γ = 2. Estimates in columns (2)-(4)
remove this restriction.
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and assess plausible alternative formulations. These exercises identify an important issue with

respect to the estimates of Table 3: the estimated parameters predict more sensitivity to R

than truly exists in the data.31 This potential mis-specification presents a clear challenge for

using individual preference parameters for tailored contracts. Having committed to a possibly

mis-specified functional form ex-ante, any success in tailoring contracts should likely be viewed

as a lower bound on the potential benefits of such initiatives.

3.1.3 Individual Preference Parameters

The aggregate estimates of Table 3 mask substantial heterogeneity across subjects. Following

equation (3), we calculate individual discount factors for each vaccinator assuming quadratic

costs. For those vaccinators assigned to Advance choice, this discount factor corresponds to δi,

while for those assigned to Immediate choice it corresponds to (βδ)i. In Drive 1, the median

[25th-75th %-ile] discount factor in Advance choice is 1.015 [0.88, 1.18], while the median

discount factor in Immediate choice is 1 [0.84, 1.21].

As noted above, an important minority of vaccinators have extreme discount factor calcu-

lations. Fifty-seven of 338 subjects in Drive 1 have implied discount factors either above 1.5

or below 0.75.32 We term such vaccinators the ‘Boundary Sample.’ As our tailoring exercise

focuses on individuals with discount factors between 0.75 and 1.5, we restrict our individual

analysis to the 281 vaccinators in the Tailoring Sample and discuss the Boundary Sample in

robustness tests (see section 4.2). Figure 4 presents histograms of implied discount factors for

the 281 Tailoring Sample vaccinators in Advance and Immediate decisions. Two features are

notable. First, in both contexts substantial heterogeneity in discount factors is observed. The

25th to 75th percentile ranges from 0.92 to 1.15 in Advance choice and from 0.88 to 1.15 in

Immediate choice. Second, a present bias is observed in the shape of the distributions. The

31Appendix Figure A.7 reproduces Figure 3, with in-sample predictions from Table 3, columns (2) and (4).
Though the estimates do match the responsiveness of behavior from R = 1 to R = 1.1, they do not generate
the lack of sensitivity for other changes in R.

32Such extreme behavior is slightly more pronounced in Immediate choice (34 vaccinators) relative to Advance
choice (23 vaccinators), (t = 1.84, p = 0.07).
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Notes: This figure provides histograms of one period discount factors separately for subjects in the Advance Choice condition
(left panel) and the Immediate Choice condition (right panel). The sample is restricted to vaccinators in the Tailoring Sample
(vaccinators with R∗

i ≥ 0.75 or R∗
i ≤ 1.5).

one period discount factors are skewed below 1 in Immediate relative to Advance choice. A

Kolmogorov-Smirnov test marginally rejects equality of distributions (DKS = 0.15, p = 0.09).

The observed heterogeneity in discount factors across vaccinators resonates with prior ex-

ercises demonstrating heterogeneity of preferences even with relatively homogeneous samples

(see e.g., Harrison et al., 2002; Ashraf et al., 2006; Meier and Sprenger, 2015). Further, this

heterogeneity carries some promise for the possibility of individually-tailored contracts.
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3.2 Tailored Contracts

Individual discount factors from Drive 1 in hand, we turn to the possibility of tailoring intertem-

poral contracts to individual preferences. Of the 281 vaccinators in the Tailoring Sample, 280

participated in Drive 2.33 Of these, 142 vaccinators were assigned a value of R equal to their

discount factor. That is, tailored vaccinators were assigned R∗i = (β1d=1,iδ)i, which should in-

duce equal provision of effort through time, v1,i = v2,i. The remaining 138 vaccinators serve as

control and were assigned a uniform random interest rate R̃i ∈ U [0.75, 1.5].34

Panel A of Figure 5 plots the individual discount factor measured during Drive 1 against

the assigned R in Drive 2 separately for the tailored and untailored groups. In the left panel,

by design, there is no clear relationship between discount factors and the assigned interest

rates. In the right panel, there is a strict one-to-one mapping along the 45 degree line between

discount factors and the Drive 2 interest rates, consistent with the assignment R∗i = β1t=1,iδi in

the tailored group.

Panel B of Figure 5 plots vaccinations allocated to the first day of the drive against vac-

cinations allocated to the second day of Drive 2 separately for the tailored and the untailored

group. Notable from Figure 5 is the relative dispersion of the untailored controls around the

45-degree line of equal provision relative to the tailored treatments.

We examine differences in the distance from the 45-degree line of equal provision using the

metric |v1,i
v2,i
− 1|. The mean distance for the untailored group is 0.61 (s.d. = 3.64) while the

mean distance for the tailored group is 0.14 (s.d. = 0.23), t278 = 1.53, (p = 0.13). The lack of

statistical significance is due primarily to several substantial distance outliers. Trimming the

top and bottom 1% of the sample of Drive 2 allocations, the mean distance for the untailored

group is 0.15 (s.d. = 0.19), while the mean distance for the tailored group is 0.10 (s.d. = 0.11),

t265 = 3.10, (p < 0.01).

33Vaccinators from the boundary sample were allowed to participate in Drive 2 and were either assigned
R̃i ∈ U [0.75, 1.5] if they were in the untailored control group (31 subjects) or assigned Ri = 0.75 or Ri = 1.5 if
they were in the tailored group and had R∗

i < 0.75 (15 subjects) or R∗
i > 1.5 (11 subjects). See section 4.2 for

analysis of the boundary sample.
34As noted in section 2.3, assignment to the tailored or the untailored group was conducted via stratified

randomization with strata based upon the tercile of differences from equal provision of effort in Drive 1.
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In Table 4, we provide corresponding least squares regression analysis. Following best

practice for such analysis (Bruhn and McKenzie, 2009), we control for fixed effects for each

stratum in the stratified randomization. In column (1), we analyze all 280 subjects and note

a sizable reduction in distance under tailoring that falls just outside the range of significance.

Echoing our raw results, when excluding outliers in column (2), we find that tailoring serves

to reduce distance from equal provision significantly by around six percentage points. Relative

to the untailored controls, tailoring reduces distance from equal provision by around one-third,

indicating substantial benefits to our tailored policy initiative. In column (3), we additionally

control for the value of R∗i or R̃i assigned in Drive 2. This regression identifies whether tailoring

generates more equal provision for a given value of R, and hence controls for any differences in

interest rates across tailored and untailored groups. Again, tailoring serves to reduce distance

significantly.

Vaccinators assigned to Advance choice in Drive 1 remain in Advance choice in Drive 2,

while those assigned to Immediate choice remain in Immediate choice. In columns (3)-(6) of

Table 4, we examine differential effects of tailoring across these two groups. Given that the

individual discount factors skew lower in Immediate choice, one might expect larger distance

measures in Immediate controls (and hence greater benefits to tailoring). This is precisely

what is observed. Untailored Immediate choice is associated with significantly larger distance

measures and tailoring for Immediate choice significantly reduces these distances. In columns

(5) and (6), excluding outliers, we find that tailoring in Immediate choice reduces distance from

equal provision by around one-half. Note that this effect size (8.4 percentage points) is similar

to the effect of moving a vaccinator from advance to immediate choice in the untailored group

(8 percentage points). Tailoring in Advance choice appears to directionally reduce distance as

well, but the effect is not significant, potentially due to the relatively small average distance

measure identified in untailored Advance choice.

The findings of Table 4 indicate potential benefits to tailored policy initiatives. For a

given interest rate, matching this interest rate to individual preferences generates smoother
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service provision. The effects are to reduce distance measures by around one-third on average

and around one-half in Immediate choice. This suggests that policy makers wishing to alter

intertemporal choices of workers may be able to achieve their goals through tailored contracts.

Our findings show particular promise for tailoring contracts to change behavior in settings

where present bias is relevant.

