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Abstract

Risk and time are intertwined. The present is known while the future is in-
herently risky. This is problematic when studying time preferences since uncon-
trolled risk can generate apparently present-biased behavior. We systematically
manipulate risk in an intertemporal choice experiment. Discounted expected util-
ity performs well with risk, but when certainty is added common ratio predictions
fail sharply. The data cannot be explained by Prospect Theory, hyperbolic dis-
counting, or preferences for resolution of uncertainty, but seem consistent with
a direct preference for certainty. The data suggest strongly a difference between
risk and time preferences.
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1 Introduction

Understanding individual decision-making under risk and over time are two foundations
of economic analysis.® In both areas there has been research to suggest that standard
models of expected utility (EU) and exponential discounting are flawed or incomplete.
Regarding time, experimental research has uncovered evidence of a present bias, or
hyperbolic discounting (Frederick et al., 2002). Regarding risk, there are number of
well-documented departures from EU, such as the Allais (1953) common consequence
and common ratio paradoxes.

An organizing principle behind expected utility violations is that they seem to arise
as so-called ‘boundary effects’ where certainty and uncertainty are combined. Camerer
(1992), Harless and Camerer (1994) and Starmer (2000) indicate that violations of
expected utility are notably less prevalent when all choices are uncertain. This obser-
vation is especially interesting when considering decisions about risk taking over time.
In particular, certainty and uncertainty are combined in intertemporal decisions: the
present is known and certain, while the future is inherently risky. This observation
is problematic if one intends to study time preference in isolation from risk. A criti-
cal question raised by our recent paper Andreoni and Sprenger (Forthcoming), which
the study in this paper was designed to address, is whether behaviors identified as
dynamically inconsistent, such as present bias or diminishing impatience, may instead
be generated by unmeasured risk of the future, and exacerbated by non-EU boundary

effects.? The primary objective of this paper is to explore this possibility in detail.

'Ellingsen (1994) provides a thorough history of the developments building towards expected utility
theory and its cardinal representation. Frederick et al. (2002) provide a historical foundation of the
discounted utility model from Samuelson (1937) on, and discuss the many experimental methodologies
designed to elicit time preference.

2Machina (1989) discusses non-EU preferences generating dynamic inconsistencies. The link was
also hypothesized in several hypothetical psychology studies (Keren and Roelofsma, 1995; Weber and
Chapman, 2005), and Halevy (2008) shows that hyperbolic discounting can be reformulated in terms of
non-EU probability weighting similar to the Prospect Theory formulations of Kahneman and Tversky
(1979); Tversky and Kahneman (1992).



The focus here will be the model of discounted expected utility (DEU).? An essential
prediction of the DEU model is that intertemporal allocations should depend only
on relative intertemporal risk. For example, if a sooner reward will be realized 100
percent of the time and a later reward will be realized 80 percent of the time, then
intertemporal allocations should be identical to when these probabilities are 50 percent
and 40 percent, respectively. This is simply the common ratio property as applied to
intertemporal risk in an ecologically relevant situation where present rewards are certain
and future rewards are risky. The question for this research is whether the common
ratio property holds both on and off this boundary of certainty in choices over time.

We ask this question in an experiment with 80 undergraduate subjects at the Uni-
versity of California, San Diego. Our test employs a method we call Convex Time
Budgets (CTBs), developed in Andreoni and Sprenger (Forthcoming) and employed
here under experimentally controlled risk. In CTBs, individuals allocate a budget of
experimental tokens to sooner and later payments. Because the budgets are convex, we
can use variation in the sooner times, later times, slopes of the budgets, and relative
risk, to allow both precise identification of utility parameters and tests of structural
discounting assumptions.*

We construct our test using two baseline risk conditions: 1) A risk-free condition
where all payments, both sooner and later, will be made 100 percent of the time; and 2)
a risky condition where, independently, sooner and later payments will be made only 50

percent of the time, with all uncertainty resolved during the experiment. Notice, under

3Interestingly, there are relatively few noted violations of the expected utility aspect of the DEU
model. Loewenstein and Thaler (1989) and Loewenstein and Prelec (1992) document a number of
anomalies in the discounting aspect of discounted utility models. Several examples are Baucells and
Heukamp (2009); Gneezy et al. (2006) and Onay and Onculer (2007) who show that temporal delay
can generate behavior akin to the classic common ratio effect, that the so-called ‘uncertainty effect’
is present for hypothetical intertemporal decisions, and that risk attitudes over temporal lotteries are
sensitive to assessment probabilities, respectively.

4Prior research has relied on multiple price lists (Coller and Williams, 1999; Harrison et al., 2002),
which require linear utility for identification of time preferences, or which have been employed in
combination with risk measures to capture concavity of utility functions (Andersen et al., 2008).
Our paper, Andreoni and Sprenger (Forthcoming), provides a comparison of the two approaches. In
addition, recent work by Gine et al. (2010) shows that CTBs can be effectively used in field research.



the standard DEU model, CTB allocations in these two conditions should yield identical
choices. The experimental results clearly violate DEU: 85 percent of subjects violate
common ratio predictions and do so in more than 80 percent of opportunities. As we
show, these violations in our baseline cannot be explained by non-EU concepts such
as Prospect Theory probability weighting (Kahneman and Tversky, 1979; Tversky and
Kahneman, 1992; Tversky and Fox, 1995) temporally dependent probability weighting
(Halevy, 2008), or preferences for early resolution of uncertainty (Kreps and Porteus,
1978; Chew and Epstein, 1989; Epstein and Zin, 1989).

Next we examine four conditions with differential risk, but common ratios of prob-
abilities. For instance, we compare a condition in which the sooner payment is made
100 percent of the time while the later payment is made only 80 percent of the time,
to one where the probabilities of each are halved, making both payments risky. We
document substantial violations of common ratio predictions favoring the sooner cer-
tain payment. We mirror this design with conditions where the later payment has the
higher probability, and find substantial violations of common ratio predictions favor-
ing the later certain payment. Moreover, subjects who violate common ratio in the
baseline conditions are more likely to violate DEU in these four additional conditions.

Our results reject DEU, Prospect Theory, and preference-for-resolution models
when certainty is present. Perhaps most importantly, however, is that when certainty
is not present subjects’ behavior closely mirrors DEU predictions. Interestingly, this
is close to the initial intuition for the Allais paradox. Allais (1953, p. 530) argued
that when two options are far from certain, individuals act effectively as expected
utility maximizers, while when one option is certain and another is uncertain a “dis-
proportionate preference” for certainty prevails. This intuition may help to explain
the frequent experimental finding of present-biased preferences when using monetary
rewards (Frederick et al., 2002). That is, perhaps certainty, not intrinsic temptation,

may be leading present payments to be disproportionately preferred.



We are not the first to suggest differences in risk can create apparent nonstationarity.
For example, it is explicitly addressed in explorations of present bias and Prospect
Theory (Halevy, 2008), and is implied by the dynamic inconsistency of non-EU models
(Green, 1987; Machina, 1989). But since our results are inconsistent with Prospect
Theory, they point to a different model of decision-making. Though elaboration of this
model will be left to future work, we do offer some speculation in the direction of direct
preferences for certainty (Neilson, 1992; Schmidt, 1998; Diecidue et al., 2004).5

In Section 2 of this paper, we develop the relevant hypotheses under DEU. In
Section 3 we describe our experimental design and test these hypotheses. Section 4

presents results and Section 5 is a discussion and conclusion.

2 Conceptual Background

To motivate our experimental design, we briefly analyze decision problems for dis-
counted expected utility, preference-for-resolution models, and Prospect Theory. When

utility is time separable and stationary, the standard DEU model is written,

U=> 6""Ev(c)),

k=0

governing intertemporal allocations. Simplify to assume two periods, ¢t and t + k, and
that consumption at time ¢ will be ¢; with probability p; and zero otherwise, while

consumption at time t + k will be ¢,;,, with probability p, and zero otherwise.® Under

5These models, termed u-v preferences, feature a discontinuity at certainty similar to the dis-
continuity at the present of (- time preferences (Laibson, 1997; O’Donoghue and Rabin, 1999).
Importantly, u-v preferences necessarily violate first order stochastic dominance at certainty.