Table 4: The Effect of Tailoring Intertemporal Incentives

Dependent variable: |v1,i

v2,i
− 1|

(1) (2) (3) (4) (5) (6)

Tailored (=1) -0.489 -0.059*** -0.049*** -0.070 -0.019 -0.014
(0.321) (0.019) (0.018) (0.069) (0.019) (0.019)

Immediate Choice (=1) 0.982* 0.125*** 0.117***
(0.573) (0.035) (0.035)

Tailored x Immediate -0.888 -0.090** -0.084**
(0.604) (0.040) (0.040)

Constant 1.407 0.159*** 0.022 0.873 0.094*** -0.004
(0.860) (0.023) (0.058) (0.552) (0.026) (0.057)

Stratum FEs Yes Yes Yes Yes Yes Yes
Exclude 99th and 1st Percentiles No Yes Yes No Yes Yes

Drive 2 R∗i or R̃i No No Yes No No Yes

R-Squared 0.035 0.060 0.082 0.053 0.142 0.154
Mean in Untailored Contract 0.612 0.153 0.153 0.612 0.153 0.153
Mean in Untailored Advance 0.089 0.089 0.089
Mean in Untailored Immediate 0.701 0.169 0.169
# Vaccinators 280 267 267 280 267 267

Notes: This table reports the effects of tailoring on the equality of effort provision over time. The measure | vtvt+1
− 1|

(the percentage difference between tasks allocated to day 1 and day 2 of the drive) reflects the distance of the task
allocation (v1,v2) from equality (v1 = v2). Column (1) reports a regression of this measure on an indicator equal to
one for subjects in the tailored group. Column (2) reports estimates from the same specification excluding outliers.
Column (3) controls for the interest rate assignment in round 2. Column (4) provides estimates on the same sample as
column (1) interacting treatment with being in the immediate choice condition. Columns (5) and (6) apply the same
restrictions to the sample as columns (2) and (3) respectively. Ordinary least squares regressions. Heteroskedasticity
robust White standard errors reported in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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4 Robustness Tests and Additional Exercises

In the following sub-sections, we explore robustness to a set of plausible alternative interpreta-

tions and provide a set of natural additional examinations.

4.1 Identification of Time Preferences and Present Bias

Our data show a general tendency towards greater impatience when choice is Immediate. We

first examine the robustness of these results to estimation using only within-subject variation

from our panel of subjects who participated in Drives 0 and 1, and who changed from Advance

to Immediate choice. We then examine the validity of a set of structural assumptions required

to infer discounting parameters from vaccinator allocation behavior.

4.1.1 Within-Subject Variation

As shown above, in Drive 1, relying on between subjects tests, we cannot reject β = 1 in any

specification. Given the wide heterogeneity in observed patience regardless of decision timing,

one may fail to statistically identify present bias even if it exists on average. Indeed, most

studies of present bias and dynamic inconsistency are conducted as within-subject exercises,

potentially because of such wide heterogeneity.

Fortunately, our failed Drive 0 and the corresponding re-randomization in Drive 1 allows us

to identify present bias within-subject for vaccinators who changed from Advance to Immediate

choice (or vice versa) across drives. We re-conduct the analysis of Table 3, focusing on a

panel of 126 vaccinators who changed between Advance and Immediate choice across Drives.

Using such within-subject variation, we reject the null hypothesis of no present bias at the 5%

level. Moreover, the effect is robust to just examining those who transitioned from Advance to

Immediate, or just those who transitioned from Immediate to Advance. See Appendix Table

A.2 for details. One critique of our between-subject design is that all subjects in Immediate

choice made their decisions on the same day. Some idiosyncratic shock on Day 1 of Drive 1

could lead to present bias. These findings indicate that if something specific is occurring on
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Day 1 of Drive 1, a similar shock must occur several weeks previously on Day 1 of Drive 0.35

These 126 vaccinators also provide an opportunity to investigate present bias at the in-

dividual level. Following equation (3), we calculate a discount factor for each condition the

vaccinator faces. The parameter δ is identified as the discount factor from Advance choice

while β is identified as the discount factor from Immediate choice divided by that of Advance

choice. Interestingly, as in as in our analysis of discount factors, we find δ is centered around

1 with a median value of 1.04, and that β is skewed below 1 with a median value of 0.95.

Sixty-nine (54.8%) of 126 vaccinators have β < 1, 6 (4.8%) have β = 1, and 51 (40.5%) have

β > 1. A sign test for the null hypothesis that the median β is equal to 1 yields a p-value of

0.12 (two-sided test).36 Together, these results show that general patterns of present bias are

observed at the aggregate and individual level when investigating only within-subject variation

in a sub-sample of 126 vaccinators who change between Advance to Immediate choice across

conditions. See Figure A.8 for graphical detail.

4.1.2 Structural Assumptions

As in any structural exercise, a set of assumptions are required to infer discounting parameters

from vaccinator allocation behavior. Six assumptions are relevant for the present discussion,

which we discuss below.

Assumption 1: Stationarity of the Cost Function: We assume the cost function is the same for

day 1 and day 2. If sooner costs are forecasted to be more severe than later costs, vaccinators

may appear disproportionately impatient, while if later costs are forecasted to be more severe,

they may appear disproportionately patient. Further, if perceived costliness of vaccinations

35More concretely, if vaccinator A is assigned to advanced choice in Drive 0 and immediate choice in Drive 1,
and vaccinator B is assigned to immediate choice in Drive 0 and advanced choice in Drive 1, then an idiosyncratic
shock (say it is local to immediate choice, such as a revelation that it is raining on the first day of the drive)
needs to affect vaccinator A when the drive starts during Drive 0 (in September) and vaccinator B when the
drive starts during Drive 1 (in November). Randomization at the level of the vaccinator, among vaccinators all
working in two neighborhoods in Lahore, narrows the set of plausible shocks that would satisfy these conditions.

36For the one-sided test with an alternative of β < 1, the p-value is 0.06. Excluding a single subject with β
in excess of 19 reduces the two-sided (one-sided) p-value to 0.10 (0.05).
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changes from Advance to Immediate choice, present bias measured by β is conflated with non-

stationarity.

Importantly, our monitoring technology provides time-stamps and geo-stamps for vacci-

nation activity. Time stamps are recorded every vaccination attempt, while geo-stamps are

collected approximately every 10 vaccination attempts. This may provide independent means

for assessing the costliness of tasks from time use. For each vaccinator, we identify the median

time lapse between vaccination attempts and the median distance covered per 30 minute win-

dow each day.37 Of our 338 vaccinators, measures for median time lapse between vaccination

attempts are available for 277 on either Day 1 or Day 2 and for 228 vaccinators on both days

of Drive 1.38 Of our 338 vaccinators, measures for median distance traveled every 15 minutes

are available for 274 on either Day 1 or Day 2 and for 224 vaccinators on both days of Drive

1.39

Vaccinators take around 3.4 minutes between vaccination attempts and walk around 0.06

miles per 15 minutes on Day 1. Focusing on individuals with measures on both days of the drive,

we find that time taken and distance traveled are uncorrelated both with Advance choice and

with discount factors within condition. Time and distance are also uncorrelated with Advance

37We focus only on the distance traveled and time taken for vaccinations between 8 am and 6pm each day.
The distribution of time taken and distance traveled carried some extreme outliers for some subjects. As such,
we felt the median was an appropriate summary statistic. Though we had expected to receive geo-stamp data
approximately every 10 vaccination attempts, when the monitoring data arrived we noted substantial variance
in the number of vaccinations with common geo-stamps and sequences of geo-stamps which ‘bounced’ back and
forth between geographic coordinates. In order to not overstate subject movements, we opted to take average
coordinates within a 15 minute window and calculate direct-line distance between window-average coordinates
as our measures of distance.

38265 vaccinators have Day 1 lapse data while 240 have Day 2 lapse data. Of the 73 vaccinators with missing
Day 1 data, 68 completed either zero or one vaccination on Day 1 such that time lapse between vaccination
attempts is not calculable. The remaining 5 conducted vaccinations but did not have phones that interacted
with the server to report time use. Of the 98 vaccinators with missing Day 2 data, 92 of them completed either
zero or one vaccination on Day 2 and the remaining 6 did not have phones that interacted with the server to
report time use. Those vaccinators who completed vaccinations but did not have interaction with the server
had their vaccination records pulled manually from their phones after the drive.

39260 vaccinators have Day 1 distance data while 238 have Day 2 distance data. Of the 78 vaccinators with
missing Day 1 data, 72 completed four or fewer vaccination attempts on Day 1 such that distance traveled
between 15 minute windows is not calculable. The remaining 6 conducted vaccinations but either did not
have phones that interacted with the server to report location or had faulty Global Position Systems (GPS) in
their phones. Of the 100 vaccinators with missing Day 2 data, 96 of them completed four or fewer vaccination
attempts on Day 2 and the remaining 4 did not have phones that interacted with the server to report location
or had faulty GPS.
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choice and discount factors on Day 2 of the drive. Further, differences in time taken or distance

walked are statistically indistinguishable from zero, uncorrelated with allocation timing, and

uncorrelated with discount factors within condition. These data indicate stability in required

average effort per vaccination which is unrelated to assignment to Advance or Immediate choice,

and that changes in efficacy are unrelated to measured preferences. This suggests that perceived

changes in costs likely do not drive our measures of patience or our finding of present bias.40

These results are all presented in Appendix Table A.4.

If Advance and Immediate choices were governed by different, but constant, cost functions,

this could result in another violation of stationarity. This possibility can be investigated

directly in the data. Because we have experimental variation in interest rates in both

Advance and Immediate choice, the cost parameter, γ, can be estimated for both conditions.

In Appendix Table A.5, we report estimates of a single discount factor and γ for both

Advance and Immediate choice. While costs are estimated to be similarly convex in both

Advance and Immediate choice, discount factors vary in an economically meaningful way.

Furthermore, while we fail to reject that the discount factor is equal to one in Advance

choice, we reject the null hypothesis of one in Immediate choice. Appendix Table A.5 in-

dicates that non-stationarity in discount factors is more apparent than non-stationarity in costs.

Assumption 2: Unobserved Idiosyncratic Costs: We assume that vaccinations are the only

argument of costs when identifying time preferences. However, there may be idiosyncratic costs

across time or individuals that could influence measured patience. For example, a vaccinator

with an appointment lasting 2 hours on Day 1 and no appointments on Day 2 may find it

extremely costly to allocate vaccinations to Day 1. This may appear to the researcher as

impatience, but only reflects the vaccinator’s idiosyncratic costs across days. Further, if such

idiosyncratic events are easier to re-organize when making Advance choice, present bias may

40Ultimately, such stationarity is likely to be expected given that vaccinators are already well-versed in
vaccination procedures, have an average of 10.5 years of experience as vaccinators, and received a half day’s
training on the vaccination monitoring application.
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be conflated with ease of scheduling.

Here, again, the additional data on vaccinator time use available from the monitoring

application is potentially valuable. We can investigate whether extended periods of non-

vaccination exist and if they are correlated with measured preferences and allocation timing.

As in the example above, a vaccinator with an extended period of non-vaccination may well

be experiencing forecasted idiosyncratic costs unrelated to vaccinations. Appendix Table A.6

repeats the analysis from Appendix Table A.4, with dependent variables of the maximum

daily time lapse between vaccination attempts and whether the longest daily break is in

excess of two hours. Longest daily breaks are, on average, around 59 minutes on Day 1 with

around 13% of vaccinators taking longest breaks in excess of 2 hours. Focusing on individuals

with measures on both days of the drive, we find that the length of longest breaks and the

probability of 2 hour breaks are uncorrelated with Advance choice and uncorrelated with

discount factors within condition. Almost identical patterns are observed on Day 2 of the

drive. Differences in break behavior across days are statistically indistinguishable from zero,

uncorrelated with allocation timing, and uncorrelated with discount factors within condition.

These data suggest that idiosyncratic costs identified from taking extended breaks do not

explain the extent of impatience in the sample, and that potential difficulties in rescheduling

do not explain observed present bias.

Assumption 3: Deterministic Environment: Our exercise assumes that individuals can per-

fectly forecast their own future costs of vaccination. A plausible alternative is that costs are

uncertain. The natural evolution of uncertainty through time may lead to differences in mea-

sured preference parameters across groups. Though the resolution of uncertainty may lead to

apparent dynamic inconsistency, the direction is not clear. Some vaccinators may grow more

patient as uncertainty is resolved, some less so.41

One potential, albeit imperfect, test for the effect of uncertainty in the environment is

41Naturally, if shocks to costs do underly our observed differences in patience across individuals, one might
not expect to be able to tailor contracts at the individual level over time with the success that we have.
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to examine differences in experience across individuals.42 More experienced vaccinators may

have a more complete understanding of the difficulty of tasks and may face less uncertainty

when making allocation decisions. As noted, vaccinators have an average of more than 10

years of experience in health work. In Table A.7, we separate our sample either at the

median of experience (9 years) or at 15 years of experience.43 Separating at the median, we

find virtually no differences in estimated preferences. Separating at 15 years of experience,

we find that, if anything, more experienced subjects are somewhat more present-biased

than their less experienced counterparts. This indicates that experienced individuals who

are likely to have the least surprises in costs through time neither yield dramatically dif-

ferent estimates of patience, nor are they disproportionately likely to be dynamically consistent.

Assumption 4: Identical Cost Functions: Our aggregate exercise assumes identical costs across

subjects, and our individual elicitation assumes identical quadratic costs. Though these as-

sumptions allow for straightforward estimation and calculation of time preferences, any viola-

tion would lead us to confound differences in patience across individuals or across allocation

timing with differences in costs. One natural view would be to assume that individuals do not

discount at all, δ = 1 and β = 1, such that allocations identify only the shape of the cost func-

tion. In this case, when R = 1, all vaccinators, regardless of allocation timing, should exhibit

v1 = v2 = 150 for all values of γ.44 Examining the Drive 0 and Drive 1 data, we find that for

163 vaccinators who were assigned R = 1, the mean allocation is v1 = 140.84 (s.d. = 24.76).45

Though the median allocation is indeed 150, responses range widely with 5th-95th percentiles of

response being 103 to 160. If heterogeneity in costs were driving response and discounting was

not a key feature of the data, one would not expect to see this extent of variation in response

when R = 1. Further, given random assignment to allocation timing, heterogeneity in costs

does not easily rationalize the observed present bias in the data.

42This test is imperfect as experience may correlate with other differences across vaccinators.
43Experience measures are available for 329 of 338 vaccinators in Drive 1.
44This is because the Euler equation reduces to (v1v2 )γ = R = 1, which implies v1

v2
= 1.

4542 of 163 vaccinators allocated exactly v1 = v2 = 150.
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One additional point that warrants attention is that whenever we estimate the homogeneous

cost function parameter, γ, substantial convexity in costs is estimated. Indeed, even with

the relatively extreme curvature estimates, our estimated models predict more sensitivity to

changing interest rates than exist in the data. We wondered whether one could identify subsets

of vaccinators for whom behavior was more sensitive to price and hence curvature estimates

were less convex. In Table A.9, we show that a subset of subjects, in particular those with

more than 15 years of experience that are working in an urban environment, have substantially

less convex cost functions relative to their less experienced or non-urban counterparts.46

Albeit exploratory, such analysis suggests that vaccinators who are experienced vaccinators

and who are in an environment where they can vaccinate rapidly, are indeed more sensitive

to price changes and hence have less convex estimated costs. Though such a finding helps

to understand the relative lack of price sensitivity in the broad sample47, it also indicates a

potential misspecification in costs. Not only are costs likely to be heterogeneous, they are

also likely to be more convex than our quadratic assumption for large swathes of our sample.

Viewed in this light our relative success at tailoring contracts assuming quadratic costs and

ignoring heterogeneity should likely be viewed as a lower bound on the promise of such exercises.

Assumption 5: Inability to Renege: The contracts we implement to elicit preferences feature a

completion bonus of 1000 rupees if both targets, v1 and v2, are met. The bonus is sizable relative

to daily earnings of 100 rupees prior to our study. The design choice of such a large bonus

was made purposefully to prevent vaccinators from reneging on their contract choices. At any

given point in time, not completing allocated vaccinations generates a 1000 rupee penalty. As

such, vaccinators should forecast that they will indeed complete the required vaccinations and

46We identify a vaccinator as working in an urban environment if the average distance traveled per vaccination
attempt over the two days is less than 0.1 miles. Average distance traveled is the ratio of total distance
traveled over the two days of the drive divided by the total number of vaccination attempts during the drive.
We determine a vaccinator’s position in space every 15 minutes while they are working as the average GPS
coordinate recorded by their smartphone over that 15 minute interval. We calculate the total distance traveled
as the sum of distances traveled between these average coordinates.