SFor ease of explication we abstract away from additional intertemporal utility arguments used in
the literature such as background consumption, intertemporal reference points, or Stone-Geary style
utility shifters (Andersen et al., 2008; Andreoni and Sprenger, Forthcoming). However, the arguments
are maintained with the more general utility function, v(c; — w), under the assumption that w is not
reoptimized in response to the experiment.



the standard construction, utility is

pr8*u(ee) + pad™Fv(cern) + (1= p1)d" + (1 = p2)d")v(0).

Suppose an individual maximizes utility subject to the future value budget constraint

(14 7r)er + e = m,

yielding the marginal condition

and the solution
¢y = ¢ (p1/p2ik, 14+ 1,m).

A key observation in this construction is that intertemporal allocations will depend
only on the relative risk, p1/ps2, and not on p; or p, separately. This is a critical and

testable implication of the DEU model.

Hypothesis: For any (p1, p2) and (py, py) where p1/ps = pi/ps, ¢ (p1/p2; k, 1+1,m) =

(P /phi k, 1+ 1,m).

This hypothesis is simply an intertemporal statement of the common ratio property
of expected utility and represents a first testable implication for our experimental
design. In further analysis it will be notationally convenient to use 6 to indicate the

risk adjusted gross interest rate,

D2
0=(1+r)—=,
( )Pl



such that the tangency can be written as

v'(¢)

2y,
kv (crir)

Provided that v'(-) > 0,v"(-) < 0, ¢; will be increasing in p; /ps and decreasing in 1+7.
As such, ¢; will be decreasing in #. In addition, for a given 6, ¢; will be decreasing
in 1+ 7. An increase in the interest rate will both raise the relative price of sooner
consumption and reduce the consumption set.

There exist important utility formulations such as those developed by Kreps and
Porteus (1978), Chew and Epstein (1989), and Epstein and Zin (1989) where the com-
mon ratio prediction does not hold. Behavior need not be identical if the uncertainty
of p; and py are resolved at different points in time, and individuals have preferences
over the timing of the resolution of uncertainty. Our experimental design purposefully
focuses on cases where all uncertainty is resolved immediately, before any payments are
received, and as such the formulations of Kreps and Porteus (1978); Chew and Epstein
(1989), and the primary classes discussed by Epstein and Zin (1989) will each reduce
to standard expected utility.”

Of additional importance is the role of background risk. Dynamically inconsistent
behavior may be related to time-dependent uncertainty in future consumption (see, e.g.,
Boyarchenko and Levendorskii, 2010). If individuals face background risk compounded
with the objective probabilities, it will change the ratio of probabilities. However, a
common ratio prediction will be maintained even if background risk differs across time
periods. That is, when mixing (p1, p2) with background risk one arrives at the same

probability ratio as when mixing (p}, py) when py/ps = p'/ph.

"That is, when “.. attention is restricted to choice problems/temporal lotteries where all un-
certainty resolves at t = 0, there is a single ‘mixing’ of prizes and one gets the payoff vector [EU]
approach” (Kreps and Porteus, 1978, p. 199). However, not all of the classes of recursive utility
models discussed by Epstein and Zin (1989) will reduce to expected utility when all uncertainty is
resolved immediately. The weighted utility class (Class 3) corresponding to the models of Dekel (1986)
and Chew (1989) can accomodate expected utility violations even without a preference for sooner or
later resolution of uncertainty.



A primary alternative to expected utility that may be relevant in intertemporal
choice is Prospect Theory probability weighting (Kahneman and Tversky, 1979; Tver-
sky and Kahneman, 1992) and the related concept of rank-dependent expected utility
(Quiggin, 1982). Probability weighting states that individuals ‘edit’ probabilities in-
ternally via a weighting function, 7(p). Though 7(p) may take a variety of forms, it
is often argued to be monotonically increasing in the interval [0, 1], with an inverted
S-shaped, such that low probabilities are up-weighted and high probabilities are down-
weighted (Tversky and Fox, 1995; Wu and Gonzalez, 1996; Prelec, 1998; Gonzalez
and Wu, 1999). Probability weighting generates a common ratio prediction in some
cases, but violates common ratio in others. In particular, if p; = pa, pi; = pj, so
p1/p2 = py/ph, then it is also true that w(py)/m(ps) = 7(p})/m(ph) = 1 as in DEU.
However, for unequal probabilities, common ratio may be violated as the shape of the
weighting function, 7(+), changes the ratio of subjective probabilities.

An extension to Prospect Theory probability weighting is that probabilities are
weighted by their temporal proximity (Halevy, 2008). Under this formulation, sub-
jective probabilities are arrived at through a temporally dependent function g(p,t) :
[0,1] x RT — [0, 1] where ¢ represents the time at which payments will be made. Under
a reasonable functional form of g(-), one could easily arrive at differences between the
ratios g(p1,t)/g(p2,t + k) and g(p),t)/g(ph,t + k) under a common ratio of objective
probabilities.

These differences lead to a new risk adjusted interest rate similar to 6 defined above,

i _ 9p2t+ k)
p1,p2 g(pht)

(147).

Note that either 6,, ,, > épi p, for all (1+7) or O ps < 0 for all (1+7), depending on

DP1,Poy

the form of g(-) chosen. Once one obtains a prediction as to the relationship between

0y, p, and épi > it must hold for all gross interest rates. If ¢; is decreasing in ¢ as

discussed above, one should never observe a cross-over in behavior where for one gross



interest rate ¢; allocations are higher for (p;,ps) and for another gross interest rate
¢, allocations are higher for (p},p,). Such a cross-over is not consistent with either
standard probability weighting or temporally dependent probability weighting of the
form proposed by Halevy (2008). The central feature of these models is a separability
between distorted probabilities and utility values. Because Prospect Theory is linear
in distorted probabilities, it delivers a consistency in choice such that the applied

distortions must be stable across interest rates.®

3 Experimental Design

In order to explore the development of Section 2 related to uncertain and certain
intertemporal consumption, an experiment using Convex Time Budgets (CTB) (An-
dreoni and Sprenger, Forthcoming) under varying risk conditions was conducted at the
Univeristy of California, San Diego in April of 2009. In each CTB decision, subjects
were given a budget of experimental tokens to be allocated across a sooner payment,
paid at time ¢, and a later payment, paid at time t + %, k > 0. Two basic CTB envi-
ronments consisting of 7 allocation decisions each were implemented under six different
risk conditions. This generated a total of 84 experimental decisions for each subject.

Eighty subjects participated in this study, which lasted about one hour.

8This stability may not be maintained under a combination of background risk and Prospect
Theory probability weighting. The common ratio prediction may be violated if background risk and
experimental payment risk are not evaluated separately or if background risk distributions are changing
through time. Recent evidence suggests limited integration between risky experimental choice and
background assets (Andersen et al., 2011), suggesting such arguments likely do not explain our results.

9An important issue in discounting studies is the presence of arbitrage opportunities. Subjects
with even moderate access to liquidity should effectively arbitrage the experiment, borrowing low and
saving high. Hence, researchers should be surprised to uncover the degree of present-biased behavior
generally displayed in monetary discounting experiments (Frederick et al., 2002). The motivation of
the present study is to explore the possibility that payment risk can rationalize such behavior even
in the presence of arbitrage. Andreoni and Sprenger (Forthcoming) provide further discussion in this
vein.



3.1 CTB Design Features

Sooner payments in each decision were always seven days from the experiment date
(t = 7 days). We chose this ‘front-end-delay’ to avoid any direct impact of immedi-
acy on decisions, including resolution timing effects, and to help eliminate differential
transactions costs across sooner and later payments.'’ In one of the basic CTB environ-
ments, later payments were delayed 28 days (k = 28) and in the other, later payments
were delayed 56 days (k = 56). The choice of ¢t and k were set to avoid holidays, school
vacation days and final examination week. Payments were scheduled to arrive on the
same day of the week (¢ and k are both multiples of 7) to avoid weekday effects.

In each CTB decision, subjects were given a budget of 100 tokens. Tokens allocated
to the sooner date had a value of a; while tokens allocated to the later date had a value of
as1. In all cases, asy), was $0.20 per token and a; varied from $0.20 to $0.14 per token.
Note that a,4/a; = (14-7), the gross interest rate over k days, and (14r)/*—1 gives the
standardized daily net interest rate. Daily net interest rates in the experiment varied
considerably across the basic budgets, from 0 to 1.3 percent, implying annual interest
rates of between 0 and 2116.6 percent (compounded quarterly). Table 1 shows the
token values, gross interest rates, standardized daily interest rates and corresponding
annual interest rates for the basic C'TB budgets.

The basic CTB decisions described above were implemented in a total of six risk
conditions. Let p; and p, be the (independent) probabilities that payment would be
made for the sooner and later dates, respectively. The six conditions were (p;,p2) €
{(1,1),(0.5,0.5), (1,0.8),(0.5,0.4),(0.8,1), (0.4,0.5) }.

For all payments involving uncertainty, a ten-sided die was rolled immediately after
all decisions were made to determine whether the payments would be sent. Hence, p;

and ps were immediately known, independent, and subjects were told that different

10Gee below for the recruitment and payment efforts that allowed sooner payments to be imple-
mented in the same manner as later payments. For discussions of front-end-delays in time preference
experiments see Coller and Williams (1999); Harrison et al. (2005).



Table 1: Basic Convex Time Budget Decisions

t (start date) k (delay) Token Budget a; awyr (1+7) Daily Rate (%) Annual Rate (%)

7 28 100 0.20 0.20 1.00 0 0

7 28 100 0.19 0.20 1.05 0.18 85.7

7 28 100 0.18 0.20 1.11 0.38 226.3
7 28 100 0.17 0.20 1.18 0.58 449.7
7 28 100 0.16 0.20 1.25 0.80 796.0
7 28 100 0.15 0.20 1.33 1.03 1323.4
7 28 100 0.14 0.20 1.43 1.28 2116.6
7 56 100 0.20 0.20 1.00 0 0

7 56 100 0.19 0.20 1.05 0.09 37.9

7 56 100 0.18 0.20 1.11 0.19 88.6

7 56 100 0.17 0.20 1.18 0.29 156.2
7 56 100 0.16 0.20 1.25 0.40 246.5
7 56 100 0.15 0.20 1.33 0.52 366.9
7 56 100 0.14 0.20 1.43 0.64 528.0

random numbers would determine their sooner and later payments.'!

The risk conditions serve several key purposes. To begin, the first and second
conditions share a common ratio of p;/ps = 1 and have p; = py. As discussed, in
Section 2, DEU, preference-for-resolution models, and Prospect Theory probability
weighting all make common ratio predictions in this context. Temporally dependent
probability weighting of the form proposed by Halevy (2008) can generate common
ratio violations in this context, but not cross-overs in experimental demands. Next,
the third and fourth conditions share a common ratio of p;/p, = 1.25, and only one
payment is certain, the sooner 100 percent payment in the third condition. These
conditions map to ecologically relevant decisions where sooner payments are certain
and later payments are risky. That is, (p1,p2) = (1,0.8) is akin to decisions between
the present and the future while (p1,p2) = (0.5,0.4) is akin to decisions between two
subsequent future dates. In these conditions, DEU and preference-for-resolution models
again make common ratio predictions, while probability weighting predicts violations

if 7(1)/7(0.8) # 7(0.5)/m(0.4). We mirror this design for completeness in the fifth

1See Appendix A.3 for the payment instructions provided to subjects.

10



and sixth conditions, which share a common ratio of p;/p; = 0.8 and feature one
later certain payment. Lastly, note that across conditions the sooner payment goes
from being relatively less risky, p;/ps = 1.25, to relatively more risky, p;/ps = 0.8.
Following the discussion of Section 2, subjects should respond to changes in relative

risk, allocating smaller amounts to sooner payments when relative risk is low.

3.2 Implementation and Protocol

One of the most challenging aspects of implementing any time discounting study is
making all choices equivalent except for their timing. That is, transactions costs as-
sociated with receiving payments, including physical costs and payment risk, must be
minimized and equalized across all time periods. We took several unique steps in our
subject recruitment process and our payment procedure in an attempt to accomplish

this, once the experimentally manipulated uncertainty was resolved, as we explain next.

3.2.1 Recruitment and Experimental Payments

We recruited 80 undergraduate students. In order to participate in the experiment,
subjects were required to live on campus. All campus residents are provided with
individual mailboxes at their dormitories to use for postal service and campus mail.
Each mailbox is locked and individuals have keyed access 24 hours per day.

All payments, both sooner and later, were placed in subjects’ campus mailboxes
by campus mail services, which allowed us to equate physical transaction costs across
sooner and later payments. Campus mail services guarantees 100 percent delivery of
mail, minimizing payment risk. This aspect of the design is crucial, as it is important
that the riskiness of future payments be minimized to the greatest extent possible.
Indeed, in a companion survey we find that 100 percent (80 of 80) of subjects believed

they would receive their payments. Subjects were fully informed of the method of

11



payment.'?

Several other measures were also taken to equate transaction costs and minimize
payment risk. Upon beginning the experiment, subjects were told that they would
receive a $10 minimum payment for participating, to be received in two payments: $5
sooner and $5 later. All experimental earnings were added to these $5 minimum pay-
ments. Two blank envelopes were provided. After receiving directions about the two
minimum payments, subjects addressed the envelopes to themselves at their campus
mailbox. At the end of the experiment, subjects wrote their payment amounts and
dates on the inside flap of each envelope such that they would see the amounts written
in their own handwriting when payments arrived. All experimental payments were
made by personal check from Professor James Andreoni drawn on an account at the
university credit union.'® Subjects were informed that they could cash their checks (if
they so desired) at the university credit union. They were also given the business card
of Professor James Andreoni and told to call or email him if a payment did not arrive
and that a payment would be hand-delivered immediately. In sum, these measures
serve to ensure that transaction costs and payment risk, including convenience, clerical
error, and fidelity of payment were minimized and equalized across time.

One choice for each subject was selected for payment by drawing a numbered card
at random. Subjects were told to treat each decision as if it were to determine their
payments. This random-lottery mechanism, which is widely used in experimental eco-
nomics, does introduce a compound lottery to the decision environment. Starmer and
Sugden (1991) demonstrate that this mechanism does not create a bias in experimental

response.

12Gee Appendix A.2 for the information provided to subjects.

13Payment choice was guided by a separate survey of 249 undergraduate economics students elicit-
ing payment preferences. Personal checks from Professor Andreoni, Amazon.com gift cards, PayPal
transfers and the university stored value system TritonCash were each compared to cash payments.
Subjects were asked if they would prefer a twenty dollar payment made via each payment method or
$X cash, where X was varied from 19 to 10. Personal checks were found to have the highest cash
equivalent value. That is, the highest average value of $X.

12
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3.2.2 Instrument and Protocol

The experiment was done with paper and pencil. Upon entering the lab subjects were
read an introduction with detailed information on the payment process and a sample
decision with different payment dates, token values and payment risks than those used
in the experiment. Subjects were informed that they would work through 6 decision
tasks. Each task consisted of 14 CTB decisions: seven with t = 7, £k = 28 on one
sheet and seven with t = 7, k = 56 on a second sheet. Each decision sheet featured
a calendar, highlighting the experiment date, and the sooner and later payment dates,
allowing subjects to visualize the payment dates and delay lengths.

Figure 1 shows a decision sheet. Identical instructions were read at the beginning
of each task providing payment dates and the chance of being paid for each decision.
Subjects were provided with a calculator and a calculation sheet transforming tokens
to payment amounts at various token values. Four sessions were conducted over two
days. Two orders of risk conditions were implemented to examine order effects.!* Each
day consisted of an early session (12 p.m.) and a late session (2 p.m.). The early
session on the first day and the late session on the second day share a common order as
do the late session on the first day and the early session on the second day. No order

or session effects were found.

4 Results

The results are presented in two sub-sections. First, we examine behavior in the two
baseline conditions: (p1,ps) = (1,1) and (p1,p2) = (0.5,0.5). We document violations
common ratio predictions at both aggregate and individual levels and show a pattern
of results that is generally incompatible with various probability weighting concepts.