47That is, it may just be particularly difficult to move tasks through time for relatively inexperienced and
non-urban subjects.
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allocate them according to their preferences. If vaccinators forecast not being able to complete

the required vaccinations, then allocation choices may not reflect their true preferences, and

hence be effectively cheap talk.48

Our monitoring application allows us to assess, ex-post, the extent to which vaccinators

succeeded or failed to reach their allocated targets. We have comprehensive completion data

for 288 of 338 vaccinators in Drive 1.49 Of these 288, 142 (49.3%) met or exceeded their targets

of v1 and v2. The data indicate that many who fell short came close to completion. 207

vaccinators (71.9%) met or exceeded their targets on one of the two days and an average of

75.5% of total target vaccinations were completed. Figure A.9 presents the histogram of average

completion proportions across subjects.50 Two hundred and two vaccinators (70.1%) completed

an average of 70% or more of their target vaccinations. These ex-post completion rates indicate

that a majority of vaccinators likely forecasted reaching their targets. Additionally, in Appendix

Figure A.6 we plot for each half-hour of Drive 1 the total number of attempted vaccinations

along with the probability of successful vaccination and the probability that no child was

reported as present. Reporting that no child was present is likely to be less time consuming

than a successful vaccination and easier to falsify. The vast majority of vaccination activity

occurs before 3:00pm, and we find evidence that vaccinators’ proportion of successful or failed

vaccination attempts remains largely steady throughout the workday. This further suggests

that allocated vaccination attempts are conducted with due diligence.

In Appendix Table A.8, we investigate the relationship between allocation timing, measured

patience and completion rates. Two general patterns arise. First, vaccinators making advance

choice are somewhat more likely to complete their targets; and, second, higher measured

discount factors are related to higher completion rates, particularly for the second day of

the drive. The observed correlation is consistent with the view that impatient vaccinators

delay vaccinations believing they will complete them, but subsequently fail to follow through.

48Sizable bonuses to limit the possibility of reneging are also implemented in Augenblick et al. (2015).
49The remaining 50 vaccinators did not activate their smartphone application or submitted zero vaccinations

on both days of the drive.
50Average completion proportions are calculated as 1/2(min(Completed1/v1, 1) +min(Completed2/v2, 1))
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Interestingly, the correlation between completion on both days and measured patience is

somewhat stronger in Immediate choice (ρ = 0.24, p < 0.01) relative to Advance choice

(ρ = 0.10, p = 0.21), suggesting that some failure to complete is linked to delay associated

with present bias. For such patterns to exist without choices being informative of preference,

some aspect of the decision environment would have to cause uninformative responses to

appear less patient and disproportionately so in Immediate choice.

Assumption 6: No Biases in Choice: Our study assumes that the allocation environment

itself induces no biases in choice such that vaccinator allocations are directly informative of

preferences. A substantial literature in experimental economics suggests that aspects of the

decision environment may deeply influence measures of preferences (for recent examples, see

Harrison, Lau, Rutstrom and Sullivan, 2005; Beauchamp, Benjamin, Chabris and Laibson,

2015). One common view is that subjects are biased towards the middle of a choice set. In

our environment, this could involve subjects opting for either equal allocations of v1 = v2,

or choosing an allocation in the middle of their budget constraint, v1 = Rv2. Only 31 of 338

vaccinators (9%) exhibit v1 = v2. Taking a less conservative measure of v2−2.5 ≤ v1 ≤ v2 +2.5,

we find that still only 58 of 338 vaccinators (17%) are within 5 vaccinations of v1 = v2.51 Only 35

of 338 vaccinators (10.3%) exhibit v1 = Rv2. Taking a less conservative measure of Rv2−2.5 ≤

v1 ≤ Rv2 +2.5, we find that 83 of 338 vaccinators (25%) are within 5 vaccinations of v1 = Rv2.52

Taken together, this suggests that biases towards the middle of the budget constraint or towards

equal allocation are unlikely to be driving substantial portions of allocation behavior.

4.2 Tailoring Robustness Tests

Our Drive 2 data show that vaccinators who are given bonus contracts with a value of R equal

to their estimated discount factors provide significantly smoother service. Here we examine

robustness of this result to alternative comparison groups, alternative measures for smoothness

51As an even less conservative measure, 145 of 338 (43%) satisfy v2 − 10 ≤ v1 ≤ v2 + 10.
52As an even less conservative measure, 137 of 338 (40.5%) satsify Rv2 − 10 ≤ v1 ≤ Rv2 + 10.
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in service provision, and alternative measures for treatment. We conclude the section by pro-

viding results from a set of additional exercises assessing the value of atheoretic approaches to

tailoring, and the possibility for alternative interventions based on different policy preferences.

4.2.1 Alternative Comparison Groups

Our results demonstrate that, relative to a comparison group with uniform random values of R,

tailoring serves to reduce distance to the policy target by around one-third. A natural question is

whether these tailoring benefits are observed relative to alternative controls. In Appendix Table

A.10 and Appendix Figures A.10 and A.11, we present three additional analyses. A first natural

control is the use of a single value of R applied to all individuals. Unfortunately, it is not possible

to compare only a single value of R given our uniform random assignment protocol. However,

we can examine a section of the untailored group around a given value. In column (1) of Table

A.10, we repeat the analysis of Table 4, column (3), but use as the comparison group only those

untailored vaccinators who received a value of R within one standard deviation of their group’s

mean R∗i of 1.036. Tailoring continues to decrease the distance from smooth provision relative

to this more limited control group. Appendix Figure A.10 provides corresponding graphical

analysis. In column (2), we repeat this analysis excluding those individuals from the untailored

group who randomly received a value of R̃i within 0.10 of their true value of R∗i . The benefits

of tailoring are observed with increased precision.53 A second potential control group would

be a subset of the untailored group who receive the same distribution of R as those in the

tailored group. Matching on the 1st, 5th, 10th, 25th, 50th, 75th, 95th and 99th percentiles,

column (3) and Appendix Figure A.11 demonstrate that relative to a control group receiving a

matched distribution of R, tailoring continues to significantly reduce the distance from smooth

provision.

53Comparing tailored individuals to those who received close to the untailored group’s mean value of R∗
i is

important because, in principle, the mean value of R∗i should yield smooth provision for the average subject.
Not only is the average distance for these comparison groups substantial, 0.132 to 0.150, but the tailoring yields
additional benefits at the individual level by leveraging the heterogeneity in discount factors across vaccinators.
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4.2.2 Alternative Measures for Smooth Provision

Our analysis measures the distance to equal provision using the metric |v1,i
v2,i
− 1|. In Table

A.11, we reconduct the analysis of Table 4, using five alternate measures for smoothness.

Panel A presents the Euclidean distance to the 45 degree line,
|v1,i−v2,i|√

2
. Panel B presents

the Euclidean distance normalized by the total number of vaccinations allocated,
|v1,i−v2,i|√
2(v1,i+v2,i)

.

Panel C presents the number of sooner vaccinations that would need to be reallocated to reach

the 45 degree line, |v1,i − 300
1+R
|. Panel D presents probit regressions for needing to reallocate

more than 25 vaccinations, |v1,i − 300
1+R
| > 25. And finally, Panel E presents the value of the

policymaker’s objective function, min[v1,i, v2,i]. Across all specifications, the main conclusions

are reproduced. However, the results with respect to additional tailoring benefits in Immediate

choice fall, at times, outside the range of statistical significance. These alternative measures

of smooth provision indicate that our results on the potential benefits of tailoring are not an

artifact of how one measures the outcome of interest.