Second, we explore behavior in four further conditions where common ratios maintain

n one order, (p1,p2) followed the sequence (1,1),(1,0.8),(0.8,1),(0.5,0.5),(0.5,0.4),(0.4,0.5),
while in the second it followed (0.5, 0.5), (0.5,0.4), (0.4,0.5), (1,1),(1,0.8), (0.8, 1).

14



but only one payment is certain. Subjects exhibit a preference for certain payments
relative to common ratio when they are available, but behave consistently with DEU

away from certainty.

4.1 Behavior Under Certainty and Uncertainty

Section 2 provided a testable hypothesis for behavior across certain and uncertain
intertemporal settings. For a given (py,ps), if p1 = p2 < 1 then behavior should be
identical to a similarly dated risk-free prospect, (p; = po = 1), at all gross interest rates,
1+ r, and all delay lengths, k. Figure 2 graphs aggregate behavior for the conditions
(p1,p2) = (1,1) (blue diamonds) and (p1,p2) = (0.5,0.5) (red squares) across the
experimentally varied gross interest rates and delay lengths. The mean earlier choice
of ¢; and a 95 percent confidence interval (+/— 1.96 standard errors) are graphed.

Under DEU, preference-for-resolution models, and standard probability weighting
behavior should be identical across the two conditions. We find strong evidence to
the contrary. In a hypothesis test of equality across the two conditions, the overall
difference is found to be highly significant: Fi479 = 6.07, p < .001.'

The data follow an interesting pattern. In (p;, p2) = (1,1) and (0.5,0.5) conditions
the allocation to sooner payments decrease as interest rates rise. However, at the
lowest interest rate, ¢; allocations are substantially higher in the (1, 1) condition, and
as the gross interest rate increases, (1,1) allocations drop steeply, crossing over the
graph of the (0.5,0.5) condition.!® This cross-over in behavior is in clear violation of

discounted expected utility, all models that reduce to discounted expected utility when

15Test statistic generated from non-parametric OLS regression of choice on indicators for interest
rate (7 levels), delay length (2 levels), risk condition (2 levels) and all interactions with clustered
standard errors. F-statistic corresponds to null hypothesis that all risk condition terms have zero
slopes. See Appendix Table A1l for regression.

16Indeed, in the (1,1) condition, 80.7 percent of allocations are at one or the other budget corners
while only 26.1 percent are corner solutions in the (0.5,0.5) condition. We interpret the corner
solutions in the (1,1) condition as evidence consistent with separability. See Andreoni and Sprenger
(Forthcoming) for a full discussion of censoring issues in CTBs. The difference in allocations across
conditions is obtained for all sessions and for all orders indicating no presence of order or day effects.
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Figure 2: Aggregate Behavior Under Certainty and Uncertainty
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Note: The figure presents aggregate behavior for N = 80 subjects under two conditions: (p1,p2) =
(1,1), i.e. no risk, in blue; and (p1,p2) = (0.5,0.5), i.e. 50 percent chance sooner payment would
be sent and 50 percent chance later payment would be sent, in red. ¢ = 7 days in all cases, k €
{28, 56} days. Error bars represent 95 percent confidence intervals, taken as +/ —1.96 standard errors
of the mean. Test of Hy : Equality across conditions: Fi4 79 = 6.07, p < .001.
uncertainty is immediately resolved, standard probability weighting, and temporally
dependent probability weighting.

The aggregate violations of common ratio documented above are also supported in
the individual data. Out of 14 opportunities to violate common ratio predictions, in-
dividuals do so an average of 9.68 (s.d. = 5.50) times. Only fifteen percent of subjects

(12 of 80) commit zero violations of expected utility. For the 85 percent of subjects

who do violate expected utility, they do so in more than 80 percent of opportunities, an
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average of 11.38 (s.d. = 3.99) times. Figure 3, Panel A presents a histogram of count;,

each subject’s number of violations across conditions (p1,p2) = (1,1) and (0.5,0.5).

Figure 3: Individual Behavior Under Certainty and Uncertainty

Panel A: (p1, p2) = (1, 1) vs. (0.5, 0.5)
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Note: The figure presents individual violations across three common ratio comparisons. The variable
count; is a count of each individual’s common ratio violations and, d; is each individual’s budget share
difference between common ratio conditions. Bin size for d; is 0.04.
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More than 40 percent of subjects violate common ratio predictions in all 14 opportuni-
ties. This may be a strict measure of violation as it requires identical allocation across
risk conditions. s a complementary measure, we also present a histogram of |d;|, the
individual average budget share difference between risk conditions. For each individual
and each CTB, we calculate the budget share of the sooner payment, (14 r)c;/m. The
average of each individual’s 14 budget share differences between common ratio condi-
tions is the measure d;. Here we consider the average absolute difference.!” e mean
value of |d;| is 0.27 (s.d. = 0.18), indicating that individual violations are substantial,
around 27 percent of the budget share. Indeed 63.8 percent of the sample (51/80)

exhibit |d;| > 0.2, indicating that violations are unlikely to be simple random response

eIrror.

4.2 Behavior with Differential Risk

Next we explore the four conditions with differential risk. First, we discuss violations
of common ratio when only one payment is certain. Second, we examine the three
conditions where all payments are uncertain and document behavior consistent with

discounted expected utility.

4.2.1 A Preference for Certainty

Figure 4 compares behavior in four conditions with differential risk but common ratios
of probabilities. Condition (p1, p2) = (1,0.8) (gray diamonds) is compared to (p1,p2) =
(0.5,0.4) (green triangles), and condition (p;, ps) = (0.8, 1) (yellow circles) is compared
to (p1,p2) = (0.4,0.5) (purple squares). The DEU model predicts equal allocations

across conditions with common ratios. Interestingly, subjects’ allocations demonstrate

"That is, the absolute value of each of the 14 differences is obtained prior to computing the
average. When computing d; across comparisons (p1,p2) = (1,0.8) vs. (p1,p2) = (0.5,0.4) and
(p1,p2) = (0.8,1) and (p1,p2) = (0.4,0.5), the first budget share is subtracted from the second budget
share to have a directional difference. Relative to common ratio, a preference for certainty would be
exhibited by a positive d; across (p1,p2) = (1,0.8) vs. (p1,p2) = (0.5,0.4) and a negative d; across
(p1,p2) = (0.8,1) and (p1,p2) = (0.4,0.5).
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Figure 4: A Preference for Certainty
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Note: The figure presents aggregate behavior for N = 80 subjects under four conditions: (p1,p2) =

(1,0.8), (pl,pg) = (0.5,0.4), (pl,pg) = (0.871) and (pl,pg) = (04,05)
percent confidence intervals, taken as +/ — 1.96 standard errors of the mean. The first and second

Error bars represent 95

conditions share a common ratio as do the third and fourth. Test of Hy : Equality across conditions
(pl,pg) = (1708) and (pl,pg) = (05,04) F14779 = 769, p < .001. Test of HQ
conditions (p1,p2) = (0.8,1) and (p1,p2) = (0.4,0.5): Fi479 = 5.46, p < .001.

: Equality across
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a preference for certain payments relative to common ratio counterparts, regardless of
whether the certain payment is sooner or later. Hypotheses of equal allocations across
conditions are rejected in both cases.!®

Figure 3, Panels B and C demonstrate that the individual behavior is organized in
a similar manner. Individual violations of common ratio predictions are substantial.
When certainty is sooner, across conditions (p1,p2) = (1,0.8) and (p1,p2) = (0.5,0.4),
subjects commit an average of 10.90 (s.d. = 4.67) common ratio violations in 14 oppor-
tunities and only 7.5 percent of subjects commit zero violations. The average distance
in budget shares, d;, is 0.150 (s.d. = 0.214), which is significantly greater than zero
(t79 = 6.24, p < 0.01), and in the direction of preferring the certain sooner payment.
When certainty is later across conditions (p1,p2) = (0.8,1) and (p1,p2) = (0.4,0.5),
subjects make an average of 9.68 (s.d. = 5.74) common ratio violations and 17.5 per-
cent of subjects make no violations at all, similar to Panel A. The average distance
in budget share, d;, is —0.161 (s.d. = 0.198), which is significantly less than zero
(t79 = 7.27, p < 0.01), and in the direction of preferring the certain later payment.

Importantly, violations of discounted expected utility correlate across experimental
comparisons. Figure 5 plots budget share differences, d;, across common-ratio com-
parisons. The difference |d;| from condition (pi,ps) = (1,1) vs. (p1,p2) = (0.5,0.5)
is on the vertical axis while d; across the alternate comparisons is on the horizon-
tal axis. Common ratio violations correlate highly across experimental conditions.
The more an individual violates common ratio across conditions (p,p2) = (1,1) and
(p1,p2) = (0.5,0.5) predicts how much he or she will demonstrate a common-ratio vio-
lation towards certainty when it is sooner in (p1, ps) = (1,0.8) vs. (p1,p2) = (0.5,0.4),
(p=0.31, p<0.01), and when it is later in (p1,p2) = (0.8,1) vs. (p1,p2) = (0.4,0.5),

18For equality across (p1,p2) = (1,0.8) and (p1,p2) = (0.5,0.4) Fia79 = 7.69, p < .001 and for
equality across (p1,p2) = (0.8,1) and (p1,p2) = (0.4,0.5) Fia79 = 546, p < .001. Test statistics
generated from non-parametric OLS regression of choice on indicators for interest rate (7 levels),
delay length (2 levels), risk condition (2 levels) and all interactions with clustered standard errors.
F-statistic corresponds to null hypothesis that all risk condition terms have zero slopes. See Appendix
Table A1 for regression.
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(p=—0.47, p < 0.01). Table 2 presents a correlation table for the number of violations
count;, and the budget proportion differences d;, across comparisons and shows signif-

icant individual correlation across all conditions and measures of violation behavior.

Figure 5: Violation Behavior Across Conditions
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Note: The figure presents the correlations of the budget share difference, d;, across common ratio
comparisons. |d;| across conditions (p1,p2) = (1,1) and (p1,p2) = (0.5,0.5) is on the vertical axis.
d; across the alternate comparisons is on the horizontal axis. Regression lines are provided. Corre-
sponding correlation coefficients are p = 0.31, (p < 0.01) for the triangular points (p1,p2) = (1,0.8)
vs (p1,p2) = (0.5,04) and p = —0.47, (p < 0.01) for the circular points (p1,p2) = (0.8,1) vs
(p1,p2) = (0.4,0.5). See Table 2 for more details.

These findings are critical for two reasons. First, the common ratio violations
observed in this sub-section could be predicted by a variety of formulations of Prospect
Theory probability weighting (Kahneman and Tversky, 1979; Tversky and Kahneman,
1992; Tversky and Fox, 1995; Wu and Gonzalez, 1996; Prelec, 1998; Gonzalez and Wu,
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Table 2: Individual Violation Correlation Table

count; count; count; |d;| d; d;
(1,1) (1,08 (0.8,1)  (1,1)  (1,0.8) (0.8,1)
VS VS VS VS VS VS

(05,05 (0.5,04) (0.4,05) (0.5,05) (0.5,04) (0.4,0.5)

(1,1)
count; VS. 1
(0.5,0.5)
(1,0.8)
count; Vs. 0.56 1
(0.5,0.4) o
(0.8,1)
count; Vs. 0.71 0.72 1
(1,1)
|d;| s 0.84 0.40 0.52 1
(1,0.8)
d; Vs. 0.31 0.34 0.28 0.31 1
(0.8,1)
d; Vs. -0.55 -0.412 -0.61 -0.47 -0.34 1

Notes: Pairwise correlations with 80 observations. The variable count; is a count of each individ-
ual’s common ratio violations and, d; is each individual’s budget share difference between common
ratio conditions. Lewvel of significance: *p < 0.1, **p < 0.05, ***p < 0.01.

1999; Halevy, 2008). Hence, the violations of DEU documented in this sub-section,
unlike those of sub-section 4.1 cannot reject a Prospect Theory interpretation to the
data. Recognizing that violations correlate highly across contexts that can and cannot
be explained by probability weighting suggests that Prospect Theory cannot provide a
unified account for the data. It is important to note, however, that Prospect Theory is
primarily motivated for the study of decision-making under uncertainty. Clearly, more
research analyzing Prospect Theory predictions in atemporal choices is required before

conclusions can be drawn. In one recent example, Andreoni and Sprenger (2011) reach

22



conclusions similar to those here in an atemporal environment.

Second, these results strongly suggest that a preference for certainty may play a
critical role in generating dynamic inconsistencies. Here we have demonstrated that
certain sooner payments are preferred over uncertain later payments in a way that is
inconsistent with DEU at both the aggregate and individual levels. This phenomenon
clearly did not involve intrinsic present bias because first, the present was not directly

involved and, second, the effect can be reversed by making later payments certain.

4.2.2 When All Choices Are Uncertain

Figure 6 presents aggregate behavior from three risky situtations: (p;,p2) = (0.5,0.5)
(red diamonds); (p1,p2) = (0.5,0.4) (green squares); and (p1,p2) = (0.4,0.5) (orange
triangles) over the experimentally varied values of # and delay length. The mean earlier
choice of ¢; is graphed along with error bars corresponding to 95 percent confidence
intervals. We also plot predicted behavior based on structural discounting and utility
estimates from the (pi,ps) = (0.5,0.5) data.'® These out-of-sample predictions are
plotted as solid lines in green and orange. The solid red line corresponds to the model
fit for (p1,p2) = (0.5,0.5).

We highlight two dimensions of Figure 6. First, the theoretical predictions are 1)
that ¢; should be declining in 6; and 2) that if two decisions have identical 6 then ¢,
should be higher in the condition with the lower interest rate.?’ These features are

observed in the data. Allocations of ¢; decline with 6 and, where overlap of 0 exists ¢,

9 Appendix A.1.1 describes the estimation procedure, the methodology for which was developed in
Andreoni and Sprenger (Forthcoming). Appendix A.1.1 documents that a common set of parameters
cannot simultaneously rationalize the (p1,p2) = (0.5,0.5) and (p1,p2) = (1,1) data. Appendix Table
A2, column (6) provides corresponding estimates based on the (p1,p2) = (0.5,0.5) and (p1,p2) = (1,1)
data. In both conditions, discounting is estimated to be around 30 percent per year. While substantial
risk aversion is estimated from (p1,p2) = (0.5,0.5), limited utility function curvature is obtained
when (p1,p2) = (1,1). Of interest is the close similarity between the (p1,p2) = (1,1) estimates and
those obtained in Andreoni and Sprenger (Forthcoming), where payment risk was minimized and no
experimental variation of risk was implemented.

20As discussed in Section 2, ¢; should be monotonically decreasing in §. Additionally, if § = 6’ and
1+ r # 1+ 7' then behavior should be identical up to a scaling factor related to the interest rates
1+ 7r and 1+ 7. ¢; should be higher in the lower interest rate condition due to income effects.
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Figure 6: Aggregate Behavior Under Uncertainty
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Note: The figure presents aggregate behavior for N = 80 subjects under three conditions: (p1,p2) =
(0.5,0.5), i.e. equal risk, in red; (p1,p2) = (0.5,0.4), i.e. more risk later, in green; and (p1,p2) =
(0.4,0.5), i.e. more risk sooner, in orange. Error bars represent 95 percent confidence intervals, taken
as +/ — 1.96 standard errors of the mean. Solid lines correspond to predicted behavior using utility

estimates from (p1,p2) = (0.5,0.5) as estimated in Appendix Table A2, column (6).

is generally higher for lower gross interest rates.?’ Second, out of sample predictions
match actual aggregate behavior. Indeed, the out-of-sample calculated R? values are
high: 0.878 for (p1, p2) = (0.5,0.4) and 0.580 for (p1, p2) = (0.4,0.5).%2

Figure 6 demonstrates that in situations where all payments are risky, the results are

2IThis pattern of allocations is obtained for all sessions and for all orders indicating no presence of
order or day effects.