4.2.3 Alternative Sample Restrictions and Treatment Measures

Our tailoring exercise focused on vaccinators with discount factors between 0.75 and 1.5. Of

337 vaccinators in Drive 2, 280 satisfied this requirement. Those vaccinators whose discount

factors fell outside of this range were given either R = 0.75 or 1.5 depending on which bound

they were closest to. For such individuals, tailoring is not a binary treatment, but rather a

continuous difference between their discount factor and the exogenously given one. Indeed,

for all vaccinators in the untailored group, treatment is also a continuous measure. In Table

A.12, Panel A, we reconduct the analysis of Table 4 using as the measure of treatment the

absolute difference between each vaccinator’s discount factor and their assigned interest rate,

which we label Tailor Intensity. The main results are reproduced; the closer discount factors

are to interest rates, the smoother is provision.54 In Panel B, we include those individuals

in the Boundary Sample with discount factors that lie outside of the bounds of interest rate

54Restricting attention only to the untailored group reveals directionally similar, though insignificant, results
across all specifications.
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assignment. Including these observations does not alter the conclusions; however, it should be

noted that treatment is no longer orthogonal to individual preferences as extremely patient and

impatient vaccinators will receive larger treatment intensity on average.55

4.2.4 Atheoretic Approaches

Our exercise demonstrates that structural estimates of time preferences can be useful in pre-

dicting subsequent behavior. An alternative to developing a structural model of choice would

rely on the researcher recovering the relationship between key parameters of interest, R and

1d=1, and behavior, and developing a subsequent prediction without filtering the relationship

through the structural model.

We examine one example of such an exercise. For Drive 1 behavior, we recover the rela-

tionship between v1 and R and 1d=1 by conducting a Least Absoluate Shrinkage and Selection

Operator (LASSO) regression with penalty parameter chosen via 10-fold cross validation (Tib-

shirani, 1996) of v1 on a cubic polynomial in R interacted with 1d=1.56 The corresponding

selected lasso coefficients deliver an atheoretic representation of the most predictive (in terms

of cross-validated mean squared error) relationship between v1 and key parameters of interest in

Drive 1. Given the values of R and 1d=1 provided in Drive 2 and the Drive 1 lasso coefficients,

we predict the Drive 2 value of v1 for each individual.57 Similarly, we predict Drive 2 value

of v1 from the assigned values of R and 1d=1 and the individual discount factor identified in

Drive 1. In Appendix Figure A.12 we examine the predictive validity of the structural versus

the non-structural approaches by plotting predicted and actual values of v1 in Drive 2 for the

337 subjects who participated in both Drive 1 and Drive 2. We also provide non-parametric

55Using the indicator for tailoring would not be an appropriate solution to this problem as tailored vaccinators
with extreme patience or impatience may actually receive interest rates that are further from their policy-optimal
interest rates than those in the untailored condition.

56The provided regressors are a constant and normalized values of R,R2, R3,1d=1, R× 1d=1, R
2 × 1d=1, and

R3×1d=1. The lasso regression and cross-fold validation procedure were implemented using the glmnet package
in R.

57Note that this prediction will be identical for all vaccinators given the same value of R and 1d=1, and hence
will mispredict any heterogeneity across vaccinators.



43

lowess curves for the relationship between predicted and actual values.58 Notable from Ap-

pendix Figure A.12 is the generally close adherence between structurally predicted and actual

values. The lowess line follows the 45 degree line of perfect prediction through the majority of

the space. Less adherence is observed between non-structural predictions and actual behavior.

The structural predictions deliver higher correlations with real behavior (ρ = 0.18) than do

the non-structural predictions (ρ = 0.16) and lower bias in prediction (27.9 vs. 32). However,

the root mean squared error is lower for the non-structural predictions (32.8 vs 39.1). Hence,

on the basis of bias and correlation, our structural exercise outperforms the machine learning

lasso algorithm trained on Drive 1.

There is an additional important difference between the LASSO and structural predictions

presented here. The structural prediction for a given vaccinator’s behavior in Drive 2 derives

from their allocation in Drive 1 and the interest rate assigned in Drive 2. It therefore relies on

a single data point. By contrast, the LASSO prediction for a given vaccinator is derived by

training a model on the entire cross-section of data from Drive 1, and then obtaining a fitted

value based on the interest rate assigned in Drive 2. This means the LASSO prediction will

be identical for all subjects assigned the same interest rate while the structural prediction may

vary depending on individually measured preferences. Hence, the two methods are not only

different in the sense of being structural or atheoretic, they also differ both in the amount of

data informing the prediction and in the extent of heterogeneity they can predict.

4.2.5 Alternative Policy Preferences

While our results suggest that tailored contracts can improve success in achieving a Leontief

policy objective, a natural question is whether this approach could be put to use to achieve

other policy objectives. Ultimately, any attempt to tailor contracts will rely on whether ini-

tially elicited preferences are stable. If vaccinator time preferences are stable, then changes in

incentives will have predictable effects on behavior.

58The lasso procedure on Drive 1 selects an intercept and R as delivering coefficients of sufficient size given
the cross-validated constraint choice.



44

To provide a general assessment of the promise of alternative policy objectives, we examine

the stability of identified discount factors across Drives 1 and 2 by calculating

R · v1

v2

= β1d=1δ,

for each vaccinator in each Drive. Figure A.13 presents the calculated discount factors for Drive

1 and Drive 2 along with the 45 degree line for 317 of 337 vaccinators.59 The correlation in

discount factors across rounds is ρ = 0.41, (p < 0.01), indicating stability in preferences.60

Our findings correspond with those of Meier and Sprenger (2015), who investigate subjects

participating in an identical monetary discounting experiment approximately one year apart

and identify a one-year correlation of around 0.5 for monetary choices. The level of correlation

in discount factors across drives indicates stability in preferences such that alternative policy

objectives may also be achievable with tailored contracts.61

5 Conclusion

Structural parameters for intertemporal preferences have been at the center of theoretical and

empirical research modeling intertemporal choice for much of the last century. This paper

seeks to understand a heretofore unexplored question: are the out-of-sample predictions given

by structural estimates of discounting empirically valid? We couch this question in an effort to

customize contracts for 337 vaccination workers who spend two days each month attempting

to deliver polio vaccines in the neighborhoods of Lahore, Pakistan.

59Eliminated from the figure and from our calculations of stability are 20 vaccinators with discount factors
in excess of two in one or both drives.

60Including the remaining 20 extreme vaccinators, the correlation changes substantially to ρ = 0.01, (p =
0.87). It should be noted that the correlation in identified discount factors is substantially higher in the tailored
condition, ρ = 0.67, (p < 0.01), relative to the untailored condition, ρ = 0.17, (p < 0.05). We believe this is due
to some sensitivity of behavior to extreme values of R in Drive 2. For untailored subjects who coincidentally
receive a value of R̃i within 0.25 of their value of R∗

i , the correlation in discount factors is ρ = 0.53, (p < 0.01).
61One natural alternative is to maximize performance, regardless of timing. In such a case, we consider a

policymaker with linear preferences, P (v1, v2) = v1 +v2, who wishes to maximize the total number of completed
vaccinations regardless of timing. Maximizing this objective function subject to the vaccinator’s offer curve,
yields an optimal R∗

max =
√
β1t=1δ(1 + β1t=1δ)− β1t=1δ. Unfortunately, our assigned values of R are generally

quite far from R∗
max making it difficult to test for the possibility of a maximizing contract.
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We monitor our workers’ efforts using a smartphone application developed especially for our

project. Workers in the Advanced condition state their targets for both days of the vaccination

drive on the Friday before the drive, which is conducted on the following Monday and Tuesday.

Those in the Immediate condition wait until Monday morning to state their targets. Those

who reach their targets get a 1000 rupee bonus (around $10 US). As anticipated, subjects

stating targets on Monday morning are skewed to delaying vaccinations until day 2 of the

drive. That is, vaccinators exhibit a present bias in effort allocations. With assumptions on

costs of delivering vaccines we are able to identify (somewhat rough) estimates of discounting

parameters for each of our workers. In the second stage of our study, conducted a month later,

half of workers were offered a contract tailored to their own discounting parameters, designed to

induce equal provision of vaccinations on both days of the drive. The initial preference measures

are critical to the design of these contracts as, without a measure of preferences, there would

be no prescription for contract terms. The policy objective of equal provision of vaccinations

on both days is admittedly arbitrary. Hence, we view our exercise as a proof-of-concept for the

possibility of tailored incentives.

Our finding is encouraging. Those workers who receive effort contracts that were tailored

to their individual discounting parameters were significantly more likely to meet the policy

objective relative to untailored workers. That is, using structurally identified estimates of dis-

counting parameters to form a new incentive contract can indeed have a predictable effect on

behavior. To date, little research makes use of such predictive value of structural discounting

estimates. Our results show not only that estimates are predictive, but also that useful parame-

ter estimates are identifiable from a very limited number of experimental choices. This suggests

that the substantial effort of articulating and estimating structural models in this domain has

been well-invested.