2By comparison, making similar out of sample predictions using utility estimates from (py, p2) =
(1,1) yields predictions that diverge dramatically from actual behavior (see Appendix Figure A2) and
lowers R? values to 0.767 and 0.462, respectively. This suggests that accounting for differential utility
function curvature in risky situations allows for an improvement of fit on the order of 15-25 percent.
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surprisingly consistent with the DEU model. Though subjects exhibited a preference
for certainty when it is available, away from certainty they trade off relative risk and
interest rates like expected utility maximizers, and utility parameters measured under

uncertainty predict behavior out-of-sample extremely well.?

5 Discussion and Conclusion

Intertemporal decision-making involves a combination of certainty and uncertainty.
The present is known while the future is inherently risky. In an intertemporal alloca-
tion experiment under varying risk conditions, we document violations of discounted
expected utility’s common ratio predictions. Additionally the pattern of results are in-
consistent with various Prospect Theory probability weighting formulations. Subjects
exhibit a preference for certainty when it is available, but behave largely as discounted
expected utility maximizers away from certainty.

Our results have substantial implications for intertemporal decision theory. par-
ticular, present bias has been frequently documented (Frederick et al., 2002) and is
argued to be a dynamically inconsistent discounting phenomenon generated by dimin-
ishing impatience through time. Our results suggest that present bias may have an
alternate source. If individuals exhibit a preference for certainty when it is available,
then present certain consumption will be favored over future uncertain consumption.
When only uncertain future consumption is considered, individuals act more closely in
line with expected utility and apparent preference reversals are generated.

Other research has discussed the possibility that certainty plays a role in generating
present bias (Halevy, 2008). Additionally such a notion is implicit in the recognized

dynamic inconsistency of non-expected utility models (Green, 1987; Machina, 1989),

Z3Prospect theory probability weighting would make a similar prediction as many of the functional
forms used in the literature are near linear at intermediate probabilities (Kahneman and Tversky,
1979; Tversky and Kahneman, 1992; Tversky and Fox, 1995; Wu and Gonzalez, 1996; Prelec, 1998;
Gonzalez and Wu, 1999).

25



and could be thought of as preferring immediate resolution of uncertainty (Kreps and
Porteus, 1978; Chew and Epstein, 1989; Epstein and Zin, 1989). Our results point
in a new direction: that certainty, per se, may be disproportionately preferred. We
interpret our findings as being consistent with the intuition of the Allais Paradox (Al-
lais, 1953). Allais (1953, p. 530) argued that when two options are far from certain,
individuals act effectively as discounted expected utility maximizers, while when one
option is certain and another is uncertain a disproportionate preference for certainty
prevails. This intuition is captured closely in the u-v preference models of Neilson
(1992), Schmidt (1998), and Diecidue et al. (2004) predicting the observed behavior
across our experimental conditions, is a feature of belief-dependent utility (Dufwenberg,
2008) and expectations-based reference dependence (Bell, 1985; Loomes and Sugden,
1986; Koszegi and Rabin, 2006, 2007), and may help researchers to understand the
origins of dynamic inconsistency, build sharper theoretical models, provide richer ex-
perimental tests, and form more careful policy prescriptions regarding intertemporal

choice.
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Table Al: Non-Parametric Estimates of DEU Violations

Comparison
(p1,p2) = (1,1) vs. (0.5,0.5) (p1,p2) = (1,0.8) vs. (0.5,0.4) (p1,p2) = (0.8,1) vs. (0.4,0.5)
Dependent Variable: ¢; Allocations
Risk Conditions
Condition (py,p2) = (1,1) 3.350%**
(0.772)
Condition (py, p2) = (1,0.8) 4.418%**
(0.558)
Condition (py,p2) = (0.8,1) -3.537H*
(0.684)
Interest Rate x Delay Length Categories
(147, k) = (1.00,28) - - -
(147, k) = (1.05,28) 5,387 1,651 0.967*
(0.829) (0.316) (0.452)
(1+7k) = (1.11,28) -6.204%%% -2.818%%* -1.382%%
(0.812) (0.434) (0.454)
(L+r k) =(1.18,28) -6.921%%* -4.140%%* -1.851%**
(0.780) (0.490) (0.455)
(147 k) = (1.25,28) _7.438%%* _5.449%%* -2.900%kx
(0.755) (0.544) (0.488)
(147 k) = (1.33,28) 8,187 ~7.139%5 2,744+
(0.721) (0.668) (0.496)
(147, k) = (1.43,28) -0.039%%* -8.164%%* -3.126%
(0.677) (0.658) (0.503)
(147, k) = (1.00,56) 0.193 0.073 0.873*
(0.192) (0.211) (0.395)
(147, k) = (1.05,56) -4.600% ~1.200%% -0.352
(0.791) (0.336) (0.442)
(1+47,k) = (1.11,56) -5.409%%* 2,582 -0.923
(0.805) (0.331) (0.515)
(147, k) = (1.18,56) -6.462%+ -3.685%%* BWLIEE
(0.796) (0.480) (0.513)
(147, k) = (1.25,56) 743675 5227 1812
(0.758) (0.544) (0.512)
(147, k) = (1.33,56) -8.118%%* -6.979%%* -2, 53
(0.740) (0.652) (0.493)
(1+7,k) = (1.43,56) 87T 7,882 -2.833 %
(0.713) (0.656) (0.477)
Risk Condition Interactions: Relevant Risk Condition x
(147 k) = (1.05,28) 6,148 -1.544% 0.134
(1.111) (0.602) (0.421)
(147 k) = (1.11,28) 6,493 -1L574% 0.498
(1.048) (0.573) (0.446)
(A +7,k) = (1.18,28) ~6.507+%+ 9,131 0.849
(0.981) (0.708) (0.463)
(1 +7,k) = (1.25,28) -6.666+*+ 9,584 0.920
(0.971) (0.762) (0.576)
(L+7rk)=(1.33,28) -6.425%F* -2.136** 1.319*
(0.917) (0.764) (0.601)
(L+7r k) =(1.43,28) -5.683*H* -2.170%* 1.443*
(0.880) (0.728) (0.623)
(A +7,k) = (1.00,56) 0.192 -0.180 0.107
(0.450) (0.243) (0.602)
(147, k) = (1.05,56) _5.540%%* “1.646** 0.156
(1.088) (0.616) (0.557)
(147 k) = (1.11,56) 6,734 1781 0511
(1.093) (0.588) (0.521)
(L+7rk) = (1.18,56) -6.450%%* S2.4T71HRE 0.747
(1.040) (0.719) (0.644)
(147, k) = (1.25,56) ~6.006%%* 2. 5TGHR* 0.994
(0.975) (0.714) (0.636)
(14 rk) = (1.33,56) -5.911%%* -2.286%* 1.604%
(0.974) (0.781) (0.587)
(147, k) = (1.43,56) 5574 -2.618%%% 1.639%
(0.936) (0.702) (0.654)
Constant (Omitted Category) 12.537#%* 14.455%** 5.950%**
(0.464) (0.424) (0.554)
Hy: Zero Condition Slopes Fiyz79 =6.07 Fiym9 = 7.69 Fia79 = 5.46
(p <0.01) (p<0.01) (p <0.01)
# Observations 2240 2240 2240
# Clusters 80 80 80
R? 0.429 32 0.360 0.173

Notes: Clustered standard errors in parentheses. Fi4 79 statistics correspond to hypothesis tests
of zero slopes for risk condition regressor and 13 risk condition interactions.



A.1.1 Estimating Preference Parameters

In this appendix we discuss structural estimation of intertemporal preference param-
eters. We document that a common set of DEU parameters cannot simultaneously
rationalize the (p1,p2) = (0.5,0.5) and (p1,p2) = (1,1) data, providing structural sup-
port for the claim that risk preferences are not time preferences. Additionally, the
parameter estimates are used out of sample to predict behavior both in Figure 6 and in
Figure A2. The evidence indicates that away from certainty the data adhere closely to
DEU parameters estimated from (py, ps) = (0.5,0.5), but are far from those estimated
from (p1,p2) = (1,1).

Given structural assumptions, the design allows us to estimate utility parameters,
following methodology developed in Andreoni and Sprenger (Forthcoming). We assume
an exponentially discounted CRRA utility function,

U=p6'(c, —w)* + p25t+k(0t+k —w)%,

where 0 represents exponential discounting, o represents utility function curvature and
w is a background parameter that could be interpreted as a Stone-Geary minimum.?*
We posit an exponential discounting function because for timing and transaction cost
reasons no present payments were provided. This precludes direct analysis of present-
biased or quasi-hyperbolic time preferences (Strotz, 1956; Phelps and Pollak, 1968;
Laibson, 1997; O’Donoghue and Rabin, 1999). Under this formulation, the DEU solu-
tion function, ¢, can be written as

i (p1/pa, t, kb, 14r,m) = - Ga+ r)o*) =] o [(B2(1+ r)ok) e .

T I @0 ] [ ()8
TR WS PR i 0 il RN (U i )
ACAZLE ’ [1+ (1 +7)(05%)a1] 1+ (14 r)(05%)T]

We estimate the parameters of this function via non-linear least squares with stan-
dard errors clustered on the individual level to obtain &, 5 , and w. An estimate of
the annual discount rate is generated as 1/ 5365 _ 1, with corresponding standard error
obtained via the delta method.

Table A2 presents discounting and curvature parameters estimated from the two
conditions (p,p2) = (1,1) and (p1,p2) = (0.5,0.5). In column (1), we estimate a
baseline model where discounting, curvature, and background parameters are restricted
to be equal across the two risk conditions. The aggregate discount rate is estimated to

24The w terms could be also be interpreted as intertemporal reference points or background con-
sumption. Frequently in the time preference literature, the simplification w = 0 is imposed or w is
interpreted as minus background consumption (Andersen et al., 2008) and calculated from an exter-
nal data source. In Andreoni and Sprenger (Forthcoming) we provide methodology for estimating the
background parameters and employ this methodology here. Detailed discussions of sensitivity and
censored data issues are provided in Andreoni and Sprenger (Forthcoming) who show that accounting
for censoring issues has little influence on estimates.
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be around 27 percent per year and aggregate curvature is estimated to be 0.98. The
background parameter, w is estimated to be 3.61.

Table A2: Discounting and Curvature Parameter Estimates

(1) (2) (3) (4) () (6)
o 0.982 0.984
(0.002) (0.002)
Q1,1 0.987 0.987 0.988 0.988
(0.002) (0.002) (0.002) (0.002)
G(0.5,0.5) 0.950 0.951 0.885 0.883
(0.008) (0.008) (0.017) (0.017)
Rate 0.274 0.285 0.284
(0.035) (0.036) (0.037)
Rate(,1) 0.281 0.276 0.282
(0.036) (0.039) (0.036)
Rate(o_5,0,5) 0.321 0.269 0.315
(0.059) (0.033) (0.088)
w 3.608 2417 2.414
(0.339) (0.418) (0.418)
&y 2.281 2.106 2.285
(0.440) (0.439) (0.439)
B05.0.5) 4.397 5.260 4.427
(0.321) (0.376) (0.324)
HUZ Equahty F3779 = 16.12 F2779 = 30.47 F2’79 =23.24 F2779 = 37.97 F1’7g = 38.09
(p<001) (p<001) (p<001) (p<001) (p<0.01)
R? 0.642 0.675 0.672 0.675 0.673 0.673
N 2240 2240 2240 2240 2240 2240
Clusters 80 80 80 80 80 80

Notes: NLS solution function estimators. Subscripts refer to (pj,p2) condition. Column (1)
imposes the interchangeability, v(-) = wu(-). Column (2) allows different curvature, discounting
and background parameters in each (p1,ps) condition. Column (3) restricts curvature to be
equal across conditions. Column (4) restricts discounting to be equal across conditions. Column
(5) restricts the background parameter w to be equal across conditions. Column (6) restricts
the background parameter w and discounting to be equal across conditions. Clustered standard
errors in parentheses. F statistics correspond to hypothesis tests of equality of parameters across
conditions. Rate: Annual discount rate calculated as (1/ 5)365 — 1, standard errors calculated via
the delta method.

In column (2), we estimate separate discounting, curvature and background param-

eters for the two risk conditions. That is, we estimate a certain v(-) and an uncertain
u(+). Discounting is found to be similar across the conditions, around 30 percent per
vear (Fi79 = 0.69, p = 0.41).% In the certain condition, (p1,p2) = (1,1), we find
almost linear utility while in the uncertain condition, (p1, p2) = (0.5,0.5), we estimate

Z5For comparison, using similar methodology without uncertainty Andreoni and Sprenger (Forth-
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utility to be significantly more concave (Fjrz9 = 24.09, p < 0.01). In the certain
condition, (p1,p2) = (1,1), we estimate a background parameter w;; of 2.28 while
in the uncertain condition the background parameter is significantly higher at 4.40
(Fi79 = 25.53, p < 0.01). A hypothesis test of equal utility parameter estimates across
conditions is rejected (F379 = 16.12, p < 0.01).

In Table A2, columns (3) through (6) we estimate utility parameters with various
imposed restrictions. In column (3), we restrict curvature to be equal across conditions
and obtain very similar discounting estimates, but a larger difference in estimated
background parameters. In column (4), we restrict discounting to be equal across
conditions and obtain a result almost identical to column (2). In column (5), we restrict
background parameters to be equal and obtain very similar discounting estimates, but a
larger difference in curvature. This finding is repeated in column (6) where discounting
is restricted to be the same. Across specifications, hypothesis tests of equality of utility
parameters are rejected.

To illustrate how well these estimates fit the data, Figure A1 displays solid lines with
predicted behavior from the most restricted regression, column (6) and the common
regression of column (1). The general pattern of aggregate responses is well matched by
the column (6) estimates. Figure A1 reports separate R? values for the two conditions:
R, = 0.594; Rj;,5 = 0.761, and the model fits are substantially better than the
combined model of column (1). For comparison a simple linear regression of ¢; on
the levels of interest rates, delay lengths and their interaction in each condition would
produce R? values of R1 L = 0.443; R? 505 = 0.346. The least restricted regression,
column (2) creates very similar predicted values with R? values of 0.595 and 0.766. As
the estimates show predicting either condition’s responses from the other would lead
to substantially worse fit. When using the (p1, p2) = (0.5, 0.5) estimates of column (2)
as a model for the (pi,ps) = (1,1) data, the R? value reduces to 0.466. And, when
using the (p1,p2) = (1, 1) estimates of column (2) as a model for the (p1, ps) = (0.5,0.5)
data, the R? value reduces to 0.629.

coming) find aggregate discount rate between 25-35 percent and aggregate curvature of around 0.92.
These discount rates are lower than generally found in the time preference literature (Frederick et al.,
2002). Notable exceptions of similarly low or lower discount rates include Coller and Williams (1999),
Harrison et al. (2002), and Harrison et al. (2005) which all assume linear utility, and Andersen et al.
(2008), which accounts for utility function curvature with Holt and Laury (2002) risk measures.
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Figure Al: Aggregate Behavior Under Certainty and Uncertainty
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Note: The figure presents aggregate behavior for N = 80 subjects under two conditions: (p1,p2) =

(1,1), i.e. no risk, in blue; and (p1,p2) = (0.5,0.5), i.e.

50 percent chance sooner payment would

be sent and 50 percent chance later payment would be sent, in red. ¢ = 7 days in all cases, k €
{28,56} days. Error bars represent 95 percent confidence intervals, taken as +/—1.96 standard errors
of the mean. Test of Hy : Equality across conditions: Fi4 79 = 6.07, p < .001.
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Figure A2: Aggregate Behavior Under Uncertainty with Predictions Based on Cer-
tainty
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Note: The figure presents aggregate behavior for N = 80 subjects under three conditions: 1) (p1,p2) =
(0.5,0.5), i.e. equal risk, in red; 2) (p1,p2) = (0.5,0.4), i.e. more risk later, in green; and 3) (p1,p2) =
(0.4,0.5), i.e. more risk sooner, in orange. Error bars represent 95 percent confidence intervals, taken
as +/ — 1.96 standard errors of the mean. Blue solid lines correspond to predicted behavior using

certain utility estimates from (p1,p2) = (1,1) as estimated in Table A2, column (6).
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A.2 Welcome Text

Welcome and thank you for participating.
Eligibility for this study: To be in this study, you need to meet these criteria. You

must have a campus mailing address of the form:

YOUR NAME
9450 GILMAN DR 92(MAILBOX NUMBER)
LA JOLLA CA 92092-(MAILBOX NUMBER)

Your mailbox must be a valid way for you to receive mail from now through the
end of the Spring Quarter.