This paper also speaks to a recent discussion on the external validity of experimentally ad-

ministered randomized control trials. Developing structural models through which to interpret

experimental treatment effects potentially provides a means for generalizing results to other
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settings (Acemoglu, 2010; Banerjee, Chassang and Snowberg, 2016).62 In our setting, trans-

lating from our reduced form experimental treatment effects to a structural model of choice

requires a set of potentially strong (and implausible) assumptions.63 Nonetheless, the finding of

predictive validity in this case suggests there is indeed potential for using structure as a means

of increasing the external validity of results obtained from a single sample.

Separately, our results link to the growing literature on the personnel economics of the state

(Ashraf, Bandiera and Lee, 2015; Bertrand et al., 2016; Finan, Olken and Pande, Forthcoming;

Dal Bó, Finan and Rossi, 2013; Deseranno, 2016; Callen, Gulzar, Hasanain, Khan and Rezaee,

2016). This literature emphasizes the idea that states play a vital role in delivering services

and facilitating economic growth, and so their internal dynamics should be studied with the

same degree of attention as has been applied to firms. Within this literature, there is interest

in understanding whether heterogeneity in competencies and in motivation of state actors is

linked to meaningful differences in state performance or service provsion (Ashraf et al., 2015;

Dal Bó et al., 2013; Deseranno, 2016; Callen et al., 2016). We take the additional step of

asking not only whether this heterogeneity matters for outcomes, but also whether it can be

acknowledged and reflected in the design of individual incentives.

There are a number of clear limitations to our study which should be addressed by future

research. First, our study sidesteps the critical issue of incentive compatibility by not informing

subjects of Drive 2 when Drive 1 preferences are elicited. The mechanism design problem of

eliciting preferences and tailoring on said preferences with complete information will be critical

if one wishes to implement tailored contracts repeatedly in the field. Second, future research

should seek to gain more precise estimates of preferences. Our exercise requires restrictive

assumptions that could be relaxed in the presence of more data. If our results point to a lower

bound in the promise of tailored contracts, it is important to know how much more can be

achieved. Third, alternative policy objectives and contract types should be investigated to

62Attanasio and Meghir (2012), Duflo, Hanna and Ryan (2012), and Duflo, Greenstone, Pande and Ryan
(2016) provide examples in development of using experiments to estimate key policy parameters.

63Banerjee et al. (2016) discuss how the plausibility of such identifying assumptions might limit external
validity.
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ensure robustness of the identified predictive validity. Our findings have natural extensions to

piece rate contracts, multi-period settings, and alternative policy targets that are worthy of

study.
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Figure A.1: Map Given to Vaccinators to Plan Route
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Figure A.2: Picture of a Door-to-Door Vaccination During a Drive
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Figure A.6: Drive 1 Vaccination Activity

Notes: The solid light grey circles are the share of all vaccination attempts that reflect a successful vaccination during the indicated
hour. The hollow dark black circles are the share of all vaccination attempts that report no children being available during the
attempt. These quantities are compared against the left axis. The dotted line indicates the total number of vaccination attempts
for all vaccinators in the sample. This quantity is compared against the right axis.
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Figure A.12: Structural and Non-Structural Prediction
Notes: Predicted and actual Drive 2 value of v1 for structural and non-structural models. Structural prediction based on individual
discount factor calculated from Drive 1. Non-structural prediction based on lasso regression of v1 on cubic polynomial in R
interacted with 1d=1 from Drive 1. Lowess curves for non-parametric adherence to 45-degree line of perfect prediction.
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Figure A.13: Stability of Preferences
Notes: Drive 1 and Drive 2 discount factors calculated from equation (3) for each allocation. Figure includes 317 of 337 vaccinators
present in both drives. Excluded are 20 vaccinators with calculated discount factors in excess of 2 in one or both drives. Correlation:
ρ = 0.41, (p < 0.01).
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A.2 Appendix Tables

Table A.1: Testing Whether Failure to Set in Drive 0 Was System-
atic

Did Not Fail Failed p-value
(1) (2) (3)

Gender (Female = 1) 0.965 1.000 0.082
(0.020) (0.000)

Years of Education 10.294 10.146 0.608
(0.220) (0.185)

Number of Children 3.268 3.388 0.695
(0.239) (0.188)

Punjabi (=1) 0.952 0.975 0.440
(0.023) (0.018)

Has a Savings Account (=1) 0.317 0.305 0.867
(0.052) (0.051)

Participated in a Rosca (=1) 0.446 0.378 0.380
(0.055) (0.054)

Years in Health Department 10.135 10.886 0.337
(0.554) (0.547)

Years as Polio Vaccinator 9.994 10.531 0.467
(0.538) (0.502)

# Vaccinators 86 82

Notes: This table tests whether the failure of the smartphone app during Drive
0 was systematic. Standard errors reported in parentheses. Column 3 reports
a p-value corresponding to the null that the mean in the Did Not Fail group is
equal to the Failed group.
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Table A.2: Within-Subject Parameter Estimates

Complete Panel No Change Change Immediate → Advance Advance → Immediate

(1) (2) (3) (4) (5)

β 0.737 0.755 0.719 0.585 0.848
(0.100) (0.153) (0.130) (0.221) (0.100)

δ 0.955 0.931 0.981 1.029 0.944
(0.041) (0.060) (0.056) (0.064) (0.085)

a -15.715 -14.049 -15.516 -30.333 -17.487
(0.477) (1.003) (0.362) (2.923) (0.263)

γ = 1 + 3 · 1
1+exp(a)

4 4 4 4 4

ln(σ) -0.778 -0.872 -0.711 -0.397 -1.325
(0.127) (0.184) (0.170) (0.197) (0.105)

# Observations 464 212 252 112 140
# Vaccinators 232 106 126 56 70
Log-Likelihood -297.467 -116.020 -178.460 -114.456 -13.099

H0 : β = 1 χ2(1) = 6.945 χ2(1) = 2.585 χ2(1) = 4.707 χ2(1) = 3.529 χ2(1) = 2.303
(p < 0.01) (p = 0.11) (p < 0.05) (p < 0.10) (p = 0.13)

Notes: This table reports structural estimates of β, δ, and γ obtained using Maximum Likelihood Estimation based on Equation (2) and
using data both from Drive 0 and Drive 1. Standard errors are reported in parentheses. Column (1) reports estimates for all vaccinators
who participated in both Drive 0 and Drive 1. Column (2) restricts the sample to vaccinators who participated in both rounds but whose
decision timing assignment did not switch. Column (3) restricts the sample to vaccinators who participated in both rounds but whose decision
timing switched. Column (4) uses the subset of vaccinators who switched from Immediate to Advance Choice. Column (5) uses the subset of
vaccinators who swtiched from Advance to Immediate Choice.

Table A.3: Aggregate Drive 0 and 1 Behavior

Dependent variable: Tasks Allocated to the First Day of the Drive (v1)

Full Sample Tailoring Sample

(1) (2)
Median Median

Immediate Decision (=1) -2.00** -3.00***
(0.95) (0.88)

Interest Rate (R) -40.00*** -60.00***
(6.04) (4.12)

Constant 188.00*** 210.00***
(6.06) (4.34)

Median Advance Choice 150 150
# Observations 622 475

Notes: This table reports on the effects of making Immediate allocation decisions and interest
rate on Drive 0 and Drive 1 vaccinations allocated to the first day of the drive. Median regression
coefficients with standard errors reported in parentheses. Standard errors are clustered at the
vaccinator level. Clustered standard errors for quantile regressions are calculated using the
approach in Parente and Santos Silva (2016). Immediate Decision is an indicator equal to one
for vaccinators selecting their allocations on the morning of the vaccination drive. The interest
rate R takes the values R ∈ {0.9, 1, 1.1, 1.25}. Levels of Significance: *p < 0.1, **p < 0.05,
***p < 0.01.
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Table A.4: Testing Stationarity of Costs Across Days

Panel A: Time Lapse Between Vaccinations (in minutes)

Dependent variable: Day 1 Med. Time Lapse Day 2 Med. Time Lapse Day 1 - Day 2 Med. Time Lapse
(1) (2) (3) (4) (5) (6) (7) (8)