You must be willing to provide your name, campus mail box, email address, and
student PID. This information will only be seen by Professor Andreoni and his assis-
tants. After payment has been sent, this information will be destroyed. Your identity
will not be a part of any subsequent data analysis.

You must be willing to receive your payment for this study by check, written to
you by Professor James Andreoni, Director of the UCSD Economics Laboratory. The
checks will be drawn on the USE Credit Union on campus. You may deposit or cash
your check wherever you like. If you wish, you can cash your checks for free at the USE
Credit Union any weekday from 9:00 am to 5:00 pm with valid identification (drivers
license, passport, etc.).

The checks will be delivered to you at your campus mailbox at a date to be de-
termined by your decisions in this study, and by chance. The latest you could receive
payment is the last week of classes in the Spring Quarter.

If you do not meet all of these criteria, please inform us of this now.
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A.3 Instruction and Examples Script

Earning Money:

To begin, you will be given a $10 minimum payment. You will receive this payment
in two payments of $5 each. The two $5 minimum payments will come to you at two
different times. These times will be determined in the way described below. Whatever
you earn from the study today will be added to these minimum payments.

In this study, you will make 84 choices over how to allocate money between two
points in time, one time is ‘earlier’ and one is ‘later’. Both the earlier and later times
will vary across decisions. This means you could be receiving payments as early as
one week from today, and as late as the last week of classes in the Spring Quarter, or
possibly other dates in between.

It is important to note that the payments in this study involve chance. There is a
chance that your earlier payment, your later payment or both will not be sent at all.
For each decision, you will be fully informed of the chance involved for the sooner and
later payments. Whether or not your payments will be sent will be determined at the
END of the experiment today. If, by chance, one of your payments is not sent, you will
receive only the $5 minimum payment.

Once all 84 decisions have been made, we will randomly select one of the 84
decisions as the decision-that-counts. This will be done in three stages. First, we will
pick a number from 1 to 84 at random to determine which is the decision-that-counts
and the corresponding sooner and later payment dates. Then we will pick a second
number at random from 1 to 10 to determine if the sooner payment will be sent. Then
we will pick a third number at random from 1 to 10 to determine if the later payment
will be sent. We will use the decision-that-counts to determine your actual earnings.
Note, since all decisions are equally likely to be chosen, you should make each decision
as if it will be the decision-that-counts. When calculating your earnings from the

decision-that-counts, we will add to your earnings the two $5 minimum payments.
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Thus, you will always get paid at least $5 at the chosen earlier time, and at least $5

at the chosen later time.

IMPORTANT: All payments you receive will arrive to your campus mailbox. On
the scheduled day of payment, a check will be placed for delivery in campus mail
services by Professor Andreoni and his assistants. Campus mail services guarantees
delivery of 100% of your payments by the following day.

As a reminder to you, the day before you are scheduled to receive one of your
payments, we will send you an e-mail notifying you that the payment is coming. On
your table is a business card for Professor Andreoni with his contact information.
Please keep this in a safe place. If one of your payments is not received you should

immediately contact Professor Andreoni, and we will hand-deliver payment to you.

Your Identity:

In order to receive payment, we will need to collect the following pieces of in-
formation from you: name, campus mail box, email address, and student PID. This
information will only be seen by Professor Andreoni and his assistants. After all pay-
ments have been sent, this information will be destroyed. Your identity will not be a
part of subsequent data analysis.

On your desk are two envelopes: one for the sooner payment and one for the later
payment. Please take the time now to address them to yourself at your campus mail

box.

How it Works:
In each decision you are asked to divide 100 tokens between two payments at two
different dates: Payment A (which is sooner) and Payment B (which is later). Tokens

will be exchanged for money. The tokens you allocate to Payment B (later) will always
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be worth at least as much as the tokens you allocate to Payment A (sooner). The
process is best described by an example. Please examine the sample sheet in you
packet marked SAMPLE.

The sample sheet provided is similar to the type of decision sheet you will fill out in
the study. The sample sheet shows the choice to allocate 100 tokens between Payment
A on April 17th and Payment B on May 1st. Note that today’s date is highlighted in
yellow on the calendar on the left hand side. The earlier date (April 17th) is marked
in green and the later date (May 1st) is marked in blue. The earlier and later dates
will always be marked green and blue in each decision you make. The dates are also
indicated in the table on the right.

In this decision, each token you allocate to April 17th is worth $0.10, while each
token you allocate to May 1st is worth $0.15. So, if you allocate all 100 tokens to
April 17th, you would earn 100x$0.10 = $10 (+ $5 minimum payment) on this date
and nothing on May 1st (+ $5 minimum payment). If you allocate all 100 tokens to
May 1st, you would earn 100x$0.15 = $15 (+ $5 minimum payment) on this date and
nothing on April 17th (+ $5 minimum payment). You may also choose to allocate
some tokens to the earlier date and some to the later date. For instance, if you allocate
62 tokens to April 17th and 38 tokens to May 1st, then on April 17th you would earn
62x30.10 = $6.20 (+ $5 minimum payment) and on May 1st you would earn 38x$0.15
= $5.70 (+ $5 minimum payment). In your packet is a Payoff Table showing some of
the token-dollar exchange at all relevant token exchange rates.

REMINDER: Please make sure that the total tokens you allocate between Payment
A and Payment B sum to exactly 100 tokens. Feel free to use the calculator provided
in making your allocations and making sure your total tokens add to exactly 100 in

each row.

Chance of Receiving Payments:
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Each decision sheet also lists the chances that each payment is sent. In this example
there is a 70% chance that Payment A will actually be sent and a 30% chance that
Payment B will actually be sent. In each decision we will inform you of the chance that
the payments will be sent. If this decision were chosen as the decision-that-counts we
would determine the actual payments by throwing two ten sided die, one for Payment
A and one for Payment B.

EXAMPLE: Let’s consider the person who chose to allocate 62 tokens to April
17th and 38 tokens to May 1st. If this were the decision-that-counts we would then
throw a ten-sided die for Payment A. If the die landed on 1,2,3,4,5,6,0or 7, the person’s
Payment A would be sent and she would receive $6.20 (+ $5 minimum payment) on
April 17th. If the die landed 8,9, or 10, the payment would not be sent and she would
receive only the $5 minimum payment on April 17th. Then we would throw a second
ten-sided die for Payment B. If the die landed 1,2, or 3, the person’s Payment B would
be sent and she would receive $5.70 (+ $5 minimum payment) on May 1st. If the die
landed 4,5,6,7,8,9, or 10, the payment would not be sent and she would receive only

the $5 minimum payment on May 1st.

Things to Remember:
e You will always be allocating exactly 100 tokens.

e Tokens you allocate to Payment A (sooner) and Payment B (later) will be ex-
changed for money at different rates. The tokens you allocate to Payment B will

always be worth at least as much as those you allocate to Payment A.

e Payment A and Payment B will have varying degrees of chance. You will be fully

informed of the chances.

e On each decision sheet you will be asked 7 questions. For each decision you will

allocate 100 tokens. Allocate exactly 100 tokens for each decision row, no more,
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no less.

At the end of the study a random number will be drawn to determine which
is the decision-that-counts. Because each question is equally likely, you should
treat each decision as if it were the one that determines your payments. Two
more random numbers will be drawn by throwing two ten sided die to determine

whether or not the payments you chose will actually be sent.

You will get an e-mail reminder the day before your payment is scheduled to

arrive.

Your payment, by check, will be sent by campus mail to the mailbox number you

provide.
Campus mail guarantees 100% on-time delivery.

You have received the business card for Professor James Andreoni. Keep this card
in a safe place and contact Prof. Andreoni immediately if one of your payments

is not received.
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