Advance Choice (=1) 0.519 1.134 1.011 -0.910 -1.161 -0.829 2.295 1.840
(2.492) (1.163) (1.045) (3.164) (3.324) (3.182) (3.527) (3.343)

Discount Factor -3.697 10.004 -13.701
(3.504) (8.247) (9.000)

Constant 3.370* 1.422*** 5.337 4.447* 4.540* -6.053 -3.118 11.390
(1.851) (0.084) (3.708) (2.372) (2.501) (6.558) (2.501) (7.581)

R-Squared 0.000 0.004 0.016 0.000 0.001 0.013 0.002 0.022
# Observations 265 228 228 240 228 228 228 228

Panel B: Distance Walked Between Vaccinations (in Kilometers)

Dependent variable: Day 1 Med. Distance Day 2 Med. Distance Day 1 - Day 2 Med. Distance
(1) (2) (3) (4) (5) (6) (7) (8)

Advance Choice (=1) 0.039 0.065 0.058 -0.173 -0.168 -0.153 0.233 0.211
(0.075) (0.078) (0.071) (0.154) (0.163) (0.146) (0.181) (0.162)

Discount Factor -0.210 0.515 -0.726
(0.236) (0.518) (0.571)

Constant 0.058** 0.037*** 0.260 0.215 0.198 -0.348 -0.161 0.607
(0.026) (0.010) (0.249) (0.153) (0.163) (0.390) (0.163) (0.465)

R-Squared 0.001 0.003 0.012 0.006 0.005 0.020 0.008 0.031
# Observations 260 224 224 238 224 224 224 224

Notes: This table reports on the relationship between decision timing and the one period discount factor with two proxies of the
cost of performing a vaccination (the amount of time that lapses between vaccinations and the distance traveled between vaccinations).
Heteroskedasticity robust White standard errors reported in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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Table A.5: Testing Stationarity of Costs Across Conditions

Drive 1
Advance and Immediate Advance Immediate

(1) (2) (3)

Discount Factor 0.877 0.934 0.820
(0.046) (0.040) (0.080)

a -23.416 -18.828 -15.385
(1.906) (0.322) (0.670)

γ = 1 + 3 · 1
1+exp(a)

4 4 4

ln(σ) -1.138 -1.662 -0.879
(0.185) (0.080) (0.222)

# Observations 338 174 164
Log-Likelihood -94.806 42.226 -88.490

H0 : Discount Factor = 1 χ2(1) = 7.17 χ2(1) = 2.66 χ2(1) = 5.04
(p < 0.01) (p = 0.10) (p = 0.02)

Notes: This table reports structural estimates of an exponential discount factor, δ, and γ obtained
using Maximum Likelihood Estimation based on Equation (1). Standard errors are reported in
parentheses.
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Table A.6: Testing for Idiosyncratic Shocks

Panel A: Maximum Daily Time Lapse Between Vaccinations (in Minutes)

Dependent variable: Max Day 1 Time Lapse Max Day 2 Time Lapse Day 1 - Day 2 Max Time Lapse
(1) (2) (3) (4) (5) (6) (7) (8)

Advance Choice (=1) -0.702 0.578 0.739 8.067 5.274 5.574 -4.695 -4.836
(9.783) (9.104) (9.026) (8.885) (9.114) (9.021) (12.319) (12.211)

Discount Factor 4.831 9.054 -4.223
(14.139) (15.570) (19.824)

Constant 59.258*** 54.880*** 49.764*** 53.437*** 54.362*** 44.774*** 0.518 4.990
(7.920) (7.254) (15.266) (5.178) (5.404) (15.351) (8.724) (20.662)

R-Squared 0.000 0.000 0.000 0.003 0.001 0.003 0.001 0.001
# Observations 265 228 228 240 228 228 228 228

Panel B: Maximum Time Lapse > 2 hours

Dependent variable: Max Day 1 Lapse > 2hr. Max Day 2 Time Lapse > 2hr. Day 1 > 2hr. - Day 2 > 2hr.
(1) (2) (3) (4) (5) (6) (7) (8)

Advance Choice (=1) 0.051 0.042 0.044 0.026 0.001 0.002 0.041 0.042
(0.045) (0.047) (0.047) (0.041) (0.042) (0.041) (0.060) (0.060)

Discount Factor 0.053 0.032 0.021
(0.077) (0.071) (0.100)

Constant 0.133*** 0.127*** 0.071 0.103*** 0.109*** 0.075 0.018 -0.004
(0.029) (0.032) (0.085) (0.028) (0.030) (0.075) (0.043) (0.111)

R-Squared 0.005 0.004 0.005 0.002 0.000 0.001 0.002 0.002
# Observations 265 228 228 240 228 228 228 228

Notes: This table reports on the relationship between decision timing and the one period discount factor with two proxies for experiencing a shock during
the drive (the maximum time lapse between vaccinations and whether a lapse of more than 2 hours occurred). Heteroskedasticity robust White standard
errors reported in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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Table A.7: Testing for Deterministic Environment

Drive 1
Experience Experience Experience Experience
< 9 Years ≥ 9 Years < 15 Years ≥ 15 Years

(1) (2) (3) (4)

β 0.883 0.890 0.932 0.784
(0.123) (0.147) (0.102) (0.226)

δ 0.965 0.886 0.924 0.899
(0.058) (0.054) (0.045) (0.089)

a -19.367 -24.158 -16.058 -14.380
(3.371) (1.963) (0.657) (0.737)

γ = 1 + 3 · 1
1+exp(a)

4 4 4 4

ln(σ) -1.203 -1.081 -1.259 -0.874
(0.298) (0.236) (0.207) (0.332)

# Observations 149 180 248 81
Log-Likelihood -32.129 -60.907 -39.645 -44.123

H0 : β = 1 χ2(1) = 0.90 χ2(1) = 0.56 χ2(1) = 0.45 χ2(1) = 0.91
(p = 0.34) (p = 0.45) (p = 0.50) (p = 0.34)

Notes: This reports structural estimates of β, δ, and γ obtained using Maximum Likelihood
Estimation based on Equation (2). Standard errors are reported in parentheses.

Table A.8: Testing for Completion

Dependent variable: Completed1 ≥ v1 & Completed2 ≥ v2 Completed1 ≥ v1 Completed2 ≥ v2 Average Proportion Completed

Advance Choice (=1) 0.097 0.098* 0.038 0.039 0.085 0.087 0.098** 0.098**
(0.059) (0.058) (0.057) (0.057) (0.058) (0.057) (0.042) (0.042)

Discount Factor 0.323*** 0.110 0.436*** 0.173**
(0.093) (0.097) (0.087) (0.069)

Constant 0.445*** 0.111 0.616*** 0.503*** 0.534*** 0.084 0.706*** 0.527***
(0.041) (0.104) (0.040) (0.111) (0.041) (0.100) (0.031) (0.080)

R-Squared 0.009 0.042 0.002 0.006 0.007 0.068 0.019 0.037
# Observations 288 288 288 288 288 288 288 288

Notes: This table reports on the relationship between decision timing and the one period discount factor with whether vaccinators completed their vaccination tasks.
Heteroskedasticity robust White standard errors reported in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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Table A.9: Parameter Estimates by Urban and Experienced

(1) (2) (3)

β 1.002 1.003 1.013
(0.049) (0.049) (0.050)

Experienced Urban Group (=1) 0.024
(0.132)

δ 0.981 0.993 0.978
(0.031) (0.032) (0.031)

Experienced Urban Group (=1) -0.060
(0.072)

a -182.100 -18.056 -15.733
(25.909) (0.335) (0.276)

Experienced Urban Group (=1) 14.357
(2.195)

γ = 1 + 3 · 1
1+exp(a)

(Rural Sample:) 4 4 4

γ = 1 + 3 · 1
1+exp(a)

(Urban Sample:) 3.395

ln(σ) -2.170 -2.172 -2.170
(0.052) (0.052) (0.052)

# Vaccinators 203 203 203
Log Likelihood 152.424 152.904 152.521

Notes: This reports structural estimates of β, δ, and γ obtained using Maximum
Likelihood Estimation based on Equation (2). Experienced Urban Group is a
dummy equal to one for vaccinators whose average travel per vaccination attempt
is less than 0.1 kilometers and who have more than 15 years of experience in the
health department. Standard errors are reported in parentheses.
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Table A.10: Tailoring with Alternative Controls

Dependent variable: |v1,i

v2,i
− 1|

Comparison group: Untailored with Untailored with Untailored with

R̃i ∈ +/− 1 s.d of Mean R∗i R̃i ∈ +/− 1 s.d of Mean R∗i Matched Distribution of R̃i

|R∗i − R̃i| > 0.10

(1) (2) (3)

Tailored (=1) -0.039* -0.052** -0.047**
(0.021) (0.025) (0.022)

Constant 0.200*** 0.231*** 0.085
(0.071) (0.074) (0.072)

Stratum FEs Yes Yes Yes
Exclude 99th and 1st Percentiles Yes Yes Yes

Drive 2 R∗i or R̃i Yes Yes Yes

R-Squared 0.081 0.086 0.071
Mean in Untailored Contract 0.132 0.150 0.143
# Vaccinators 194 181 207
# Untailored Vaccinators 59 46 72

Notes: This table reports the effects of tailoring on the equality of effort provision over time. The measure | vtvt+1
− 1| (the percentage difference

between tasks allocated to day 1 and day 2 of the drive) reflects the distance of the task allocation (v1,v2) from equality (v1 = v2). Mean (standard
deviation) R∗

i in untailored group = 1.036 (0.165). Heteroskedasticity robust White standard errors reported in parentheses. *p < 0.1, **p < 0.05,
***p < 0.01.
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Table A.11: Robustness Tests for Tailoring Intertemporal Incentives

Panel A: Dependent variable
|v1,i−v2,i|√

2

(1) (2) (3) (4) (5) (6)

Tailored (=1) -1.758 -4.480** -4.481** -2.401 -1.703 -1.868
(4.588) (1.954) (2.068) (2.302) (2.176) (2.229)

Immediate Choice 20.994*** 10.365*** 10.597***
(5.856) (3.335) (3.449)

Tailored x Immediate 2.127 -6.026 -6.220
(9.793) (4.084) (4.136)

Constant 31.386*** 16.399*** 16.412** 19.464*** 10.992*** 14.128**
(7.334) (2.296) (6.857) (6.433) (2.777) (6.671)

Panel B: Dependent variable
|v1,i−v2,i|√
2(v1,i+v2,i)

(1) (2) (3) (4) (5) (6)

Tailored (=1) -0.014 -0.018*** -0.016** -0.009 -0.007 -0.007
(0.015) (0.007) (0.007) (0.008) (0.007) (0.008)

Immediate Choice 0.080*** 0.038*** 0.037***
(0.022) (0.012) (0.012)

Tailored x Immediate -0.008 -0.024* -0.023*
(0.032) (0.014) (0.014)

Constant 0.103*** 0.057*** 0.033 0.058*** 0.037*** 0.025
(0.023) (0.008) (0.022) (0.020) (0.010) (0.022)

Panel C: Dependent variable |v1,i − 300
1+R
|

(1) (2) (3) (4) (5) (6)

Tailored (=1) -2.612 -3.789*** -3.445** -1.959 -1.509 -1.405
(3.282) (1.410) (1.459) (1.643) (1.575) (1.591)

Immediate Choice 16.650*** 7.990*** 7.844***
(4.496) (2.451) (2.509)

Tailored x Immediate -0.867 -4.972* -4.850
(6.891) (2.938) (2.974)

Constant 22.736*** 12.014*** 7.571 13.340*** 7.849*** 5.871
(5.301) (1.682) (4.735) (4.501) (2.048) (4.622)

Panel D: Dependent variable |v1,i − 300
1+R
| > 25

(1) (2) (3) (4) (5) (6)

Tailored (=1) -0.454** -0.654*** -0.578*** -0.282 -0.282 -0.235
(0.191) (0.221) (0.216) (0.317) (0.314) (0.309)

Immediate Choice 0.920*** 0.720** 0.697**
(0.272) (0.283) (0.286)

Tailored x Immediate -0.275 -0.676 -0.653
(0.408) (0.462) (0.460)

Constant -0.639*** -0.887*** -1.568** -1.231*** -1.312*** -1.812***
(0.206) (0.239) (0.637) (0.304) (0.335) (0.665)

Panel E: Dependent variable min[v1,i, v2,i]

(1) (2) (3) (4) (5) (6)

Tailored (=1) 7.210** 8.112*** 2.540* 4.764* 4.381* 0.843
(3.512) (2.051) (1.416) (2.650) (2.643) (1.567)

Immediate Choice -20.562*** -11.804*** -6.815***
(5.042) (3.492) (2.332)

Tailored x Immediate 4.672 8.194** 4.037
(7.206) (4.052) (2.806)

Constant 126.824*** 136.728*** 208.758*** 138.343*** 142.870*** 210.228***
(5.181) (2.645) (4.541) (4.905) (3.359) (4.433)

Stratum FEs Yes Yes Yes Yes Yes Yes
Exclude 99th and 1st Percentiles No Yes Yes No Yes Yes
Drive 2 R No No Yes No No Yes
# Vaccinators 280 267 267 280 267 267

Notes: This table reports the effects of tailoring on the equality of effort provision over time using several different measures of the
distance of the task allocation (v1,v2) from equality (v1 = v2). Column (1) reports a regression of this measure on an indicator equal
to one for subjects in the tailored group. Column (1) reports a regression of this measure on an indicator equal to one for subjects in
the tailored group. Column (2) reports estimates from the same specification excluding outliers. Column (3) controls for the interest
rate assignment in round 2. Column (4) provides estimates on the same sample as column (1) interacting treatment with being in
the immediate choice condition. Columns (5) and (6) apply the same restrictions to the sample as columns (2) and (3) respectively.
Heteroskedasticity robust White standard errors reported in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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Table A.12: Alternate Treatment Measures and Sample Restrictions

Panel A: Tailoring Intensity

Dependent variable: |v1,i

v2,i
− 1|

(1) (2) (3) (4) (5) (6)

Tailor Intensity 2.521 0.164** 0.110* 0.078 0.124 0.089
(2.057) (0.065) (0.063) (0.188) (0.081) (0.076)

Immediate Choice -0.065 0.071*** 0.068***
(0.312) (0.023) (0.022)

Tailor Intensity x Immediate 4.537 0.071 0.057
(3.809) (0.133) (0.131)

Constant 0.780* 0.104*** -0.009 0.765 0.067*** -0.018
(0.457) (0.018) (0.058) (0.482) (0.020) (0.058)

# Vaccinators 280 267 267 280 267 267

Panel B: Tailoring Intensity and Boundary Sample

Dependent variable: |v1,i

v2,i
− 1|

(1) (2) (3) (4) (5) (6)

Tailor Intensity 1.200 0.151** 0.124* -0.038 0.054 0.025
(1.006) (0.069) (0.065) (0.127) (0.060) (0.054)

Immediate Choice 0.094 0.066*** 0.064**
(0.202) (0.025) (0.025)

Tailor Intensity x Immediate 2.075 0.148 0.154
(1.848) (0.119) (0.114)

Constant 0.712* 0.152*** 0.044 0.652* 0.119*** 0.016
(0.368) (0.026) (0.065) (0.369) (0.026) (0.063)

# Vaccinators 337 320 320 337 320 320

Stratum FEs Yes Yes Yes Yes Yes Yes
Exclude 99th and 1st Percentiles No Yes Yes No Yes Yes
Drive 2 R No No Yes No No Yes

Notes: This table reports the effects of tailoring on the equality of effort provision over time. The measure
| vtvt+1

− 1| reflects the distance of the task allocation (v1,v2) from equality (v1 = v2). Column (1) reports a

regression of this measure on an indicator equal to one for subjects in the tailored group. Column (2) reports
estimates from the same specification excluding outliers. Column (3) controls for the interest rate assignment in
round 2. Column (4) provides estimates on the same sample as column (1) interacting treatment with being in the
immediate choice condition. Columns (5) and (6) apply the same restrictions to the sample as columns (2) and
(3) respectively. Heteroskedasticity robust White standard errors reported in parentheses. *p < 0.1, **p < 0.05,
***p < 0.01.
report*p < 0.1, **p < 0.05, ***p < 0.01.
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